
I.J. Intelligent Systems and Applications, 2015, 04, 1-10 
Published Online March 2015 in MECS (http://www.mecs-press.org/) 

DOI: 10.5815/ijisa.2015.04.01 

Copyright © 2015 MECS                                                             I.J. Intelligent Systems and Applications, 2015, 04, 1-10 

A Comparison of Crowding Differential 

Evolution Algorithms for Multimodal 

Optimization Problems 
 

O. Tolga Altinoz 
Ankara University, Department of Electrical and Electronics Engineering, Ankara, Turkey 

Email: taltinoz@ankara.edu.tr 

 

 
Abstract—Multimodal problems are related to locating multiple, 

redundant global optima, as opposed to single solution. In 

practice, generally in engineering problems it is desired to 

obtain many redundant solutions instead of single global optima 

since the available resources cannot be enough or not possible 

to implement the solution in real-life. Hence, as a toolbox for 

finding multimodal solutions, modified single objective 

algorithms can able to use. As one of the fundamental 

modification, from one of the niching schemes, crowding 

method was applied to Differential Evolution (DE) algorithm to 

solve multimodal problems and frequently preferred to 

compared with developed methods. Therefore, in this study, 

eight different DE are considered/evaluated on ten benchmark 

problems to provide best possible DE algorithm for crowding 

operation. In conclusion, the results show that the time varying 

scale mutation DE algorithm outperforms against other DE 

algorithms on benchmark problems. 

 

Index Terms— Differential Evolution, Random Scale, 

Multimodal Optimization, Time Varying, Crowding 

 

I.  INTRODUCTION 

The optimization problems are generally contains 

many local and global optimum points. For applications 

like function optimization, only the single global 

optimum point is desired to find by optimization 

algorithms since the aim of optimization algorithms is to 

minimize the cost function. However, in general, many of 

engineering problems may contain many redundant 

solutions which have the same cost value. Similarly, for 

some real-life problems, a single best-possible solution is 

needed to obtain in design stage. However, for practice 

perspective, it isn't convenient to find a single solution 

since the problem cannot be able to materialize due to 

physical and manufacture constraints [1]. Therefore, 

instead of a single solution, other redundant solutions are 

desired to be obtained. Therefore, as its name relived, the 

multimodal optimization tasks seek the all possible 

optimal solutions instead of single solution which can 

able to obtain from single objective optimization 

algorithms. 

The optimum points of multimodal optimization 

problems can be able to find by using single objective 

optimization algorithms which are converted/modified to 

solve multimodal problems. Some of these single 

objective optimization algorithms are genetic algorithm 

[2,3], ant colony optimization [4], particle swarm 

optimization [5,6], artificial bee colony optimization [7], 

and differential evolution [8-10]. The main aim of any 

multimodal optimization algorithm is to detect/obtain the 

multiple optimum solutions, in other words niches on the 

landscape of the problem. 

Niching refers to the techniques for finding multiple 

"stable" niches and preserve them from converging to a 

single solution [11-13]. Niching methods are added to the 

original single objective population based algorithm to 

solve multimodal problems. Niching methods are became 

to study since 1970s as a part of pre-selection operation 

of genetic algorithm [14]. Since then, many niching 

methods have been developed, and the most frequently 

preferred two of niching operators are sharing [15,16], 

and crowding methods [17,18]. 

The sharing method is based on re-calculating the 

fitness values of members at the population for sharing 

the information among the niche members. The 

formulation of sharing scheme is presented in (1) and (2), 

where F is the fitness function or problem, Fshare is the 

new fitness function, σshare is a radius for information 

sharing, Euc(xi, xj) is the function for calculating 

Euclidean distance between two members of population 

xi & xj, and Shr(.) is the sharing function. 
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The idea of crowding method is one of the simplest 

among niching schemes such that the new offspring in the 

evolutionary algorithms is replaced by the similar 

member in a nearby place. By this way, the population of 

solutions is grouped with respect to the closest solution 

candidate. From the research of Thomsen [9], it was 

revealed that crowding method outperforms against 

sharing method since sharing method has a sharing radius 

parameter which must be properly tuned, also when 

compared to crowding method, sharing is need more 

computation power then crowding method. 

