
I.J. Intelligent Systems and Applications, 2015, 04, 1-10
Published Online March 2015 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijisa.2015.04.01

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 04, 1-10

A Comparison of Crowding Differential

Evolution Algorithms for Multimodal

Optimization Problems

O. Tolga Altinoz
Ankara University, Department of Electrical and Electronics Engineering, Ankara, Turkey

Email: taltinoz@ankara.edu.tr

Abstract—Multimodal problems are related to locating multiple,

redundant global optima, as opposed to single solution. In

practice, generally in engineering problems it is desired to

obtain many redundant solutions instead of single global optima

since the available resources cannot be enough or not possible

to implement the solution in real-life. Hence, as a toolbox for

finding multimodal solutions, modified single objective

algorithms can able to use. As one of the fundamental

modification, from one of the niching schemes, crowding

method was applied to Differential Evolution (DE) algorithm to

solve multimodal problems and frequently preferred to

compared with developed methods. Therefore, in this study,

eight different DE are considered/evaluated on ten benchmark

problems to provide best possible DE algorithm for crowding

operation. In conclusion, the results show that the time varying

scale mutation DE algorithm outperforms against other DE

algorithms on benchmark problems.

Index Terms— Differential Evolution, Random Scale,

Multimodal Optimization, Time Varying, Crowding

I. INTRODUCTION

The optimization problems are generally contains

many local and global optimum points. For applications

like function optimization, only the single global

optimum point is desired to find by optimization

algorithms since the aim of optimization algorithms is to

minimize the cost function. However, in general, many of

engineering problems may contain many redundant

solutions which have the same cost value. Similarly, for

some real-life problems, a single best-possible solution is

needed to obtain in design stage. However, for practice

perspective, it isn't convenient to find a single solution

since the problem cannot be able to materialize due to

physical and manufacture constraints [1]. Therefore,

instead of a single solution, other redundant solutions are

desired to be obtained. Therefore, as its name relived, the

multimodal optimization tasks seek the all possible

optimal solutions instead of single solution which can

able to obtain from single objective optimization

algorithms.

The optimum points of multimodal optimization

problems can be able to find by using single objective

optimization algorithms which are converted/modified to

solve multimodal problems. Some of these single

objective optimization algorithms are genetic algorithm

[2,3], ant colony optimization [4], particle swarm

optimization [5,6], artificial bee colony optimization [7],

and differential evolution [8-10]. The main aim of any

multimodal optimization algorithm is to detect/obtain the

multiple optimum solutions, in other words niches on the

landscape of the problem.

Niching refers to the techniques for finding multiple

"stable" niches and preserve them from converging to a

single solution [11-13]. Niching methods are added to the

original single objective population based algorithm to

solve multimodal problems. Niching methods are became

to study since 1970s as a part of pre-selection operation

of genetic algorithm [14]. Since then, many niching

methods have been developed, and the most frequently

preferred two of niching operators are sharing [15,16],

and crowding methods [17,18].

The sharing method is based on re-calculating the

fitness values of members at the population for sharing

the information among the niche members. The

formulation of sharing scheme is presented in (1) and (2),

where F is the fitness function or problem, Fshare is the

new fitness function, σshare is a radius for information

sharing, Euc(xi, xj) is the function for calculating

Euclidean distance between two members of population

xi & xj, and Shr(.) is the sharing function.





P

j

ji

i
ishare

xxEucShr

xF
xF

1

)),((

)(
)((1)





















else

xxEuc
xxEuc

xxEucShr shareji

share

ji

ji

,0

),(
),(

1
)),((






 (2)

The idea of crowding method is one of the simplest

among niching schemes such that the new offspring in the

evolutionary algorithms is replaced by the similar

member in a nearby place. By this way, the population of

solutions is grouped with respect to the closest solution

candidate. From the research of Thomsen [9], it was

revealed that crowding method outperforms against

sharing method since sharing method has a sharing radius

parameter which must be properly tuned, also when

compared to crowding method, sharing is need more

computation power then crowding method.

Since crowding DE is considered as fundamental

method, and it is preferred to present the performance of

2 A Comparison of Crowding Differential Evolution Algorithms for Multimodal Optimization Problems

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 04, 1-10

proposed method, crowding DE have applied to many

researches. In [1], Qu et. al. proposed a niching particle

swarm optimization method which enhance the search

ability of the algorithm. The proposed method was

compared with nine niching algorithm, and only one of

the is crowding based DE, which is defined in [9]. The

proposed DE in [9] is based on DE which is defined in

this study as "DE-R1". Similarly, original niching DE is

also preferred in [5] for comparison. In [8], Biswas et. al.

was compared their proposed with crowding DE. Shen

and Li [10] improved crowding DE and proposed a new

method. Instead of DE-R1, the authors prefers DE-B1,

however, there isn't any comparison presented between

these two DE methods. Similar comparisons have

evaluated in [18]. However, even the crowding DE have

applied in benchmark problems and have compared with

proposed methods, there isn't any paper proposed to

compared performances of different DE algorithms.

In this study, crowding method is applied on

Differential Evolution algorithms (DE) with eight

different mutation operators and performance of DEs are

compared to obtain best mutation scheme for multimodal

optimization algorithms.

