
I.J. Intelligent Systems and Applications, 2015, 07, 57-65
Published Online June 2015 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijisa.2015.07.08

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 07, 57-65

OpenMP Teaching-Learning Based Optimization

Algorithm over Multi-Core System

A. J. Umbarkar
Department of Information Technology, Walchand College of Engineering Sangli, MS, India

E-mail: anantumbarkar@rediffmail.com

N. M. Rothe
Department of Computer Engineering, Walchand College of Engineering Sangli, MS, India

E-mail: nmrothe.11189@gmail.com

A.S. Sathe
Department of Information Technology, Walchand College of Engineering Sangli, MS, India

E-mail: ashutosh_sathe@gmail.com

Abstract— The problem with metaheuristics, including

Teaching-Learning-Based Optimization (TLBO) is that, it

increases in the number of dimensions (D) leads to increase in

the search space which increases the amount of time required to

find an optimal solution (delay in convergence). Nowadays,

multi-core systems are getting cheaper and more common. To

solve the above large dimensionality problem, implementation

of TLBO on a multi-core system using OpenMP API’s with

C/C++ is proposed in this paper. The functionality of a multi-

core system is exploited using OpenMP which maximizes the

CPU (Central Processing Unit) utilization, which was not

considered till now. The experimental results are compared with

a sequential implementation of Simple TLBO (STLBO) with

Parallel implementation of STLBO i.e. OpenMP TLBO, on the

basis of total run time for standard benchmark problems by

studying the effect of parameters, viz. population size, number

of cores, dimension size, and problems of differing complexities.

Linear speedup is observed by proposed OpenMP TLBO

implementation over STLBO.

Index Terms— Metaheuristic, Open Multiprocessing

(OpenMP), Teaching-Learning-Based Optimization (TLBO),

Unconstrained Function Optimization, Multicore.

I. INTRODUCTION

Optimization, in simple terms, means minimize the

cost incurred and maximize the profit such as resource

utilization. EAs are population based metaheuristic

(means optimize problem by iteratively trying to improve

the solution with regards to the given measure of quality)

optimization algorithms that often perform well on

approximating solutions to all types of problem because

they do not make any assumptions about the underlying

evaluation of the fitness function. There are many EAs

available viz. Genetic Algorithm (GA) [1] , Artificial

Immune Algorithm (AIA) [2], Ant Colony Optimization

(ACO) [3], Particle Swarm Optimization (PSO) [4],

Differential Evolution (DE) [5], [6], Harmony Search

(HS) [7], Bacteria Foraging Optimization (BFO) [8],

Shuffled Frog Leaping (SFL) [9], Artificial Bee Colony

(ABC) [10, 11], Biogeography-Based Optimization (BBO)

[12], Gravitational Search Algorithm (GSA) [13],

Grenade Explosion Method (GEM) [14] Firefly (FF) [15],

[16] etc. To use any EA, a model of decision problem

need to be built that specifies the decision variables,

objective and constraints. These 3 parameters are

necessary while building an optimization model. The

solver will find values for the decision variables that

satisfy the constraints while optimizing (maximizing or

minimizing) the objective. But the problem with all the

above EAs is that, to get an optimal solution, besides the

necessary parameters. Various algorithms are parameter

specific and that parameters need to be handled

separately. For example, in case of GA, adjustment of

the algorithm-specific parameters such as crossover rate,

mutation rate, crossover type, type of encoding etc.

affects the optimal solution obtained. Thus, in all the

above EAs, selection of algorithm-specific parameter’s

value affects the optimal solution obtained. But in TLBO,

there are no algorithm-specific parameters.

TLBO has been an efficient metaheuristic technique

recently developed, for solving optimization problems

with less computational effort and high consistency. Its

advantage over other EAs is that, it has no algorithm-

specific parameter (parameter less). The TLBO algorithm,

which was proposed by Rao (2011), is actually based on

the philosophy of teaching and learning. In a classroom,

the teacher is considered as a highly learned person who

tries to improve the outcome of learners by sharing

his/her knowledge with them. It is called the Teacher

phase of TLBO. Also, learners share and learn from the

interaction among them, which help to improve their

outcome. It is referred to as the Learner phase of TLBO

[17]. In the entire process, TLBO tries to shift mean

towards best.