Since crowding DE is considered as fundamental 

method, and it is preferred to present the performance of 
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proposed method, crowding DE have applied to many 

researches. In [1], Qu et. al. proposed a niching particle 

swarm optimization method which enhance the search 

ability of the algorithm. The proposed method was 

compared with nine niching algorithm, and only one of 

the is crowding based DE, which is defined in [9]. The 

proposed DE in [9] is based on DE which is defined in 

this study as "DE-R1". Similarly, original niching DE is 

also preferred in [5] for comparison. In [8], Biswas et. al. 

was compared their proposed with crowding DE. Shen 

and Li [10] improved crowding DE and proposed a new 

method. Instead of DE-R1, the authors prefers DE-B1, 

however, there isn't any comparison presented between 

these two DE methods. Similar comparisons have 

evaluated in [18]. However, even the crowding DE have 

applied in benchmark problems and have compared with 

proposed methods, there isn't any paper proposed to 

compared performances of different DE algorithms. 

In this study, crowding method is applied on 

Differential Evolution algorithms (DE) with eight 

different mutation operators and performance of DEs are 

compared to obtain best mutation scheme for multimodal 

optimization algorithms. 

This paper is organized as three more sections 

following the introduction. Section 2 presents information 

related to differential evolution and mutation schemes. 

Also in this section crowding DE is explained. Section 3 

is allocated for implementation and performance 

measurement of DE algorithms. The implementations are 

repeated for four different accuracy level of multiple 

global optima. And last section gives the conclusion. 

 

II.  DIFFERENTIAL EVOLUTION ALGORITHMS 

Differential evolution (DE) algorithm is an 

evolutionary algorithm, which has the operator of 

mutation, crossover, and selection. The introduction of 

DE was proposed by Storn and Price in 1995 [19-22]. 

The authors prove the performance of their new 

algorithm by comparing with improved simulated 

annealing algorithm and genetic algorithm. Figure 1 

presents the flow diagram of DE. 

DE begins with the initialization. If previous 

knowledge about the problem isn't exists then the initial 

values of the population assign randomly (X). After the 

initialization, iterations begin. The new populations (U 

and V) are calculated at each iteration. If a vector in the 

new population (U) has lower fitness value (for 

minimization problem) then this new vector survives to 

the next iteration. In summary, 

- obtaining the temporary population set V, 

- obtaining new population U, 

- selecting best members of two groups X and U. 

A. Algorithm Steps 

DE begins with the initialization of the population X. 
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where k is the current iteration (k=0,1,2,…,max_iter), 

max_iter is the maximum number of iteration, D is the 

dimension of the problem and i is the index for a member 

in population. It is assumed that there are NP number of 

members in population from first iteration to the end. The 

initial vector of a member (k=0) is assigned randomly if 

the programmers don't have previous knowledge about 

the problem. The algorithm takes the advantage of 

pseudo-random number generators to obtain random 

numbers in [0,1]. Hence the initialization of population 

should be formulated as in (4). 
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Fig. 1. Flow diagram of Differential Evolution Algorithm 
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where xjL and xjU are upper and lower bound of the 

search space. 

After the completion of the initialization phase, a new 

mutated population (V) is calculated from the initial 

population (X). This new population is formulated in (5). 
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In this study eight different mutation operators are used 

for comparison. The temporary V population is calculated 

by applying one of these eight mutation operators. The 

next subsection explains these mutation operators. 

Following the mutation operator, the crossover is 

executed to new population U as given in (6). 

 k

Di

k

i

k

i

k

i uuuU ,2,1, ,...,,                                   (6) 

 

 



 A Comparison of Crowding Differential Evolution Algorithms for Multimodal Optimization Problems 3 

Copyright © 2015 MECS                                                             I.J. Intelligent Systems and Applications, 2015, 04, 1-10 

Table 1. Ten Multimodal Benchmark Problems 

No Name of Function Mathematical Expression of Function Domain 
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Two fundamental crossover operators were defined for 

DE. However, from the researches [20-22] it is 

emphasize that none of them is superior each other. These 

crossover operators are exponential and binomial 

operators. In this paper, binomial operator is selected, 

because the computation burden of binomial operator is 

lower than exponential, and also the performance of these 

two methods are equal. 
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The mathematical expression for binomial operator is 

presented in (7). The CR is an algorithm parameter and 

the value of CR assign differently for different mutation 

operators. 