This paper is organized as three more sections

following the introduction. Section 2 presents information

related to differential evolution and mutation schemes.

Also in this section crowding DE is explained. Section 3

is allocated for implementation and performance

measurement of DE algorithms. The implementations are

repeated for four different accuracy level of multiple

global optima. And last section gives the conclusion.

II. DIFFERENTIAL EVOLUTION ALGORITHMS

Differential evolution (DE) algorithm is an

evolutionary algorithm, which has the operator of

mutation, crossover, and selection. The introduction of

DE was proposed by Storn and Price in 1995 [19-22].

The authors prove the performance of their new

algorithm by comparing with improved simulated

annealing algorithm and genetic algorithm. Figure 1

presents the flow diagram of DE.

DE begins with the initialization. If previous

knowledge about the problem isn't exists then the initial

values of the population assign randomly (X). After the

initialization, iterations begin. The new populations (U

and V) are calculated at each iteration. If a vector in the

new population (U) has lower fitness value (for

minimization problem) then this new vector survives to

the next iteration. In summary,

- obtaining the temporary population set V,

- obtaining new population U,

- selecting best members of two groups X and U.

A. Algorithm Steps

DE begins with the initialization of the population X.

 k

Di

k

i

k

i

k

i xxxX ,2,1, ,...,, (3)

where k is the current iteration (k=0,1,2,…,max_iter),

max_iter is the maximum number of iteration, D is the

dimension of the problem and i is the index for a member

in population. It is assumed that there are NP number of

members in population from first iteration to the end. The

initial vector of a member (k=0) is assigned randomly if

the programmers don't have previous knowledge about

the problem. The algorithm takes the advantage of

pseudo-random number generators to obtain random

numbers in [0,1]. Hence the initialization of population

should be formulated as in (4).

Initialize population

Do/Does the

termination

condition(s) met?

Calculate new

population

Compare old and new

populations, and

select best members

No

End

Yes

Evaluate fitness

function for each

member

Fig. 1. Flow diagram of Differential Evolution Algorithm

)(
0

, LxUxrandLxx jjjji  (4)

where xjL and xjU are upper and lower bound of the

search space.

After the completion of the initialization phase, a new

mutated population (V) is calculated from the initial

population (X). This new population is formulated in (5).

 k

Di

k

i

k

i

k

i vvvV ,2,1, ,...,, (5)

In this study eight different mutation operators are used

for comparison. The temporary V population is calculated

by applying one of these eight mutation operators. The

next subsection explains these mutation operators.

Following the mutation operator, the crossover is

executed to new population U as given in (6).

 k

Di

k

i

k

i

k

i uuuU ,2,1, ,...,, (6)

 A Comparison of Crowding Differential Evolution Algorithms for Multimodal Optimization Problems 3

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 04, 1-10

Table 1. Ten Multimodal Benchmark Problems

No Name of Function Mathematical Expression of Function Domain

F1 Five-Uneven-Peak Trap

 
 
 
 
 
 
 
 




































305.275.2780

5.275.225.2732

5.225.175.1732

5.175.125.1728

5.125.75.728

5.755.764

55.25.264

5.205.280

)(1

xx

xx

xx

xx

xx

xx

xx

xx

xF

 30,0x

F2 Equal Maxima  xxF 5sin)(6

2   1,0x

F3 Uneven Decreasing Maxima   












 





















 
 05.05sin

854.0

08.0
2log2exp)(4

3
6

2

3 x
x

xF 
  1,0x

F4 Himmelblau      2222

4 711200,  yxyxyxF  1,0x

F5 Six-Hump Camel Back     
















 222

4
2

5 44
3

1.244, yyxyx
x

xyxF
 
 1.1,1.1

9.1,9.1





y

x

F6 Shubert 2D      



5

1

5

1

6 1cos1cos),(
ii

iyiiixiiyxF  
 10,10

10,10





y

x

F7 Vincent 2D         yxyxF log10sinlog10sin
2

1
,7 

 
 10,25.0

10,25.0





y

x

F8 Shubert 3D    
 











3

1

5

1

8 1cos)(
j i

j ixiixF  10,10jx

F9 Vincent 3D      



3

1

9 log10sin
3

1

i

ixxF  10,25.0ix

F10 Modified Rastrigin      yxyxF  8cos9106cos910),(10 
 
 1,0

1,0





y

x

Two fundamental crossover operators were defined for

DE. However, from the researches [20-22] it is

emphasize that none of them is superior each other. These

crossover operators are exponential and binomial

operators. In this paper, binomial operator is selected,

because the computation burden of binomial operator is

lower than exponential, and also the performance of these

two methods are equal.





 


,

,

,

,

, k

ji

k

jik

ji
x

CRrandv
u (7)

The mathematical expression for binomial operator is

presented in (7). The CR is an algorithm parameter and

the value of CR assign differently for different mutation

operators.

The last operator is called the selection. In the selection

phase two populations X and U are compared and the best

members among these two population are survived to the

next generator. The number of survived members is equal

to NP.