Nowadays, multi-core CPUs (Central Processing Unit)

are getting more and more common and cheaper. One

cannot ignore their importance anymore. With the recent

advancement of multi-core system, researchers have been

modifying EAs for parallel implementation on a multi-

core system. The multi-core systems can run multiple

mailto:nmrothe.11189@gmail.com

58 OpenMP Teaching-Learning Based Optimization Algorithm Over Multi-Core System

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 07, 57-65

instructions simultaneously on multiple cores; it increases

overall speed for programs [18].

While using multi-core system, the improvement in

performance depends upon the algorithms used and their

implementation. In particular, possible benefits depend

upon (or limited by) the fraction of the algorithm that can

be managed in parallel on multiple cores simultaneously;

this issue is explained in Amdahl's law. The problems

which are embarrassingly parallel may realize speedup

factors near to the number of cores. Even more speedup

factors can be realized by splitting up the problem so that

it can fit within the cache of each core(s), thereby

avoiding use of much slower main memory of the system.

In order to accelerate performance of application,

programmers have to work more on re-factoring the

whole problem. The parallelization of algorithms on a

multi-core the system is a significant ongoing topic of

research.

Recent advancement in High Performance Computing

(HPC) have seen the usage of many cores of multi-core

system (viz. i3, i5, i7 etc.) for solving computationally

intensive task parallelly. OpenMP is an API for writing

shared-memory parallel applications in C, C++, and

FORTRAN. With the release of API specifications (in

1997) by the OpenMP Architecture Review Board (ARB),

use of CPU’s computational power (in particular,

multiple cores of multi-core CPU) for parallel computing

has become easy [19]. OpenMP is ideally suited for

multi-core architectures hence it allows programs to be

parallelized incrementally with little programming efforts.

The designers of OpenMP developed a set of compiler

pragmas, directives, and environment variables, function

calls which are platform-independent. In application

exactly where and how to insert threads are explicitly

instructed by these constructs. Most of the loops can be

parallelized just by adding #pragma_omp_parallel_for

before the ‘for loop’ construct in C. The main tasks while

using OpenMP are 1) to determine which loops should be

threaded and 2) to restructure the algorithms for

maximum performance. The OpenMP provides

maximum performance, if it is applied to threads in the

application which are most time-consuming loops.

Thus, if the bottlenecks in the algorithm are identified

and modified suitably, using OpenMP, one can easily

exploit the functionality of multi-core system and can

maximize the utilization of all the cores of multi-core

system which is necessary from the optimization point of

view (for example, maximize the resource utilization).

This paper contributes towards this direction and

undertakes a detailed study by investigating the effect of

number of cores, dimension size, population size, and

problem complexity on the speedup of TLBO algorithm.

In the remainder of this paper, we give a brief literature

review of TLBO and its applications. Thereafter, we

discuss the possibilities of tweaking a TLBO to make it

suitable for parallel implementation on a multi-core

system. Then, we present results on a few test problems

of different complexities and show appreciable speed-ups

using our proposed algorithm.

II. LITERATURE REVIEW

TLBO is very effective than other metaheuristics

because of its characteristics viz. parameter less, high

consistency, and less computation effort. It outperforms

some of the well-known metaheuristics regarding

constrained benchmark functions, constrained mechanical

design [20], and continuous non-linear numerical

optimization problems [17], it is being used by various

researchers as a replacement for the other EAs available.

Such a breakthrough has steered Cˇrepinšek et al. [21]

towards investigating the secrets of TLBO’s dominance.

They investigated some mistakes regarding TLBO

through code-reviews and experiments respectively.

However, Waghmare in [22] commented on the work of

Cˇrepinšek et al. He not only addressed the queries raised

by Cˇrepinšek et al. but also re-examined the

experimental results, which demonstrates that the TLBO

algorithm performs well on the problems where the

fitness-distance correlations are low by proper tuning of

the common control parameters of the algorithm, and

corrected the understanding about the TLBO algorithm in

an objective manner. TLBO has been used by number of

researchers to solve their problems and found it effective

than other Metaheuristic. Krishnanand et al. in [23] have

applied a multi-objective TLBO algorithm with non-

domination based sorting to solve the environmental or

economic dispatch (EED) problem containing the

incommensurable objectives of best economic dispatch

and least emission dispatch. Rao and Patel in [24]

explored the use of TLBO and ABC algorithms for

determining the optimum operating conditions of

combined Brayton and inverse Brayton cycles. Rao et al.

in [25] proposed the optimization of mechanical design

problems using TLBO and tested it on five different

constrained benchmark test functions with different

characteristics, four different benchmark mechanical

design problems and six mechanical design optimization

problems. González-Álvarez et al. in [26] proposed

Multi-objective TLBO (MO-TLBO) for solving Motif

Discovery Problem (MDP) and solved a set of twelve

biological instances belonging to different organisms.

