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Abstract—The urinary system is the organ system responsible 

for the production, storage and elimination of urine. This system 

includes kidneys, bladder, ureters and urethra. It represents the 

major system which filters the blood and any imbalance of this 

organ can increases the rate of being infected with diseases. The 

aim of this paper is to evaluate the performance of different 

variants of Support Vector Machines and k-Nearest Neighbor 

with different distances and try to achieve a satisfactory rate of 

diagnosis (infected or non-infected urinary system). We 

consider both diseases that affect the urinary system: 

inflammation of urinary bladder and nephritis of renal pelvis 

origin. Our experimentation will be conducted on the database 

“Acute Inflammations Data Set” obtained from UCI Machine 

Learning Repository. We use the following measures to 

evaluate the results: classification accuracy rate, classification 

time, sensitivity, specificity, positive and negative predictive 

values. 

 

Index Terms— Urinary System, Diagnosis, Support Vector 

Machine, k-Nearest Neighbor, Distance. 

 

I. INTRODUCTION 

Machine learning is the scientific discipline concerned 

with the development, analysis and implementation of 

automated methods that allow to a machine to evolve 

through a learning process, and so fulfill the tasks that are 

difficult or impossible to fill by more conventional 

algorithmic means. 

Learning algorithms can be categorized according to 

the learning mode: supervised learning, unsupervised 

learning and semi-supervised learning. 

Supervised learning is widely used in the medical field 

as an ensemble of methods for the medical diagnosis to 

help the doctor and to get a better diagnosis. Among these 

methods are: Support Vector Machines, Neuron Network, 

k-Nearest Neighbor, etc. 

Many researchers have developed expert systems to 

solve complex problems of medical diagnosis (such as 

cancer diagnosis [1], [2], acute inflammation in urinary 

system diagnosis [3], [4], etc.) by reasoning about 

knowledge and also by using different learning methods. 

Support vector machine and k-nearest neighbor have 

been widely used in medical diagnosis field. In [5], the 

authors have used SVM with RBF kernel to diagnosis the 

heart disease. Leung et al. [6], have developed a 

datamining framework to diagnosis the Hepatitis B. In [7], 

the authors have proposed three neural network 

approaches and applied in hepatitis diseases. A. Kharrat 

et al. [8], proposed a novel variant of Support vector 

machine called Evolutionary SVM for medical diagnostic. 

In this paper, the first work is to analysis and to 

evaluate the performance of different variant of Support 

Vector Machines and k-Nearest Neighbor algorithm with 

different distances, in the context of the diagnosis of 

acute inflammation in urinary system (infected or non-

infected with inflammation of urinary bladder or nephritis 

of renal pelvis origin). The second work is to reach a high 

classification accuracy rate. 

The evaluations of performance have been conducted 

in term of: classification accuracy rate, classification time, 

sensitivity, specificity, positive and negative predictive 

values. 

The paper is organized as follows: First we recall some 

definition of Support Vector Machines and the different 

approaches using in this study. In Sec. IV, we present the 

k-Nearest Neighbor and the different distance. In Sec. V, 

we analyze the result of the different methods and finally 

we conclude with some perspectives. 

 

II.  SUPPORT VECTOR MACHINES 

Support Vector Machine was introduced by Vladimir 

N. Vapnik in 1995 [9], [10] and it becomes rather popular 

since. SVM performs classification by constructing a 

hyperplane that optimally separates the data into two 

categories (in the case of binary classification). The 

models of SVM are closely related to Neural Networks. 
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SVM works well in practice and has been used across a 

wide range of applications from recognized hand-written 

digits, face identification, bioinformatics, etc. 

The goal of SVM is to find the optimal hyperplane that 

separates clusters of vector in such a way that cases with 

one category of the target variable are on one side of the 

plane and cases with the other category are on the other 

size of the plane [11]. The vectors near the hyperplane are 

the support vectors. 

Find the optimal hyperplane is equivalent to 

reformulate the classification problem to an optimization 

problem [12]. 

 
Fig. 1. The optimal Hyperplane. 