B. Mutation Operators

In this study, eight different mutation operators with

crowding DE are compared with respect to performance

measurement functions. In the next subsection the

crowding operator will be explained. All these operator

are taken F and CR as algorithm parameters which have

the value depended on the mutation operator.

1) DE/Rand/1(F=0.8, CR=0.9)(DE-R1)

First mutation operator is called as DE/Rand/1 [21].

The method begins with the selection of three random

vectors r1, r2 and r3. Three random vectors and the current

member of the population form a new member. The

operator is given in (8) and graphically demonstrate in

Figure 2.

 k

jr

k

jr

k

jr

k

ji xxFxv ,3,2,1

1

, 


 (8)

4 A Comparison of Crowding Differential Evolution Algorithms for Multimodal Optimization Problems

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 04, 1-10

Table 3. Peak Ratio (Success Rate) of Various Differential Evolution Algorithms on Benchmark Problems (Level of Accuracy = 0.1)

No DE-B1 DE-B2 DE-R1 DE-R2 DE-RB DE-RS T-DE TS-DE

F1 0.50 (0) 0.56 (0.14) 1 (1) 0.72 (0.50) 0.46 (0) 1 (1) 0.49 (0) 1 (1)

F2 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1)

F3 0.40 (0.40) 0.50 (0.50) 1 (1) 1 (1) 0.42 (0.42) 1 (1) 0 (0) 1 (1)

F4 1 (1) 0.995 (0.98) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1)

F5 0.96 (0.92) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1)

F6 22E-3 (0) 31.1E-3 (0) 0.30 (0) 18.9E-3 (0) 32.2E-3 (0) 23.3E-3 (0) 23.3E-3 (0) 23.3E-3 (0)

F7 92.2E-3 (0) 55E-3 (0) 0 (0) 0 (0) 80E-3 (0) 0 (0) 1.1E-3 (0) 1.1E-3 (0)

F8 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

F9 3.61E-3 (0) 2.2E-3 (0) 0 (0) 0 (0) 2.78E-3 (0) 0 (0) 64.8E-5 (0) 64.8E-5 (0)

F10 72.7E-2 (0.28) 93.7E-2 (0.82) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1)

X2

X1

x

x
x

x

Xr3,G

Xr2,G Xr1,G

F(Xr2,G – Xr3,G)

v = Xr1,G + F(Xr2,G – Xr3,G)

Fig. 2. Graphical demonstration of DE/Rand/1 Mutation Operator.

Figure 2 gives the graphical demonstration of

DE/Rand/1 mutation operator. Randomly three solution

candidates are selected from population. Scaled

difference between two randomly selected solution is

added to other randomly selected solution. As the

solutions are converges to the global/local optima, the

difference between any two randomly selected solution

becomes smaller. Hence, at the beginning of each

iteration, the algorithm can search larger areas of search

space (as seen in Figure 2). However, if the algorithm

converges to local optima, the mutation operator couldn't

help the algorithm to escape from local optima.

2) DE/Best/1(F=0.8, CR=0.9)(DE-B1)

This operator depends on the best member in the

population [21]. Similarly, this best member is used

instead of first random vector in DE/Rand/1. The

formulation of the operator is given in (9) and graphically

demonstrated in Figure 3.

 k

jr

k

jr

k

jB

k

ji xxFxv ,3,2,

1

, 


 (9)

Figure 3 gives graphical demonstration for DE/Best/1.

The only difference is instead of three randomly selected

solution candidates, only two solutions are selected

randomly and the best particle is added to the formulation.

the best particle means that, the solution candidate

present the smallest (for minimization problem and

largest for maximization problems) cost value inside the

population. The formulation increases the convergence

speed of the algorithm. As the iteration approach to the

maximum iteration value, the optima are began to search

around the best solution. This increases the convergence,

however, still local optimum problem couldn't able to

solve with this mutation algorithm.

X2

X1

x

x

x

xXr3,G

Xr2,G

XB,G

F(Xr2,G – Xr3,G)

v = XB,G + F(Xr2,G – Xr3,G)

Fig. 3. Graphical demonstration of DE/Best/1 Mutation Operator.

3) DE/Rand-to-Best/1(F=0.8, CR=0.9, λ=0.8) (DE-RB)

This method is the joint implementation of DE/Rand-1

and DE/Best/1 [21]. Instead of direct use of randomly

selected vectors, the difference between vectors is

calculated. The general form of this operator is presented

in (10).

   k

jr

k

jr

k

ji

k

jB

k

ji

k

ji xxFxxxv ,3,2,,,

1

, 


 (10)

In (10), one more algorithm parameter is added. This

parameters increases the complexity of the algorithm

since one more parameter needs be settled. Hence, to

reduce the complexity of the method λ=F is selected.