Rao and Patel introduced and investigated the effect of

elitism on the performance of TLBO algorithm while

solving complex constrained optimization problems [27]

and unconstrained benchmark problems [28]. Population

size and Number of generation, these parameter affects

the performance of TLBO are also investigated. Rao and

Kalyankar in [29] made an attempt to achieve conflicting

objectives by finding optimum parameter settings for the

LBW process by applying TLBO for parameter

optimization of the LBW process. Rajasekhar et al. in [30]

proposed a new variant of TLBO, termed as Elitist

Teaching-Learning Opposition based (ETLOBA)

Algorithm for numerical function optimization, which is

empowered with two mechanisms, one is elitism and

second is Opposition method (helps to improve the

capability of searching), to reach the accurate global

optimum with less time complexity. Rao and Patel in [31]

introduced a modified version of the TLBO algorithm

and applied the same for the multi-objective optimization

 OpenMP Teaching-Learning Based Optimization Algorithm Over Multi-Core System 59

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 07, 57-65

of heat exchangers. Pawar and Rao in [32] presented

TLBO to find the optimal combination of process

parameters of the abrasive water jet, grinding and milling

machining processes. Rao and Kalyankar in [33] applied

TLBO for the process parameter optimization of

electrochemical machining (ECM) process and

electrochemical discharge machining (ECDM) process.

Rao et al. in [34] proposed TLBO to solve continuous

unconstrained and constrained optimization problems.

Niknam et al. in [35] proposed a θ-multi-objective-TLBO

algorithm to solve the dynamic economic emission

dispatch problem.

III. ALGORITHM

Most of the times TLBO uses only single core of

multi-core system thereby leaving other cores idle. One

of the goals of optimization is to maximize the profit such

as resource utilization, so it’s necessary to make

algorithm parallel either by design or programming way,

which exploits all the cores of multi-core system and

maximize the CPU utilization. OpenMP maps threads

onto physical cores of CPU, hence all the OpenMP

threads run in parallel and provide more optimal solution

in less amount of time thereby providing speedup

compare to Simple TLBO (STLBO). The basic TLBO

algorithm can be stated as in fig. 1.

Fig. 1. Pseudo code of TLBO

The OpenMP algorithm exactly emulates the

sequential algorithm where calculation of Fitness,

calculation of mean, calculation of best, and comparison

of fitness function remains same whereas small changes

are introduced to achieve better result/performance.

 In the following subsections, how the different

functions of TLBO work, how we have parallelized them,

and discuss the intricacies involved in are mentioned in

the paper.

A. Initialize_Population

This method reads the basic TLBO parameters,

including population and generation sizes, types of

decision variables and their lower and upper limits. This

remains unchanged in the parallel algorithm. Thus, this

method generates an initial population (set of possible

candidate solutions) randomly by taking population size,

number of decision variables, and upper & lower limit of

decision variables into consideration. This population

generated serves as an input to Teacher-Phase of TLBO

algorithm.

B. Calculate_Fitness

This method evaluates fitness of each individual of

population using the defined objective function, which

indicates how much each variable contributes to the value

to be optimized (either maximize or minimize) in the

problem. The fitness evaluation of each individual is

independent step; an OpenMP parallel pragma is used to

create multiple threads, ranging from 2 to 32, to evaluate

each individual’s fitness separately and are mapped onto

corresponding numbers of physical cores (e.g. 2 threads

are mapped onto 2 physical cores. Similarly, 4, 8, 16 and

32 threads are mapped onto 4, 8, 16 and 32 physical cores

respectively). It is possible to map more than one thread

on a core but in practice it is best to have one-to-one

mapping. In this way, this step is parallelized and reduced

the overall time required to evaluate the fitness of all

individuals of the population and also maximized the

CPU utilization (by utilizing all the cores of the CPU).

This method is called twice, once in Teacher phase and

once in Learner phase (in case of elitist TLBO it is called

more than twice), parallelization of this method helps

significantly in reducing the amount of time required for

total execution.

C. Calculate_Mean_Vector

This method calculates the mean of each decision

variable in the population. This method is parallelized by

creating multiple OpenMP threads (2 to 32) which are

deployed over the multiple cores (2 to 32) of CPU (one-

to-one mapping). Thus by calculating means of each

decision variable simultaneously, the amount of time

required to calculate mean of all decision variables is

reduced and this simultaneous execution maximizes the

CPU utilization as well.