The last operator is called the selection. In the selection 

phase two populations X and U are compared and the best 

members among these two population are survived to the 

next generator. The number of survived members is equal 

to NP. 

B.  Mutation Operators 

In this study, eight different mutation operators with 

crowding DE are compared with respect to performance 

measurement functions. In the next subsection the 

crowding operator will be explained. All these operator 

are taken F and CR as algorithm parameters which have 

the value depended on the mutation operator. 

1) DE/Rand/1(F=0.8, CR=0.9)(DE-R1) 

First mutation operator is called as DE/Rand/1 [21]. 

The method begins with the selection of three random 

vectors r1, r2 and r3. Three random vectors and the current 

member of the population form a new member. The 

operator is given in (8) and graphically demonstrate in 

Figure 2. 
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Table 3. Peak Ratio (Success Rate) of Various Differential Evolution Algorithms on Benchmark Problems (Level of Accuracy = 0.1) 

No DE-B1 DE-B2 DE-R1 DE-R2 DE-RB DE-RS T-DE TS-DE 

F1 0.50 (0) 0.56 (0.14) 1 (1) 0.72 (0.50) 0.46 (0) 1 (1) 0.49 (0) 1 (1) 

F2 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 

F3 0.40 (0.40) 0.50 (0.50) 1 (1) 1 (1) 0.42 (0.42) 1 (1) 0 (0) 1 (1) 

F4 1 (1) 0.995 (0.98) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 

F5 0.96 (0.92) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 

F6 22E-3 (0) 31.1E-3 (0) 0.30 (0) 18.9E-3 (0) 32.2E-3 (0) 23.3E-3 (0) 23.3E-3 (0) 23.3E-3 (0) 

F7 92.2E-3 (0) 55E-3 (0) 0 (0) 0 (0) 80E-3 (0) 0 (0) 1.1E-3 (0) 1.1E-3 (0) 

F8 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 

F9 3.61E-3 (0) 2.2E-3 (0) 0 (0) 0 (0) 2.78E-3 (0) 0 (0) 64.8E-5 (0) 64.8E-5 (0) 

F10 72.7E-2 (0.28) 93.7E-2 (0.82) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 
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Fig. 2. Graphical demonstration of DE/Rand/1 Mutation Operator. 

 

Figure 2 gives the graphical demonstration of 

DE/Rand/1 mutation operator. Randomly three solution 

candidates are selected from population. Scaled 

difference between two randomly selected solution is 

added to other randomly selected solution. As the 

solutions are converges to the global/local optima, the 

difference between any two randomly selected solution 

becomes smaller. Hence, at the beginning of each 

iteration, the algorithm can search larger areas of search 

space (as seen in Figure 2). However, if the algorithm 

converges to local optima, the mutation operator couldn't 

help the algorithm to escape from local optima. 

2) DE/Best/1(F=0.8, CR=0.9)(DE-B1) 

This operator depends on the best member in the 

population [21]. Similarly, this best member is used 

instead of first random vector in DE/Rand/1. The 

formulation of the operator is given in (9) and graphically 

demonstrated in Figure 3. 
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Figure 3 gives graphical demonstration for DE/Best/1. 

The only difference is instead of three randomly selected 

solution candidates, only two solutions are selected 

randomly and the best particle is added to the formulation. 

the best particle means that, the solution candidate 

present the smallest (for minimization problem and 

largest for maximization problems) cost value inside the 

population. The formulation increases the convergence 

speed of the algorithm. As the iteration approach to the 

maximum iteration value, the optima are began to search 

around the best solution. This increases the convergence, 

however, still local optimum problem couldn't able to 

solve with this mutation algorithm. 
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Fig. 3. Graphical demonstration of DE/Best/1 Mutation Operator. 