Therefore the final form of the method is presented in

(11), and demonstrated in Figure 4.

 k

ji

k

jB

k

jr

k

jr

k

ji

k

ji xxxxFxv ,,,3,2,

1

, 


 (11)

 A Comparison of Crowding Differential Evolution Algorithms for Multimodal Optimization Problems 5

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 04, 1-10

Table 4. Statistics for Number of Peaks of Various Differential Evolution Algorithms on Benchmark Problems (Level of Accuracy = 0.1)

No DE-B1 DE-B2 DE-R1 DE-R2 DE-RB DE-RS T-DE TS-DE

F1

Max. 1 2 2 2 1 2 1 2

Min. 1 0 2 0 0 2 0 2

Mean 1 1,12 2 1.44 0.92 2 0.98 2

Std.Dev 0 38.5E-2 0 61.1E-2 27.4E-2 0 14.1E-2 0

F2

Max. 5 5 5 5 5 5 5 5

Min. 5 5 5 5 5 5 5 5

Mean 5 5 5 5 5 5 5 5

Std.Dev 0 0 0 0 0 0 0 0

F3

Max. 1 1 1 1 1 1 0 1

Min. 0 0 1 1 0 1 0 1

Mean 0.40 0.50 1 1 0.42 1 0 1

Std.Dev 49.4E-2 50.5E-2 0 0 49.8E-2 0 0 0

F4

Max. 4 4 4 4 4 4 4 4

Min. 4 3 4 4 4 4 4 4

Mean 4 3.98 4 4 4 4 4 4

Std.Dev 0 14.1E-2 0 0 0 0 0 0

F5

Max. 2 2 2 2 2 2 2 2

Min. 1 2 2 2 2 2 2 2

Mean 1.92 2 2 2 2 2 2 2

Std.Dev 27.4E-2 0 0 0 0 0 0 0

F6

Max. 3 2 2 2 3 4 2 2

Min. 0 0 0 0 0 0 0 0

Mean 0.40 0.56 0.54 0.34 0.58 0.42 0.42 0.42

Std.Dev 69.9E-2 64.6E-2 64.5E-2 51.9E-2 64.1E-2 75.8E-2 60.9E-2 60.9E-2

F7

Max. 10 11 0 0 13 0 1 1

Min. 0 0 0 0 0 0 0 0

Mean 3.32 1.98 0 0 2.88 0 4E-2 0.40

Std.Dev 2.75 2.54 0 0 4.11 0 19.7E-2 19.7E-2

F8

Max. 0 0 0 0 0 0 0 0

Min. 0 0 0 0 0 0 0 0

Mean 0 0 0 0 0 0 0 0

Std.Dev 0 0 0 0 0 0 0 0

F9

Max. 5 6 0 0 8 0 2 2

Min. 0 0 0 0 0 0 0 0

Mean 0.78 0.48 0 0 0.60 0 0.14 0.14

Std.Dev 1.16 1.05 0 0 1.45 0 45.2E-2 45.2E-2

F10

Max. 12 12 12 12 12 12 12 12

Min. 3 4 12 12 12 12 12 12

Mean 8.72 11.24 12 12 12 12 12 12

Std.Dev 2.99 1.83 0 0 0 0 0 0

X2

X1

x

x

x

Xi,G

Xr3,G

Xr2,G

F(Xr2,G – Xr3,G)

x
XB,G

λ (XB,G – Xi,G)

x

v = Xi,G + λ (XB,G – Xi,G)+ F(Xr2,G – Xr3,G)

Fig. 4. Graphical demonstration of DE/Rand-to-Best/1 Mutation

Operator.

Figure 4 shows the collaboration of previous DE

mutation algorithms. The aim is to increase the search

and convergence ability of DE. The scale difference

between two randomly selected solution and scaled

difference between best solution and the current position

is added as step to the current solution. The three terms

are added to form a new mutated solution. First term is

the starting point, second term is for improvement of

convergence and the last term is for increasing the search

capability. This formulation is very similar to Particle

Swarm Optimization velocity update rule.

4) DE/Best/2(F=0.8, CR=0.9)(DE-B2)

This method considers four randomly determined

vectors r1, r2, r3 and r4 [21].

6 A Comparison of Crowding Differential Evolution Algorithms for Multimodal Optimization Problems

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 04, 1-10

Table 5. Peak Ratio (Success Rate) of Various Differential Evolution Algorithms on Benchmark Problems

 ε = 0.01 ε = 0.001

No DE-R1 DE-RS TS-DE DE-R1 DE-RS TS-DE

F1 0.33 (0.12) 0.34 (0.18) 0.85 (0.7) 0.05 (0) 0.07 (0) 0,25 (0.02)

F2 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1)

F3 0.96 (0.96) 0.98 (0.98) 0.96 (0.96) 0.92 (0.92) 0.94 (0.94) 0.96 (0.96)

F4 1 (1) 1 (1) 1 (1) 64.5E-2 (0.18) 81.5E-2 (0.52) 1 (1)

F5 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1)

F6 1.1E-3 (0) 3.3E-3 (0) 4.4E-3 (0) 0 (0) 0 (0) 0 (0)

F10 1 (1) 1 (1) 99.1E-3 (0.98) 46.7E-2 (0.02) 0.43 (0.02) 53.1E-2 (0.1)

 k

jr

k

jr

k

jr

k

jr

k

jB

k

ji xxxxFxv ,4,3,2,1,

1

, 


 (12)

X2

X1

x

x

x

Xr1,G

Xr3,G

Xr2,G

(Xr2,G – Xr3,G)

x
XB,G

 (Xr1,G – Xr4,G)

x

v = XB,G + F(Xr1,G +Xr2,G-Xr3,G -Xr4,G)

Xr4,G x

Fig. 5. Graphical demonstration of DE/Best/2 Mutation Operator

Figure 5 is the good example for explaining DE/Best/2

mutation method. As the result obtained in Fig. 5 is

revealed that the aim is to increase the convergence.

however, at the beginning of iteration, the solution is

search on a circle (for 2D problem) around best solution.