D. Best_Solution

This method finds the best solution from the

population based on its fitness value. An individual

candidate solution having optimum fitness value (either

minimum or maximum, as per the requirement) is termed

as Best_Solution (or Teacher) and is selected to calculate

new population in Teacher-phase. The simple logic

applied for this method is in fig. 2.

To parallelize this method, REDUCTION (Min or Max)

pragma of OpenMP can be used, but it is found that, the

use of REDUCTION pragma deteriorates the

performance of this method, because to select the

Best_Solution, first, we need to find the optimal fitness

value and its index and based on that index the candidate

solution from the population is selected. This calculation

of index adds overhead which deteriorates the

performance. So, above simple logic is applied to avoid

the reduction in performance.

begin

Best = pop[1] {optimal}

Index = 1

for(i= 2 to pop_size)

if Fitness(pop[i]) is better

than Fitness(pop[1])

Best = pop[i]

Index = i

endif

end for

Best_Solution = pop[Index]

end

60 OpenMP Teaching-Learning Based Optimization Algorithm Over Multi-Core System

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 07, 57-65

Fig. 2. Pseudo code of Best Solution

E. Create_New_Population

Based on the values of Mean, Best_Solution, r and TF

(r and TF are randomly generated), a Difference_vector is

calculated and added to each individual solution of the

old population to get the new population. This addition of

Difference_Vector to each individual is an independent

step; an OpenMP parallel pragma is used to create

multiple threads (2 to 32) for performing the addition

separately and are mapped onto multiple physical cores

(2 to 32). Thus, by adding the Difference_Vector to each

candidate solution simultaneously, the amount of time

required to create new population is decreased

significantly and this simultaneous creation maximizes

the CPU utilization. After this, the fitness value of the

new population is evaluated.

F. Compare_Fitness

This method compares the fitness of newly calculated

population with the fitness of the old population. The

fitness of each candidate solution of the new population is

compared with the fitness of the corresponding candidate

solution of the old population and the one with the best

fitness value is selected (survival of the fittest). This one-

to-one comparison is also an independent step and thus,

parallelized by creating multiple OpenMP threads (2 to

32), which are mapped on multiple cores (2 to 32) of

CPU. This method is also called twice, once in Teacher

phase and once in Learner phase. Hence, the

parallelization of this step significantly reduced the

overall time required to compare the fitness of the new

population with the old population and also optimize the

CPU utilization.

IV. TEST FUNCTION

In the field of optimization, it is a common practice to

compare different algorithms using different benchmark

problems. In this work also different benchmark

problems are considered having different characteristics

such as separability, multimodality, and regularity. If the

function has two or more local optima then it is

considered as a multimodal function. A separable

function can be written as a sum of functions of variables

separately. A function is regular if it is differentiable at

each point of its domain. It is very difficult to optimize

non-separable functions and difficulty increases if the

function is multimodal. Complexity increases when the

local optima are randomly distributed. Moreover,

complexity increases with the increase in the

dimensionality. The benchmark problems used for

experimentation are shown in table 1.

V. EXPERIMENT RESULT

To validate Parallel implementation of STLBO (i.e.

OpenMP TLBO) results are compared with the results of

sequential STLBO algorithms for different benchmark

problems existing in the literatures. Paper focuses on

showing the speedup of programming parallel algorithm.

The objective functions considered for experimentation

are to check the algorithm’s ability to find the optimal

solution.

AlgorithmTLBO

begin

g ← 0;

Initialize_Population(P, pop_size)

Evaluate(P)

{Calculate_Fitness(P)}

repeat

{Teacher Phase}

r = random(0 to 1)

TF = round(1 + r) {1 or 2}

Xmean←Calculate_Mean_Vector(P)

Xteacher ← Best_Solution(P)

Difference_Vector = r ∙ (Xteacher -

(TF ∙ Xmean))

Xnew, i = Xold,I+ Difference_Vector

Evaluate(Xnew)

{Calculate_Fitness(P)}

ifXnew, i is better than Xold, i

then

{Compare_Fitness(P)}

Xold, i ← Xnew, i

end if {End of Teacher Phase}

{Learner Phase}

ii ← random(pop_size){ii ≠ i}

if Xi better than Xii

then

Xnew, i = Xold, i + r ∙ (Xi - Xii)

else

Xnew, i = Xold, i + r ∙ (Xii - Xi)

end if

Evaluate(Xnew, i)