 

3) DE/Rand-to-Best/1(F=0.8, CR=0.9, λ=0.8) (DE-RB) 

This method is the joint implementation of DE/Rand-1 

and DE/Best/1 [21]. Instead of direct use of randomly 

selected vectors, the difference between vectors is 

calculated. The general form of this operator is presented 

in (10). 
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In (10), one more algorithm parameter is added. This 

parameters increases the complexity of the algorithm 

since one more parameter needs be settled. Hence, to 

reduce the complexity of the method λ=F is selected. 

Therefore the final form of the method is presented in 

(11), and demonstrated in Figure 4. 
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Table 4. Statistics for Number of Peaks of Various Differential Evolution Algorithms on Benchmark Problems (Level of Accuracy = 0.1) 

No  DE-B1 DE-B2 DE-R1 DE-R2 DE-RB DE-RS T-DE TS-DE 

F1 

Max. 1 2 2 2 1 2 1 2 

Min. 1 0 2 0 0 2 0 2 

Mean 1 1,12 2 1.44 0.92 2 0.98 2 

Std.Dev 0 38.5E-2 0 61.1E-2 27.4E-2 0 14.1E-2 0 

F2 

Max. 5 5 5 5 5 5 5 5 

Min. 5 5 5 5 5 5 5 5 

Mean 5 5 5 5 5 5 5 5 

Std.Dev 0 0 0 0 0 0 0 0 

F3 

Max. 1 1 1 1 1 1 0 1 

Min. 0 0 1 1 0 1 0 1 

Mean 0.40 0.50 1 1 0.42 1 0 1 

Std.Dev 49.4E-2 50.5E-2 0 0 49.8E-2 0 0 0 

F4 

Max. 4 4 4 4 4 4 4 4 

Min. 4 3 4 4 4 4 4 4 

Mean 4 3.98 4 4 4 4 4 4 

Std.Dev 0 14.1E-2 0 0 0 0 0 0 

F5 

Max. 2 2 2 2 2 2 2 2 

Min. 1 2 2 2 2 2 2 2 

Mean 1.92 2 2 2 2 2 2 2 

Std.Dev 27.4E-2 0 0 0 0 0 0 0 

F6 

Max. 3 2 2 2 3 4 2 2 

Min. 0 0 0 0 0 0 0 0 

Mean 0.40 0.56 0.54 0.34 0.58 0.42 0.42 0.42 

Std.Dev 69.9E-2 64.6E-2 64.5E-2 51.9E-2 64.1E-2 75.8E-2 60.9E-2 60.9E-2 

F7 

Max. 10 11 0 0 13 0 1 1 

Min. 0 0 0 0 0 0 0 0 

Mean 3.32 1.98 0 0 2.88 0 4E-2 0.40 

Std.Dev 2.75 2.54 0 0 4.11 0 19.7E-2 19.7E-2 

F8 

Max. 0 0 0 0 0 0 0 0 

Min. 0 0 0 0 0 0 0 0 

Mean 0 0 0 0 0 0 0 0 

Std.Dev 0 0 0 0 0 0 0 0 

F9 

Max. 5 6 0 0 8 0 2 2 

Min. 0 0 0 0 0 0 0 0 

Mean 0.78 0.48 0 0 0.60 0 0.14 0.14 

Std.Dev 1.16 1.05 0 0 1.45 0 45.2E-2 45.2E-2 

F10 

Max. 12 12 12 12 12 12 12 12 

Min. 3 4 12 12 12 12 12 12 

Mean 8.72 11.24 12 12 12 12 12 12 

Std.Dev 2.99 1.83 0 0 0 0 0 0 
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Fig. 4. Graphical demonstration of DE/Rand-to-Best/1 Mutation 

Operator. 