Hence, the fast convergence ban be obtain by this

formulation, however, also the algorithm can be seem

highly fall into the local optima.

5) DE/Rand/2(F1=0.8, F2=0.8, CR=0.9)(DE-R2)

Five randomly determined vectors with two algorithm

parameters are needed for this method. Similar to

DE/Rand-toBest/1 method, these two algorithm

parameters are selected as equal, as given in (13) and (14)

respectively [21]. The mutation operator given in (13)

graphically demonstrated in Figure 6.

X2

X1

x

x

x

Xr2,G

Xr4,G

Xr5,G

F2(Xr4,G – Xr5,G)

x

Xr1,G

F1 (Xr2,G – Xr3,G)

x

v = Xr1,G + F1 (Xr2,G – Xr3,G)+F2(Xr4,G – Xr5,G)

Xr3,G

x

Fig. 6. Graphical demonstration of DE/Rand/2 Mutation Operator

   k

jr

k

jr

k

jr

k

jr

k

jr

k

ji xxFxxFxv ,5,42,3,21,1

1

, 
 (13)

 k

jr

k

jr

k

jr

k

jr

k

jr

k

ji xxxxFxv ,3,2,5,4,1

1

, 


 (14)

The idea of mutation operator given in Fig. 6 is very

similar to Fig. 5. The mail difference is that the search

capability of DE/Rand/2 is better than DE/Best/2 since

instead of best particle, the solution is searched on a

randomly selected solution. It means that to decrease the

convergence speed gives result to search larger areas.

That reduces the problem of local optima.

6) Trigonometric Mutation (F=0.5,CR=0.9, Γ=0.05) (T-

DE)

The aim of this method is to increase convergence

property of DE [23]. Similarly, this method depends of

three randomly selected vectors (r1, r2, r3). By using the

fitness values of thee randomly selected vectors, three

more parameters are calculated, which are presented in

(15) to (18).

     GrGrGr XfXfXfp ,3,2,1'  (15)

  '/,11 pXfp Gr (16)

  '/,22 pXfp Gr (17)

  '/
,33 pXfp
Gr (18)

The trigonometric mutation operator is calculated by

using three new parameters. The final formulation of the

operator is given in (19), where Γ is the new algorithm

parameter.

 

  
  
  

 































otherwise

3

,3,21

,1,331

,3,223

,2,112

,3,2,1

1

GrGrr

GrGr

GrGr

GrGr

GrGrGr

k

i

XXFX

rand

XXpp

XXpp

XXpp

XXX

v
 (19)

 A Comparison of Crowding Differential Evolution Algorithms for Multimodal Optimization Problems 7

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 04, 1-10

Table 6. Statistics for Number of Peaks of Various Differential Evolution Algorithms on Benchmark Problems

 ε = 0.01 ε = 0.001

No DE-R1 DE-RS TS-DE DE-R1 DE-RS TS-DE

F1

Max. 2 2 2 1 1 2

Min. 0 0 1 0 0 0

Mean 0.66 0.68 1.7 0.10 0.14 0.50

Std.Dev 68.8E-2 76.7E-2 46.2E-2 30.3E-2 35.1E-2 54.3E-2

F2

Max. 5 5 5 5 5 5

Min. 5 5 5 5 5 5

Mean 5 5 5 5 5 5

Std.Dev 0 0 0 0 0 0

F3

Max. 1 1 1 1 1 1

Min. 0 0 0 0 0 0

Mean 0.96 0.98 0.96 0.92 0.94 0.96

Std.Dev 19.7E-2 14.1E-2 19.7E-2 27.4E-2 23.9E-2 19.7E-2

F4

Max. 4 4 4 4 4 4

Min. 4 4 4 0 1 4

Mean 4 4 4 2.58 3.26 4

Std.Dev 0 0 0 1.01 89.9E-2 0

F5

Max. 2 2 2 2 2 2

Min. 2 2 2 2 2 2

Mean 2 2 2 2 2 2

Std.Dev 0 0 0 0 0 0

F6

Max. 1 1 2 0 0 0

Min. 0 0 0 0 0 0

Mean 0.02 0.06 0.08 0 0 0

Std.Dev 14.1E-2 23.9E-2 34.1E-2 0 0 0

F10

Max. 12 12 12 12 12 12

Min. 12 12 7 0 0 0

Mean 12 12 11.9 5.60 5.16 6.38

Std.Dev 0 0 70.7E-2 2.69 2.91 3.32

7) Random Scale Mutation (DE-RS) and Time Varying

Scale Mutation(TS-DE) (Fmax=1, Fmin=0, CR=0.9)

Two other mutation operators which are related to

determination of the algorithm parameter of F are

considered in this paper [24]. These operators are used

with DE/Rand/1 mutation scheme. The parameter

assignments are defined in (20) and (21) respectively.