{Calculate_Fitness()}

ifXnew, i is better than Xold, i

then

{Compare_Fitness()}

Xold, i ← Xnew, i

end if {End of Learner Phase}

end for

g ← g + 1
until (g ≠ num_gen)

{Termination_Condition}

Print_Best_Result(P)

End

 OpenMP Teaching-Learning Based Optimization Algorithm Over Multi-Core System 61

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 07, 57-65

Table 1. List of test problems

Sr. No. Function Name Equation Range F(x) C

F1 De Jong 𝑓(𝑥) = ∑ 𝑥𝑖
2

𝑛

𝑖=1

 [-5.12,5.12] 0 US

F2
Axis Parallel

Hyper-Ellipsoid 𝑓(𝑥) = ∑ (𝑖. 𝑥𝑖
2)𝑛

𝑖=1
[-5.12,5.12] 0 US

F3
Sum of

Different Power
𝑓(𝑥) = ∑|𝑥𝑖|𝑖+1

𝑛

𝑖=1

 [-1,1] 0 US

F4 Quartic 𝑓(𝑥) = ∑ 𝑖𝑥𝑖
4 + 𝑟𝑎𝑛𝑑𝑜𝑚[0, 1)

𝑛

𝑖=1

 [-1.28, 1.28] 0 US

F5 SumSquares 𝑓(𝑥) = ∑ 𝑖𝑥𝑖
2

𝑛

𝑖=1

 [-10, 10] 0 US

F6 Zakharov 𝑓(𝑥) = ∑ 𝑥𝑖
2

𝑛

𝑖=1

+ (∑ 0.5𝑖𝑥𝑖)2

𝑛

𝑖=1

+ (∑ 0.5𝑖𝑥𝑖)4

𝑛

𝑖=1

 [-5,10] 0 UN

F7 Hper Sphere 𝑓(𝑥) = ∑ 𝑥𝑖
2

6

𝑖=1

 [-5.12, 5.12] 0 UN

F8 Rastrigin 𝑓(𝑥) = ∑[𝑥𝑖
2 − 10 𝑐𝑜𝑠(2𝜋𝑥𝑖) + 10]

𝑛

𝑖=1

 [-5.12,5.12] 0 MS

F9 Ackley 𝑓(𝑥) = −20𝑒𝑥𝑝 (−0.2√
1

𝑛
∑ 𝑥𝑖

2) − 𝑒𝑥𝑝 (
1

𝑛
∑ 𝑐𝑜𝑠 (2𝜋𝑥𝑖)) + 20 + 2.718

𝑛

𝑖=1

𝑛

𝑖=1

 [-32.768,32.768] 0 MN

F10 Griewangk 𝑓(𝑥) =
1

4000
∑ 𝑥𝑖

2 − ∏ 𝑐𝑜𝑠 (
𝑥𝑖

√𝑖
) + 1

𝑛

𝑖=1

𝑛

𝑖=1

 [-600,600] 0 MN

In the experimentation following system configuration

is used - Intel(R) Core i7-2600 CPU 3.40GHz processor

with RAM of 4.00 GB (3.16 usable) (8-cores). Results

are taken for 1-core STLBO, 2-cores OpenMP TLBO, 4-

cores OpenMP TLBO and 8-cores OpenMP TLBO on the

above system by setting a task set which assigns a

particular CPU cores to process or programs. To take the

results of OpenMP TLBO on 16-cores and 32-cores, 8

socket Quad Core AMD Opteron™ Processor (Model

8378, 2.4 GHz, 75W ACP), RAM 24 GB is used.

In the experimentation, values of Pn and Dn are taken

very large i.e. Pn = 1000 and Dn = 5000, and OSF is

taken as a criterion for terminating the execution of the

algorithm. In case of OSF, an algorithm is considered to

be successful if the difference between the optimum

solution found by the algorithm and the global optimum

value is less than 0.001.

A. Convergence of Proposed OpenMP TLBO Algorithms

Programming parallelization of algorithm ensure that

the solution achieved should be similar in quality in

compassion serial implementation. Table 2 demonstrates

the ability of the proposed algorithm to find the optimal

solution on 2, 4, 8, 16 and 32 cores. Population size and

dimensions are set to 1000 and 200 respectively.

OpenMP TLBO algorithm converges early and produces

the same and better OSF than STLBO algorithm.