Figure 4 shows the collaboration of previous DE 

mutation algorithms. The aim is to increase the search 

and convergence ability of DE. The scale difference 

between two randomly selected solution and scaled 

difference between best solution and the current position 

is added as step to the current solution. The three terms 

are added to form a new mutated solution. First term is 

the starting point, second term is for improvement of 

convergence and the last term is for increasing the search 

capability. This formulation is very similar to Particle 

Swarm Optimization velocity update rule. 

4) DE/Best/2(F=0.8, CR=0.9)(DE-B2) 

This method considers four randomly determined 

vectors r1, r2, r3 and r4 [21]. 
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Table 5. Peak Ratio (Success Rate) of Various Differential Evolution Algorithms on Benchmark Problems 

 ε = 0.01 ε = 0.001 

No DE-R1 DE-RS TS-DE DE-R1 DE-RS TS-DE 

F1 0.33 (0.12) 0.34 (0.18) 0.85 (0.7) 0.05 (0) 0.07 (0) 0,25 (0.02) 

F2 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 

F3 0.96 (0.96) 0.98 (0.98) 0.96 (0.96) 0.92 (0.92) 0.94 (0.94) 0.96 (0.96) 

F4 1 (1) 1 (1) 1 (1) 64.5E-2 (0.18) 81.5E-2 (0.52) 1 (1) 

F5 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 

F6 1.1E-3 (0) 3.3E-3 (0) 4.4E-3 (0) 0 (0) 0 (0) 0 (0) 

F10 1 (1) 1 (1) 99.1E-3 (0.98) 46.7E-2 (0.02) 0.43 (0.02) 53.1E-2 (0.1) 
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Fig. 5. Graphical demonstration of DE/Best/2 Mutation Operator 

 

Figure 5 is the good example for explaining DE/Best/2 

mutation method. As the result obtained in Fig. 5 is 

revealed that the aim is to increase the convergence. 

however, at the beginning of iteration, the solution is 

search on a circle (for 2D problem) around best solution. 

Hence, the fast convergence ban be obtain by this 

formulation, however, also the algorithm can be seem 

highly fall into the local optima. 

5) DE/Rand/2(F1=0.8, F2=0.8, CR=0.9)(DE-R2) 

Five randomly determined vectors with two algorithm 

parameters are needed for this method. Similar to 

DE/Rand-toBest/1 method, these two algorithm 

parameters are selected as equal, as given in (13) and (14) 

respectively [21]. The mutation operator given in (13) 

graphically demonstrated in Figure 6. 

X2

X1

x

x

x

Xr2,G

Xr4,G

Xr5,G

F2(Xr4,G – Xr5,G)

x

Xr1,G

F1 (Xr2,G – Xr3,G)

x

v = Xr1,G + F1 (Xr2,G – Xr3,G)+F2(Xr4,G – Xr5,G)

Xr3,G

x

 
Fig. 6. Graphical demonstration of DE/Rand/2 Mutation Operator 
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k
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k

jr

k

ji xxFxxFxv ,5,42,3,21,1

1

, 
  (13) 

 k

jr

k

jr

k

jr

k

jr

k

jr

k

ji xxxxFxv ,3,2,5,4,1

1

, 


  (14) 

The idea of mutation operator given in Fig. 6 is very 

similar to Fig. 5. The mail difference is that the search 

capability of DE/Rand/2 is better than DE/Best/2 since 

instead of best particle, the solution is searched on a 

randomly selected solution. It means that to decrease the 

convergence speed gives result to search larger areas. 

That reduces the problem of local optima. 

6) Trigonometric Mutation (F=0.5,CR=0.9, Γ=0.05) (T-

DE) 

The aim of this method is to increase convergence 

property of DE [23]. Similarly, this method depends of 

three randomly selected vectors (r1, r2, r3). By using the 

fitness values of thee randomly selected vectors, three 

more parameters are calculated, which are presented in 

(15) to (18). 