 )1,0(15.0)(randiF  (20)

  iiterFFiF  max_)(minmax
 (21)

C. Crowding

Crowding is based on the natural phenomenon such

that in nature since there are limited number of

fundamental resources to survive, living beings have to

compete each similar members for limited resources.

Therefore members of the same family of animals finds

the proper living environment and adopts the conditions

of this new environment (behavior adaptation). One of

the fundamental reason to form groups of animals is the

distance or more simple the ability to reach the resources.

In a similar manner, crowding scheme is based on the

distance between solution candidates. The cost value of

an offspring (in evolutionary computing) is compared

with the cost value of the nearest individual (Euclidean

distance is preferred for measuring the distance) in the

current population. The number of solution candidates

which are selected for replacement is determined by the

constant parameter called crowding factor (CF). For

improper selected CF values, a problem called

replacement error may emerge. This problem is caused by

the replacing of non similar members. Even this problem

can affect the solution quality of the algorithm, the

solution is very simple that setting CF equal to the

number of individuals in the population as proposed in

[9]. Crowding scheme has a basic layout especially for

evolutionary algorithms. In case of DE, the last phase

(selection) of DE is change from the selection to the

crowding. The crowding method is summarized as

a) calculate Euc(xi,ui), which is Euclidean distance

between X and U,

b) find the member of X which has the minimum

Euclidean distance to ui,

c) if fitness value of ui is smaller than xi then replace.

8 A Comparison of Crowding Differential Evolution Algorithms for Multimodal Optimization Problems

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 04, 1-10

III. IMPLEMENTATION RESULTS

Eight different mutation operators of DE are evaluated

on ten benchmark problems with 600 iterations, 100

number of members, 50 independent run, and

performance of variations are compared with respect to

performance measurement functions. The implementation

are compared as a competition based on different levels

of accuracy, which is a threshold level under which is

consider a global optimum is found (ε=0.1; ε=0.01;

ε=0.001; ε=0.0001).

A. Benchmark Problems

The benchmark problems are previously well defined

functions which have different multiple optima [25]. The

importance of benchmark problems are

a) the number of multiple optima and

b) their position and fitness values are known

c) it is easy to compare other studies with the well-

known problems.

Table 1 presents multimodal benchmark problems, and

Table 2 gives the number of global optima of the

benchmark functions.

B. Performance Measurement

The performance of algorithms is measured by using

two criteria, which are called peak ratio (PR) and success

rate (SR). The PR and SR are performance measure

variables defined in [0,1]. The PR is the proportion of

total number of global optima found in the end of each

run to the total number of global optima. The (22)

explains PR as mathematical formula.

NRNKP

NPF

PR

NR

run

run





1 (22)

where NPFrun is the number of global optima found in

the end of ith run, NKP is the number of known global

optima, and NR is the number of run.

The SR is a more general/overall sign for performance.

SR gives the number of successful run against all run as

given in (23).

NR

NSR
SR  (23)

Table 2. Parameters for Benchmark Problems

Function

Name

Niche

Radius

Number of

Global Optima

F1 0.01 2

F2 0.01 5

F3 0.01 1

F4 0.01 4

F5 0.5 2

F6 0.5 18

F7 0.2 36

F8 0.5 81

F9 0.2 216

F10 0.01 12

where NSR is the number of successful runs that all of

the global optima is detected by algorithm. These

performance measurement variables depend on the

location of global optima. Hence first it must be

determined such that global optima is close enough

within accuracy level (ε), and the solution is within the

niche radius from all global solutions. Table 2 gives niche

radius and number of global optima for each benchmark

problems.

C. Results

There are eight different algorithms, ten benchmark

problems and two performance measurement techniques

are applied on four accuracy levels. Since the accuracy

levels represent the degree of difficulty, competition

based implementations are executed. Therefore four sets

of implementation are defined for each level of accuracy.

After each implementation set, some algorithms and

benchmark problems are executed from comparison list

based on the performance of algorithms on problems.

First, for ε=0.1 level of accuracy, eight algorithms are

evaluated, and Table 3 presents PR and SR performance

measures of these algorithms for ten benchmark functions.

Table 3 shows that for functions F7-F9 all algorithms

cannot able to locate any global optima due to the success

rates for these problems are zero. The performance of

DE-R1, DE-RS, and TS-DE have the best among all

algorithms.

Table 4 gives the statistical data about number of found

optima (number of peaks). These data contain minimum,

maximum, mean and standard deviation of the number of

obtain global optima. The algorithms DE-R1, DE-RS,

TS-DE can able to find all peak points for a given level of

accuracy at problems F1-F5 and F12. The benchmark

problems with a high number of peaks (F6-F9), which are

hardest problems, cannot be solved by and of eight

algorithms. But for the functions F6, F7 and F9, the

algorithms can able to find some of peaks. Therefore,

from first implementation set only three algorithms and

six benchmark problems can able to survive to the next

competition since the performance of other methods fall

behind. The algorithms which can be able to reach to the

next competition are DE/Rand/1, Random Scale and

Time varying scale, and the problems are F1-F5 and F10.