 

A. Mathematical formulation 

Consider a binary classification problem with  N 

training points  ii yx , , Ni ,...,1 , where each input ix  

has D attributes and is one of two classes  1,1iy . The 

data training have the following form: 

 ii yx , where   D
ii RxyNi  ,1,1,,...,1           (1) 

The hyperplane can be described by: 

0, bxw i                                                             (2) 

where w is the norm to the hyperplane and 
w

b
is the 

perpendicular distance from the hyperplane to the origin. 

Finding the optimal hyperplane is equivalent to solving 

the following optimization problem: 
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It's a primary form of quadratic problem. In order to 
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have the dually form: 























 





N

i

ii

i

N

i ji

jijijii

y

xxyy

1

1 ,

0

0

,,
2

1
max







                   (4) 

By solving the equation (4), we determine the 

Lagrange multipliers   and the optimal hyperplan is 

given by: 
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Where rx and sx are any support vectors from each 

class satisfying: 

1,1,0,  srsr yy                                          (7) 

Solving the optimization problem requires the use of 

optimization quadratic algorithms such as: SMO, Trust 

Region, Interior Point, Active-Set, etc. 

 

III.  DIFFERENT VARIANT OF SVM 

A. SVM by Sequential Minimal Optimization (SVM-SMO) 

Invented by Jhon Platt [13], [14], [15] in 1998 at 

Microsoft research, Sequential Minimal Optimization 

(SMO) has been widely used for training Support Vector 

Machines and has been an algorithm for efficiently 

solving the optimization problem which arises during the 

training data of SVM. 

To solve the quadratic problem of SVM, SMO find the 

solution by decomposing the quadratic problem into sub-

problems and solving the smallest possible optimization 

problem involving two Lagrange multipliers at each step. 

The advantage of SMO lies in the fact that solving two 

Lagrange multipliers can be done analytically. Thus, 

numerical QP optimization is avoided entirely. 

There are two components to SMO: an analytic method 

for solving for the two Lagrange multipliers, and a 

heuristic for choosing which multipliers to optimize. 

In order to solve for the two Lagrange multipliers, 

SMO first computes the constraints on these multipliers 

and then solves for the constrained minimum: 

The bounds L and H are given by the following: 
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For a current solution ),( old
j

old
i  , the new solution 

),( new
j

new
i  is obtained by using the following update 

rule: 
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Ek is the error between the SVM output on the kth 

example and the true label yk. 

Next we clip new
j to lie within the range [L, H] i.e 

HL new
j  , to satisfy the constraint that Cj 0 : 
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Finally, having solved for new
j , the value of new

i  is 

given by : 
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The choice of Lagrange multiplier αi must violates the 

Karush-Kuhn-Tucker (KKT) conditions for the 

optimization problem and we pick a second multiplier αj 

and optimize the pair (αi, αj). 

When all the Lagrange multipliers satisfy the KKT 

conditions (within a user-defined tolerance), the problem 

has been solved. 

Although this algorithm is guaranteed to converge, 

heuristics are used to choose the pair of multipliers so as 

to accelerate the rate of convergence. 

B. Least Square SVM (LS-SVM) 

Proposed by Suykens and Vandewalle [16], [17], [18], 

Least Squares Support Vector Machines (LS-SVM) are 

reformulations to the standard SVMs which lead to 

solving linear KKT systems. LS-SVM is closely related 

to regularization networks and Gaussian processes but 

additionally emphasizes and exploits primal-dual 

interpretations. In LS-SVM the minimization problem is 

reformulating as follows: 
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The reformulation corresponds to a regression 

interpretation with binary targets 1iy . Using 12 iy  

we have: 
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The Lagrangian for this problem is: 
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The KKT optimality conditions are given by: 

 

After elimination of w and ek, the solution of the 

optimization problem can be obtained by solving the 

following set of linear equations: 

 

where : Y=[y1,...,yN]T, 1N=[1,...,1]T, α =[α1,...,αN], IN= 

Identity matrix, Ω= kernel function. 

Finally, the classifier is found by solving a set of linear 

equations instead of a convex quadratic programming 

(QP) problem for classical SVMs. Both   and   should 

be considered as hyper-parameters to tune the amount of 

regularization versus the sum squared error [19]. 