     GrGrGr XfXfXfp ,3,2,1'                    (15) 

  '/,11 pXfp Gr                                               (16) 

  '/,22 pXfp Gr                                              (17) 

  '/
,33 pXfp
Gr                                               (18) 

The trigonometric mutation operator is calculated by 

using three new parameters. The final formulation of the 

operator is given in (19), where Γ is the new algorithm 

parameter. 
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Table 6. Statistics for Number of Peaks of Various Differential Evolution Algorithms on Benchmark Problems 

  ε = 0.01 ε = 0.001 

No  DE-R1 DE-RS TS-DE DE-R1 DE-RS TS-DE 

F1 

Max. 2 2 2 1 1 2 

Min. 0 0 1 0 0 0 

Mean 0.66 0.68 1.7 0.10 0.14 0.50 

Std.Dev 68.8E-2 76.7E-2 46.2E-2 30.3E-2 35.1E-2 54.3E-2 

F2 

Max. 5 5 5 5 5 5 

Min. 5 5 5 5 5 5 

Mean 5 5 5 5 5 5 

Std.Dev 0 0 0 0 0 0 

F3 

Max. 1 1 1 1 1 1 

Min. 0 0 0 0 0 0 

Mean 0.96 0.98 0.96 0.92 0.94 0.96 

Std.Dev 19.7E-2 14.1E-2 19.7E-2 27.4E-2 23.9E-2 19.7E-2 

F4 

Max. 4 4 4 4 4 4 

Min. 4 4 4 0 1 4 

Mean 4 4 4 2.58 3.26 4 

Std.Dev 0 0 0 1.01 89.9E-2 0 

F5 

Max. 2 2 2 2 2 2 

Min. 2 2 2 2 2 2 

Mean 2 2 2 2 2 2 

Std.Dev 0 0 0 0 0 0 

F6 

Max. 1 1 2 0 0 0 

Min. 0 0 0 0 0 0 

Mean 0.02 0.06 0.08 0 0 0 

Std.Dev 14.1E-2 23.9E-2 34.1E-2 0 0 0 

F10 

Max. 12 12 12 12 12 12 

Min. 12 12 7 0 0 0 

Mean 12 12 11.9 5.60 5.16 6.38 

Std.Dev 0 0 70.7E-2 2.69 2.91 3.32 

 

7) Random Scale Mutation (DE-RS)  and Time Varying 

Scale Mutation(TS-DE)  (Fmax=1, Fmin=0, CR=0.9) 

Two other mutation operators which are related to 

determination of the algorithm parameter of F are 

considered in this paper [24]. These operators are used 

with DE/Rand/1 mutation scheme. The parameter 

assignments are defined in (20) and (21) respectively. 

 )1,0(15.0)( randiF                                         (20) 

  iiterFFiF  max_)( minmax
                        (21) 

C. Crowding 

Crowding is based on the natural phenomenon such 

that in nature since there are limited number of 

fundamental resources to survive, living beings have to 

compete each similar members for limited resources. 

Therefore members of the same family of animals finds 

the proper living environment and adopts the conditions 

of this new environment (behavior adaptation). One of 

the fundamental reason to form groups of animals is the 

distance or more simple the ability to reach the resources. 

In a similar manner, crowding scheme is based on the 

distance between solution candidates. The cost value of 

an offspring (in evolutionary computing) is compared 

with the cost value of the nearest individual (Euclidean 

distance is preferred for measuring the distance) in the 

current population. The number of solution candidates 

which are selected for replacement is determined by the 

constant parameter called crowding factor (CF). For 

improper selected CF values, a problem called 

replacement error may emerge. This problem is caused by 

the replacing of non similar members. Even this problem 

can affect the solution quality of the algorithm, the 

solution is very simple that setting CF equal to the 

number of individuals in the population as proposed in 

[9]. Crowding scheme has a basic layout especially for 

evolutionary algorithms. In case of DE, the last phase 

(selection) of DE is change from the selection to the 

crowding. The crowding method is summarized as 

a) calculate Euc(xi,ui), which is Euclidean distance 

between X and U, 

b) find the member of X which has the minimum 

Euclidean distance to ui, 

c) if fitness value of ui is smaller than xi then replace. 
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III.  IMPLEMENTATION RESULTS 

Eight different mutation operators of DE are evaluated 

on ten benchmark problems with 600 iterations, 100 

number of members, 50 independent run, and 

performance of variations are compared with respect to 

performance measurement functions. The implementation 

are compared as a competition based on different levels 

of accuracy, which is a threshold level under which is 

consider a global optimum is found (ε=0.1; ε=0.01; 

ε=0.001; ε=0.0001). 