Table 2. Optimum Solution Found (OSF) on OpenMP TLBO algorithm

Function
STLBO OSF in OpenMP TLBO Cores

OSF 2 4 8 16 32

F1 0.0008 0.0007 0.0008 0.0008 0.0008 0.0008

F2 0.0008 0.0008 0.0009 0.0008 0.0008 0.0007

F3 0.0006 0.0006 0.0005 0.0006 0.0005 0.0004

F4 0.0008 0.0007 0.0008 0.0008 0.0008 0.0008

F5 0.0008 0.0007 0.0007 0.0008 0.0008 0.0008

F6 0.0008 0.0007 0.0008 0.0008 0.0007 0.0009

F7 0.0008 0.0008 0.0007 0.0008 0.0008 0.0009

F8 0.0009 0.0008 0.0008 0.0008 0.0009 0.0008

F9 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009

F10 0.0008 0.0008 0.0009 0.0008 0.0008 0.0008

62 OpenMP Teaching-Learning Based Optimization Algorithm Over Multi-Core System

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 07, 57-65

B. Effect of Number of Cores

Execution times of OpenMP TLBO on 2 to 32 cores

demonstrate the speedup achieved. The speedup value is

calculated by dividing the overall computational time of

sequential implementation STLBO by the time taken by

the parallel implementation of STLBO (i.e. OpenMP

TLBO). It is seen that, as the number of cores increases,

speedup increases. The results of speedup are shown in

table 3A and table 3B on 2 to 32 cores. Fig. 3 shows

speedup achieved for an average of all functions (F1 to

F10) on 2 to 32 cores.

Table 3A. Speed ups obtained by OpenMP TLBO algorithm on 2, 4, and 8 cores system

Function
STLBO OpenMP TLBO on 2-cores OpenMP TLBO on 4-cores OpenMP TLBO on 8-cores

Time Time Speedup Time Speedup Time Speedup

F1 20.0599 12.25039 1.637490725 6.80687 2.947007949 6.388372 3.14006448

F2 28.76988 15.71026 1.831279686 9.38783 3.064593202 8.916324 3.226652598

F3 11.317109 5.625516 2.011745945 3.288464 3.441457471 1.957506 5.78139173

F4 61.56627 29.45228 2.090373648 16.5931 3.710353701 15.70955 3.9190346

F5 30.47906 16.24502 1.876209448 9.305884 3.27524607 8.906804 3.421997385

F6 29.30387 15.63251 1.874546698 9.050192 3.237927991 9.121547 3.212598696

F7 19.76654 10.8366 1.82405367 6.653588 2.970809133 5.648631 3.499350551

F8 49.36975 26.42954 1.867976136 14.81388 3.332668416 11.52902 4.282215661

F9 48.05734 25.6792 1.871450045 14.3507 3.348780199 10.58446 4.540367671

F10 53.6774 29.20771 1.837781873 15.82984 3.390899719 11.83986 4.533617796

Table 3B. Speed ups obtained by OpenMP TLBO algorithm on 16 and 32 cores system

Function
OpenMP TLBO on 16-cores OpenMP TLBO on 32-cores

Time Speedup Time Speedup

F1 5.077111 3.951046176 4.406814 4.55201876

F2 6.983889 4.119464098 6.178805 4.656220742

F3 1.619893 6.986331196 1.392834 8.125238901

F4 13.5134 4.55594225 11.22061 5.486891533

F5 7.308339 4.170449674 5.678492 5.367456712

F6 6.979426 4.19860745 5.337963 5.489710213

F7 4.948327 3.994590495 3.862162 5.117998675

F8 8.550941 5.773604332 6.048994 8.161646383

F9 8.618475 5.576083936 6.007755 7.999217678

F10 8.781576 6.112501902 6.028889 8.903365114

Fig. 3. Speedup versus number of cores

C. Optimum Utilization of Computing Resource

Fig. 4 shows the utilization of multi-core system by

STLBO algorithm. Fig. 5 shows the utilization of multi-

core system by OpenMP TLBO. These results show the

significant speedup, optimum utilization of multi-core

systems.

Fig. 4. Utilization of multi-core (8-cores) system by STLBO algorithm

0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00

S
p

ee
d

 U
p

Number of Cores

Speed Up

 OpenMP Teaching-Learning Based Optimization Algorithm Over Multi-Core System 63

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 07, 57-65

Fig. 5. Utilization of multi-core (8-cores) system by OpenMP TLBO

algorithm

D. Effect of Problem and EA Parameters

Apply parallel implementation (OpenMP TLBO) to all

the test problems shown in Table 1 for studying the effect

of the following properties on the speedup of the

algorithm:

1) Number of design variables

2) Population size

3) Problem complexity

This experimentation is taken on Intel Core i7-2600

CPU (8-cores CPU system). Each run is terminated after

the OSF and normalized over 10 runs.