Second and third set of implementations for ε=0.01 and

ε=0.001 are evaluated for comparing three algorithms on

six benchmark problems, and results presented in Table 5

and Table 6, respectively. Table 5 gives peak ratio and

success rate of algorithms. It isn't possible to present a

general conclusion about algorithm since for ε=0.01 and

for functions F2, F4-F5, the algorithms result are same

performance, but for other functions TS-DE outperforms

for other algorithms. For ε=0.001, for functions F2, F5-F6,

the algorithms result are same performance, but similarly

TS-DE outperforms for other functions.

Table 6 gives statistics for number of peaks that are

found by algorithms. Table 6 presented for two levels of

accuracy ε=0.01 and ε=0.001. The results in Table 6 also

supports the results of Table 5, such that even all

algorithms are presented almost same performance, TS-

DE slightly presents better performance when compared

 A Comparison of Crowding Differential Evolution Algorithms for Multimodal Optimization Problems 9

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 04, 1-10

with other algorithms. From the evaluations of all results

given in Table 5 and 6, it is seen that the results are

similar to each other, for a better conclusion, another

implementation is executed for last level of accuracy.

Table 7. Results for Benchmark Problems

No DE-R1 DE-RS TS-DE

F1

Max. 1 0 1

Min. 0 0 0

Mean 0.02 0 0.06

Std.Dev 14.1E-2 0 23.9E-2

SR 0 0 0

PR 0.01 0 0.03

F2

Max. 5 5 5

Min. 5 5 5

Mean 5 5 5

Std.Dev 0 0 0

SR 1 1 1

PR 1 1 1

F3

Max. 1 1 1

Min. 0 0 0

Mean 0.54 0.68 0.96

Std.Dev 50.3E-2 47.1E-2 19.7E-2

SR 0.45 0.68 0.96

PR 0.54 0.68 0.96

F4

Max. 2 2 4

Min. 0 0 3

Mean 0.48 0.60 3.9

Std.Dev 61.4E-2 60.6E-2 30.3E-2

SR 0 0 0.9

PR 0.12 0.15 0.975

F5

Max. 5 5 5

Min. 5 5 5

Mean 5 5 5

Std.Dev 0 0 0

SR 1 1 1

PR 1 1 1

F10

Max. 2 4 5

Min. 0 0 0

Mean 0.44 0.84 1.14

Std.Dev 61.1E-2 1.05 1.38

SR 0 0 0

PR 0.03 0.07 9.5E-2

The last implantation is made for level of accuracy

ε=0.0001. Three algorithms are compared on six

benchmark problems and performance of these

algorithms are presented in Table 7. For functions F2 and

F5, the performance of all algorithms are the same each

other. However, when considered other benchmark

problems, TS-DE outperforms when compared with

others. In summary, from the Tables 3-7, the performance

of different algorithms show that time varying DE

outperforms against other DE algorithms.

IV. CONCLUSION

This study compares eight different DE variants for ten

multimodal benchmark problems. The aim of this paper is

to propose a reliable crowding DE algorithm for

multimodal problems. From the results, it can be

concluded that as the number of global optima increases

the performance of crowding DE decreasing for all

variants. It isn't possible to obtain good results for

benchmark problems after 18 global optimums for

crowding DE algorithms, and from eight variants, only

time varying crowding DE performs better for all level of

accuracy. From literature review, it was seen that DE-R1

and DE-B1 algorithms are used as crowding DE. From

the results obtained in this study showed that, DE-B1

couldn't able to survive for the last implementation set.

Also, even DE-R1 reaches to the last comparisons, the

performance of DE-R1 is lower than TS-DE. From the

point of execution times of DE-R1, DE-B1 and TS-DE,

DE-B1 is the slowest algorithm since the mutation

operator needs to find best member in the population.

Since TS-DE is the improved version of DE-R1, DE-R1

has the fastest execution mutation code. But, the code

difference between DE-R1 and TS-DE is only a line of

mathematical operation contains a difference and a

multiplication, which adds relatively small amount of

time to the commutative execution time.

ACKNOWLEDGMENT

This study is made possible by a grant from TUBITAK

2214/A Research Scholar Program for PhD Students. The

author would like to express his gratitude for their

support.

REFERENCES

[1] B.Y. Qu, P.N. Suganthan, S. Das, “A distance-based

locally informed particle swarm model for multimodal

optimization,” IEEE Transactions on Evolutionary

Computation, vol. 17, no. 3, pp. 387-402, 2013.

[2] S.W. Mahfoud, Niching methods for genetic algorithms.

PhD Thesis, Department of Computer Sciences, University

of Illinois Urbana-Champaign, 1995.

[3] N.N. Glibovets, N.M. Gulayeva, “A review of niching

genetic algorithms for multimodal function optimization,”

Cybernetics and Systems Analysis, vol. 49, no. 6, pp. 815-

820, 2013.

[4] X. Zhang, L. Wang, B. Huang, “An improved niche ant

colony algorithm for multi-modal function optimization,”

International Conference on Instrumentation &

Measurement Sensor Network and Automation, pp. 403-

406, 2012.