A. Benchmark Problems 

The benchmark problems are previously well defined 

functions which have different multiple optima [25]. The 

importance of benchmark problems are 

a) the number of multiple optima and 

b) their position and fitness values are known 

c) it is easy to compare other studies with the well-

known problems. 

Table 1 presents multimodal benchmark problems, and 

Table 2 gives the number of global optima of the 

benchmark functions. 

B. Performance Measurement 

The performance of algorithms is measured by using 

two criteria, which are called peak ratio (PR) and success 

rate (SR). The PR and SR are performance measure 

variables defined in [0,1]. The PR is the proportion of 

total number of global optima found in the end of each 

run to the total number of global optima. The (22) 

explains PR as mathematical formula. 

NRNKP

NPF

PR

NR

run

run





1                                                         (22) 

where NPFrun is the number of global optima found in 

the end of ith run, NKP is the number of known global 

optima, and NR is the number of run. 

The SR is a more general/overall sign for performance. 

SR gives the number of successful run against all run as 

given in (23). 

NR

NSR
SR                                                                  (23) 

Table 2. Parameters for Benchmark Problems 

Function 

Name 

Niche 

Radius 

Number of 

Global Optima 

F1 0.01 2 

F2 0.01 5 

F3 0.01 1 

F4 0.01 4 

F5 0.5 2 

F6 0.5 18 

F7 0.2 36 

F8 0.5 81 

F9 0.2 216 

F10 0.01 12 

where NSR is the number of successful runs that all of 

the global optima is detected by algorithm. These 

performance measurement variables depend on the 

location of global optima. Hence first it must be 

determined such that global optima is close enough 

within accuracy level (ε), and the solution is within the 

niche radius from all global solutions. Table 2 gives niche 

radius and number of global optima for each benchmark 

problems. 

C. Results 

There are eight different algorithms, ten benchmark 

problems and two performance measurement techniques 

are applied on four accuracy levels. Since the accuracy 

levels represent the degree of difficulty, competition 

based implementations are executed. Therefore four sets 

of implementation are defined for each level of accuracy. 

After each implementation set, some algorithms and 

benchmark problems are executed from comparison list 

based on the performance of algorithms on problems. 

First, for ε=0.1 level of accuracy, eight algorithms are 

evaluated, and Table 3 presents PR and SR performance 

measures of these algorithms for ten benchmark functions. 

Table 3 shows that for functions F7-F9 all algorithms 

cannot able to locate any global optima due to the success 

rates for these problems are zero. The performance of 

DE-R1, DE-RS, and TS-DE have the best among all 

algorithms. 

Table 4 gives the statistical data about number of found 

optima (number of peaks). These data contain minimum, 

maximum, mean and standard deviation of the number of 

obtain global optima. The algorithms DE-R1, DE-RS, 

TS-DE can able to find all peak points for a given level of 

accuracy at problems F1-F5 and F12. The benchmark 

problems with a high number of peaks (F6-F9), which are 

hardest problems, cannot be solved by and of eight 

algorithms. But for the functions F6, F7 and F9, the 

algorithms can able to find some of peaks. Therefore, 

from first implementation set only three algorithms and 

six benchmark problems can able to survive to the next 

competition since the performance of other methods fall 

behind. The algorithms which can be able to reach to the 

next competition are DE/Rand/1, Random Scale and 

Time varying scale, and the problems are F1-F5 and F10. 

Second and third set of implementations for ε=0.01 and 

ε=0.001 are evaluated for comparing three algorithms on 

six benchmark problems, and results presented in Table 5 

and Table 6, respectively. Table 5 gives peak ratio and 

success rate of algorithms. It isn't possible to present a 

general conclusion about algorithm since for ε=0.01 and 

for functions F2, F4-F5, the algorithms result are same 

performance, but for other functions TS-DE outperforms 

for other algorithms. For ε=0.001, for functions F2, F5-F6, 

the algorithms result are same performance, but similarly 

TS-DE outperforms for other functions. 