Table 4 show the results experimentation for speedup

and CPU utilization on 8-core system for dimension 200.

It shows that minimum speedup is 2.97 and maximum

speedup is 4.67. CPU utilization increases up to 93%

using OpenMP TLBO algorithm as compare to STLBO.

Table 5 show the results experimentation for speedup and

CPU utilization on 8-core system for dimension 2000. It

shows that minimum speedup is 3.38 and maximum

speedup is 5.21. CPU utilization increases up to 93%

using OpenMP TLBO algorithm as compare to STLBO.

Table 4. Performance of STLBO and OpenMP TLBO on 8-cores system for Pn=1000 and Dn=200.

Type
STLBO

Time

OpenMP

TLBO Time
Speedup Efficiency

STLBO CPU

Utilization

OpenMP TLBO

CPU Utilization

F1 0.5943917 0.1999474 2.972740331 37.15925413 22.11 89.88

F2 0.7966197 0.2425574 3.284252305 41.05315381 23.01 92.11

F3 0.10658835 0.03465242 3.07592803 38.44910038 25.1 92.33

F4 1.744723 0.5422093 3.217803531 40.22254414 24.31 92.31

F5 0.855884 0.2612472 3.276146118 40.95182647 23.74 90.11

F6 0.7974406 0.2474692 3.22238323 40.27979037 26.54 93.21

F7 0.586408 0.1817133 3.227105556 40.33881945 23.54 93.24

F8 1.870083 0.4234461 4.416342481 55.20428102 28.47 90.12

F9 1.872172 0.4246587 4.408650994 55.10813743 24.56 90.21

F10 1.937671 0.414895 4.670268381 58.37835476 24.65 90.12

Table 5. Performance of STLBO and OpenMP TLBO on 8-cores system for Pn=1000 and Dn=2000.

Type
TLBO

Time

OpenMP

TLBO Time
Speedup Efficiency

TLBO CPU

Utilization

OpenMP TLBO

CPU Utilization

F1 7.389233 2.182785 3.385231711 42.31539639 21.32 89.98

F2 10.71307 3.246257 3.300129965 41.25162456 29.54 91.24

F3 2.911842 0.5580366 5.218012582 65.22515727 24.51 89.62

F4 19.90186 6.123099 3.25029205 40.62865062 23.54 93.24

F5 11.27272 3.225995 3.494338956 43.67923695 24.56 90.21

F6 10.695324 3.287837 3.252997031 40.66246289 23.66 91.27

F7 7.442053 2.217287 3.356377862 41.95472327 28.87 92.22

F8 19.44875 4.591783 4.235555121 52.94443901 26.44 92.22

F9 19.07972 4.297528 4.439696495 55.49620619 20.12 90.11

F10 21.24441 4.552396 4.666643675 58.33304594 22.11 89.88

Results clearly indicate that for larger population size

and design variables size, the use of OpenMP

implementations of existing STLBO on a multi-core

platform is beneficial.

Efficiency of the proposed algorithm is calculated

using (1).

Efficiency = (Speedup / Number of cores)*100 (1)

VI. CONCLUSION

This paper experimented the programming parallel

TLBO(OpenMP TLBO) on multi-core system for

unconstrained optimization.

OpenMP TLBO is successful in utilizing all the cores

of multicore system than the STLBO. For all function the

OpenMP TLBO gives remarkable speedup over STLBO.

64 OpenMP Teaching-Learning Based Optimization Algorithm Over Multi-Core System

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 07, 57-65

The maximum utilization of multicore system helps

OpenMP TLBO to converge early.

Results show that, the OpenMP TLBO gives linear

speedup and optimizes the CPU utilization against the

sequential implementation of TLBO (STLBO).

In future scope, researchers can experiment the

proposed OpenMP TLBO on CEC 2013 function bed.

Further constrained optimization test bed could be also

experimented.

ACKNOWLEDGEMENT

The authors are thankful to the anonymous reviewers

as well as the editors for their valuable comments and

suggestions which have led to improve the quality of the

paper. Our special thanks to Dr. R. V. Rao for their work

on Teaching Learning Based Optimization Algorithm

published in various journals and conferences.

REFERENCES

[1] J. Holland, Adaptation in Natural and Artificial Systems,

University of Michigan Press, Ann Arbor, 1975.