 

IV.  K-NEAREST NEIGHBOR 

K-Nearest Neighbor (k-NN) is one of popular and 

simplest algorithm and it works incredibly well in 

practice [20], [21], [22]. K-NN is non parametric 

algorithm (it means that it does not make any 

assumptions on the underlying data distribution) and it 

does not use the training data points to do any 

generalization (no explicit training phase). 

K-Nearest Neighbor uses the theory of the distance to 

classify a new element. It calculates the distance between 

the new element and the others which their classes are 

know. The class that appears most among the neighbors 

is assigned to the new element. 

The choices of some parameters are very important in 

k-NN algorithm, these parameters are: the distance 

function and the parameter k which represents the number 

of neighbors chosen to assign the class to the new 

element. 



4 Urinary System Diseases Diagnosis Using Machine Learning Techniques  

Copyright © 2015 MECS                                                               I.J. Intelligent Systems and Applications, 2015, 05, 1-7 

 
Fig. 2. The K-Nearest Neighbor. 

 

A. The k-nn algorithm 

The basic schema of k-NN algorithm: 

1. Choose a value of parameter k and the distance 

function. 

2. Given a N elements and their classes (the class of 

element x is c(x)). 

3. For each new element y. 

4. Calculate the distance between y and the others 

elements. 

5. Determine the k-nearest neighbors of y. 

6. The new element y will be assigned to the majority 

class among the k-nearest neighbor. 

7. The class of y is c(y). 

 

B. The distances 

A distance is an application which represents the 

length between two points. It must satisfy the following 

axioms: 

 Non-negativity, 

 Symmetry, 

 Reflexivity, 

 Triangle Inequality. 

In the table 1, we define some distances which are very 

used in the literature: (xir, xij : two points - xi, xj : two 

vectors - cxi,xj : The coefficient of Pearson correlation). 

 
Table 1. List of some distance used in the literature. 
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V. EXPERIMENTATION 

In this study, we analyze and evaluate the performance 

of different approaches of Support Vector Machines and 

K-nearest neighbor with several distances in the context 

of medical diagnosis. The evaluation has been conducted 

in term of: classification accuracy rate, classification time, 

sensitivity, specificity, positive and negative predictive 

values. These performance metrics are calculated by 

using the following equations: 

 

The dataset contains informations about two diseases 

of urinary system which is the acute inflammation and the 

acute nephritis. The data was created by a medical expert 

as a data set to test the expert system, which will perform 

the presumptive diagnosis of two diseases of urinary 

system. The data is obtained from UCI Machine Learning 

Repository. 

The acute inflammation of urinary bladder can be due 

to infection from bacteria that ascend the urethra to the 

bladder or for unknown reasons. This disease is 

characterized by: throbbing pain in the region of the 

bladder, occurrence of pains in the abdomen region, 

frequent need to urinate accompanied by a burning 

sensation and blood may be observed in the urine and the 

patient may suffer cramps after urination. If the person 

who suffers from this disease and does not be treated, we 

should expect that the illness will turn into protracted 

form. 

The second disease is the acute nephritis of renal pelvis 

origin occurs considerably more often at women than at 

men. The first symptom of this disease is a sudden fever 

which exceeds sometimes 40C. The fever is accompanied 

by shivers and one or both-side lumbar pains which are 

sometimes very strong. Symptoms of acute inflammation 

of urinary bladder appear very often. Quite not 

infrequently there are nausea and vomiting and spread 

pains of whole abdomen. 

The dataset consists of 120 instances (each instance 

represents a potential patient) with no missing values. It 

contains 9 attributes which are integer and categorical. 

The following table 2 describes the attributes of this 

database. 

For each learning methods we must effectuate two 

essential steps: training and testing steps. In this work we 

have used the holdout method (which is the simplest kind 

of cross validation) to separate randomly the data base in 

two parts. Note that the k-nearest neighbor not needs a 

training phase. 
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Table 2. Attribute information of actue inflammations data set. 