Table 6 gives statistics for number of peaks that are 

found by algorithms. Table 6 presented for two levels of 

accuracy ε=0.01 and ε=0.001. The results in Table 6 also 

supports the results of Table 5, such that even all 

algorithms are presented almost same performance, TS-

DE slightly presents better performance when compared 



 A Comparison of Crowding Differential Evolution Algorithms for Multimodal Optimization Problems 9 

Copyright © 2015 MECS                                                             I.J. Intelligent Systems and Applications, 2015, 04, 1-10 

with other algorithms. From the evaluations of all results 

given in Table 5 and 6, it is seen that the results are 

similar to each other, for a better conclusion, another 

implementation is executed for last level of accuracy. 

 
Table 7. Results for Benchmark Problems 

No  DE-R1 DE-RS TS-DE 

F1 

Max. 1 0 1 

Min. 0 0 0 

Mean 0.02 0 0.06 

Std.Dev 14.1E-2 0 23.9E-2 

SR 0 0 0 

PR 0.01 0 0.03 

F2 

Max. 5 5 5 

Min. 5 5 5 

Mean 5 5 5 

Std.Dev 0 0 0 

SR 1 1 1 

PR 1 1 1 

F3 

Max. 1 1 1 

Min. 0 0 0 

Mean 0.54 0.68 0.96 

Std.Dev 50.3E-2 47.1E-2 19.7E-2 

SR 0.45 0.68 0.96 

PR 0.54 0.68 0.96 

F4 

Max. 2 2 4 

Min. 0 0 3 

Mean 0.48 0.60 3.9 

Std.Dev 61.4E-2 60.6E-2 30.3E-2 

SR 0 0 0.9 

PR 0.12 0.15 0.975 

F5 

Max. 5 5 5 

Min. 5 5 5 

Mean 5 5 5 

Std.Dev 0 0 0 

SR 1 1 1 

PR 1 1 1 

F10 

Max. 2 4 5 

Min. 0 0 0 

Mean 0.44 0.84 1.14 

Std.Dev 61.1E-2 1.05 1.38 

SR 0 0 0 

PR 0.03 0.07 9.5E-2 

 

The last implantation is made for level of accuracy 

ε=0.0001. Three algorithms are compared on six 

benchmark problems and performance of these 

algorithms are presented in Table 7. For functions F2 and 

F5, the performance of all algorithms are the same each 

other. However, when considered other benchmark 

problems, TS-DE outperforms when compared with 

others. In summary, from the Tables 3-7, the performance 

of different algorithms show that time varying DE 

outperforms against other DE algorithms. 

IV. CONCLUSION 

This study compares eight different DE variants for ten 

multimodal benchmark problems. The aim of this paper is 

to propose a reliable crowding DE algorithm for 

multimodal problems. From the results, it can be 

concluded that as the number of global optima increases 

the performance of crowding DE decreasing for all 

variants. It isn't possible to obtain good results for 

benchmark problems after 18 global optimums for 

crowding DE algorithms, and from eight variants, only 

time varying crowding DE performs better for all level of 

accuracy. From literature review, it was seen that DE-R1 

and DE-B1 algorithms are used as crowding DE. From 

the results obtained in this study showed that, DE-B1 

couldn't able to survive for the last implementation set. 

Also, even DE-R1 reaches to the last comparisons, the 

performance of DE-R1 is lower than TS-DE. From the 

point of execution times of DE-R1, DE-B1 and TS-DE, 

DE-B1 is the slowest algorithm since the mutation 

operator needs to find best member in the population. 

Since TS-DE is the improved version of DE-R1, DE-R1 

has the fastest execution mutation code. But, the code 

difference between DE-R1 and TS-DE is only a line of 

mathematical operation contains a difference and a 

multiplication, which adds relatively small amount of 

time to the commutative execution time. 
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