[5] B.Y. Qu, J.J. Liang, P.N. Suganthan, “Niching particle

swarm optimization with local search for multi-modal

optimization,” Information Sciences, vol. 197, pp. 131-143,

2012.

[6] S.C. Esquivel, C. Coello Coello, “On the use of particle

swarm optimization with multimodal functions,” The

Congress on Evolutionary Computation, pp. 1130-1136,

2003.

10 A Comparison of Crowding Differential Evolution Algorithms for Multimodal Optimization Problems

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 04, 1-10

[7] L. Yu, X. Ling, Y. Liang, M. lv, G. Liu, “Artificial bee

colony algorithm for multimodal function optimization,”

Advances Science Letters, vol. 11, no. 1, pp. 503-506,

2012.

[8] S. Biswas, S. Kundu, S. Das, “Inducing niching behavior

in differential evolution through local information

sharing,” IEEE Transactions on Evolutionary Computation,

Early Access.

[9] R. Thomsen, “Multimodal optimization using crowding-

based differential evolution,” The Congress on

Evolutionary Computation, pp. 1382-1389, 2004.

[10] D. Shen, Y. Li, “Multimodal optimization using crowding

differential evolution with spatially neighbors best search,”

Journal of Software, vol. 8, no. 4, pp. 932-938, 2013.

[11] B. Sareni, L. Krahenbuhl, “Fitness sharing and niching

methods revisited,” IEEE Transactions on Evolutionary

Computation, vol.2, no. 3, pp. 1382-1389, 2004.

[12] O. Mengsheal, D. Goldberg, “Probabilistic crowding,

deterministic crowding with probabilistic replacement,”

GECCO, pp. 409-416, 1999.

[13] J.E. Vitela, o. Castona, “A real-coded niching memetic

algorithm for continuous multimodal function

optimization,” The Congress on Evolutionary Computation,

pp. 2170-2177, 2008.

[14] D. Cavicchio, Adapting search using simulated evolution.

PhD Thesis, Department of Industrial Engineering,

University of Michigan Ann Arbor, 1970.

[15] B.L. Miller, M.J. Shaw, “Genetic algorithms with dynamic

niche sharing for multimodal function optimization,”

International Conference on Evolutionary Computation, pp.

786-791, 1996.

[16] D.E. Goldberg, J. Richardson, “Genetic algorithms with

sharing for multimodal function optimization,”

International Conference on Genetic Algorithms, pp. 41-49,

1987.

[17] L. Qing, W. Gang, Y. Zaiyve, W. Qiuping, “Crowding

clustering genetic algorithm for multimodal function

optimization,” Applied Soft Computing, vol. 8, no. 1, pp.

88-95, 2008.

[18] S. Kamyab, M. Eftekhari, “Using a self-adaptive

neighborhood scheme with crowding replacement memory

in genetic algorithm for multimodal optimization,” Swarm

and Evolutionary Computation, vol. 12, pp. 1-17, 2013.

[19] R. Storn, K. Price, Differential evolution - a simple and

efficient adaptive scheme for global optimization over

continuous space. International Computer Science Institute,

Technical Report, TR-95-012, 1995.

[20] R. Storn, Differential evolution design of an IIR-filter with

requirements for magnitude and group delay. International

Computer Science Institute, Technical Report, TR-95-026,

1995.

[21] R. Storn, “Differential evolution design of an IIR-filter

with requirements for magnitude and group delay,”

International Conference on Evolutionary Computation, pp.

268-273, 1995.

[22] R. Storn, “On the usage of differential evolution for

function optimization,” North America Fuzzy Information

Processing Society, pp. 519-523, 1996.

[23] H.Y. Fan, J. Lampinen, “A trigonometric mutation

operation to differential evolution,” Journal of Global

Optimization, vol. 27, no. 1, pp. 105-129, 2003.

[24] S. Das, A. Konar, U.K. Chakrabarty, “Two improved

differential evolution schemes for faster global search,”

GECCO, pp. 991-998, 2005.

[25] X. Li, A. Engelbrecht, M.G. Epitropakis, Benchmark

function for CEC2013 Special Session and competition on

niching methods for multimodal function optimization.

Technical Report, Evolutionary Computation and Machine

Learning Group, RMIT University, Australia, 2012.

Author’s Profile

O. Tolga Altinoz was born in 1981. He

received the B.E. degree in Electrical and

Electronics Engineering from the Baskent

University, Ankara, Turkey, in 2003, and

the MSc degree in Electrical and

Electronics Engineering from Hacettepe

University, Ankara, Turkey in 2010. He is

currently pursuing the Ph.D. degree with

the Department of Electrical and Electronics Engineering,

Ankara University, Ankara, Turkey. His current research

interests include evolutionary computation, optimization,

control systems, power electronics, and biomedical systems.

How to cite this paper: O. Tolga Altinoz,"A Comparison of

Crowding Differential Evolution Algorithms for Multimodal

Optimization Problems", International Journal of Intelligent

Systems and Applications (IJISA), vol.7, no.4, pp.1-10, 2015.

DOI: 10.5815/ijisa.2015.04.01