Attribute Description 
Values of 

Attribute 

Temperature of patient (C) {35-42} 

Occurrence of nausea {yes,no} 

Lumber pain {yes,no} 

Urine pushing {yes,no} 

Micturition pains {yes,no} 

Burning of urethra {yes,no} 

Decision : Inflammation of urinary bladder {yes,no} 

Decision : Nephritis of renal pelvis origin {yes,no} 

 

To validate our experimentation and the three 

algorithms of SVM (SMV-QP, SVM-SMO and SVM- 

LS), we have used several tests with different training 

and testing sets generated randomly by the holdout 

method (we made 50 tests). 

The performance of k-nearest neighbor algorithm have 

been studies with four distances (Euclidean, Cityblock, 

Cosine and Correlation distance) and by using different 

values of "k" (between 1 and 50). 

In the Fig.3, we show the classification accuracy rate 

obtained by (SVM-QP, SVM-SMO, SVM-LS, KNN-

Euclidean Distance, KNN-Cityblock Distance, KNN-

Cosine Distance and KNN-Correlation Distance). 

 

 

Fig. 3. The figure shows the classification accuracy rate obtained by the 
different approaches for all the test. 

 

We clearly observe that the different approaches of 

SVM have reached a 100% classification accuracy rate. 

Also, for the k-NN with the four distances we record a 

100% classification accuracy rate when k is between 1 

and 10. When k is greater than 10 we remark a slight 

decrease of classification rate. 

In all the various tests and by using different training 

and testing set in each test, SVM-QP and SVM-SMO we 

have obtained a 100% classification accuracy rate. 

In Fig.4, we illustrate the classification time in each 

test and for all the different approaches. 

The minimum classification time is recorded for the 

(SVM-QP, SVM-SMO and SVM-LS) with an advantage 

for SVM-QP. k-NN has the maximum classification time 

and this because k-NN algorithm calculates the distances 

between the new sample and all the sample of data set. 

 

Fig. 4. The figure shows the classification time for each approaches in 
each tests. 

 

 
Fig. 5. The maximum classification accuracy rate between all the 

50tests. 

 

 
Fig. 6. The minimum classification accuracy rate between all the 50 

tests. 

 

Finally we present a summary of all results obtained 

followed by the sensitivity, specificity, positive and 

negative predictive values correspond to the maximum 

classification accuracy rate between the 50 tests. 

 

VI. CONCLUSION 

In this study, we aim to reach a high accuracy 

classification rate and to evaluate different approaches of 
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Support Vector Machines and K-nearest neighbor with 

different distances in acute inflammation of urinary 

system diagnosis. SVM-QP and SVM-SMO have 

achieved significant results in dealing with 100% of 

classification accuracy rate and a good performance in 

term of classification time. This experimentation showed 

that the proposed diagnosis SVMs could be useful for 

identifying the infected person. 

 
Table 3. Sensitivity (Sens %) and specificity (Spec %), positive 

predictive value (Pos.P.V %) and negative predictive value (Neg.P.V %) 

calculated for the approaches SVMs and K-NN. 

Method Sens. Spec. Pos.P.V Neg.P.V 

SVM-QP 

SVM-SMO 

SVM-LS 

KNN-Euclidean 

KNN-Cityblock 

KNN-Cosine 

KNN-Correlation 

100 

100 

100 

100 

100 

100 

93,33 

100 

100 

100 

100 

100 

100 

91,11 

100 

100 

100 

100 

100 

100 

77,78 

100 

100 

100 

100 

100 

100 

97,61 

 
Table 4. Summary of all Results Obtained by Svms and Knn. Average 

Classification Accuracy (A.C.A.R %), Average Classificaiton Time 

(A.C.T %), Maximum Classification Accuracy Rate (Max. %) and 
Minimum Classification Accuracy Rate (Min. %). 

Method A.C.A.R A.C.T Max. Min. 

SVM-QP 

SVM-SMO 

SVM-LS 

KNN-Euclidean 

KNN-Cityblock 

KNN-Cosine 

KNN-Correlation 

100 

100 

96,80 

83,50 

84,03 

89,59 

84,40 

0,0018 

0,0006 

0,0006 

0,0059 

0,0050 

0,0043 

0,0040 

100 

100 

100 

100 

100 

100 

91,67 

100 

100 

86,67 

75,00 

75,00 

75,00 

75,00 
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