[2] J. Farmer, et al., “The immune system, adaptation and

machine learning,” Physica D, vol. 2, pp.187–204, 1986.

DOI: 10.1016/0167-2789(81)90072-5

[3] M. Dorigo, “Optimization, Learning and Natural

Algorithms”, Ph.D. thesis, Politecnico di Milano, Italy,

1992.

[4] J. Kennedy and R. Eberhart, “Particle swarm optimization,”

Proceedings of IEEE International Conference on Neural

Networks, Piscataway, NJ, vol. 4, pp. 1942–1948, 1995.

DOI: 10.1109/ICNN.1995.488968

[5] E. Mezura-Montes, et al., “Differential evolution in

constrained numerical optimization: an empirical study,”

Information Sciences, vol. 180 pp. 4223–4262, 2010. DOI:

10.1016/j.ins.2010.07.023

[6] R. Storn and K. Price, “Differential evolution – a simple

and efficient heuristic for global optimization over

continuous spaces,” Journal of Global Optimization, vol.

11 pp. 341–359, 1997. DOI: 10.1023/A:1008202821328

[7] Z. Geem, et al., “A new heuristic optimization algorithm:

harmony search,” Simulation, vol. 76, pp. 60–70, 2001.

DOI: 10.1177/003754970107600201

[8] K. Passino, “Biomimicry of bacterial foraging for

distributed optimization and control,” IEEE Control

Systems Magazine, vol. 22 pp. 52–67, 2002, DOI:

10.1109/MCS.2002.1004010

[9] M. Eusuff and E. Lansey, “Optimization of water

distribution network design using the shuffled frog leaping

algorithm,” Journal of Water Resources Planning and

Management, ASCE, vol. 129 pp. 210–225, 2003, [Online].

Available: DOI: http://dx.doi.org/10.1061/(ASCE)0733-

9496(2003)129:3(210)

[10] B. Akay and D. Karaboga, “A modified artificial bee

colony (ABC) algorithm for constrained optimization

problems,” Applied Soft Computing, vol.11, pp.3021-3031,

2011. DOI: 10.1016/j.asoc.2010.12.001

[11] D. Karaboga, “An Idea Based on Honey Bee Swarm for

Numerical Optimization,” Technical REPORT-TR06,

Erciyes University, Engineering Faculty, Computer

Engineering Department, 2005

[12] D. Simon, “Biogeography-based optimization,” IEEE

Transactions on Evolutionary Computation, vol. 12 pp.

702–713, 2008. DOI: 10.1109/TEVC.2008.919004

[13] E. Rashedi, et al, “GSA: a gravitational search algorithm,”

Information Sciences, vol. 179, pp. 2232–2248, 2009. DOI:

10.1016/j.ins.2009.03.004

[14] A. Ahrari and A. Atai, “Grenade explosion method – a

novel tool for optimization of multimodal functions,”

Applied Soft Computing, vol. 10, pp. 1132–1140, 2010.

DOI: 10.1016/j.asoc.2009.11.032

[15] R. Benabid, et al, “Application of Firefly Algorithm for

Optimal Directional Overcurrent Relays Coordination in

the Presence of IFCL,” International Journal of Intelligent

Systems and Applications, Vol. 6, pp.44-53, 2014. DOI:

10.5815/ijisa.2014.02.06

[16] I. Fister, “A comprehensive review of firefly algorithms,”

Swarm and Evolutionary Computation, Vol. 13, pp. 34-46.

DOI: 10.1016/j.swevo.2013.06.001

[17] R. V. Rao, et al, “Teaching–learning-based optimization:

an optimization method for continuous non-linear large

scale problems,” Information Sciences, vol. 183 pp. 1–15,

2012. DOI: 10.1016/j.ins.2011.08.006

[18] Suleman A. “What makes parallel programming hard,”

http://www.futurechips.org/tips-for-power-coders/parallel

programming.html, 20 may 2011.

[19] http://openmp.org/wp/about-openmp/

[20] R.V Rao, et al, “Teaching–learning-based optimization: A

novel method for constrained mechanical design

optimization problems,” Computer-Aided Design, vol. 43,

pp. 303–315, 2011 DOI: 10.1016/j.cad.2010.12.015

[21] Cˇ repinšek M, et al, “A note on teaching–learning-based

optimization algorithm,” Information Sciences, vol 212, pp.

79–93, 2012. DOI: 10.1016/j.ins.2012.05.009

[22] G. Wadhmare, “Comments on A note on teaching-

learning-based optimization algorithm,” Information

Sciences, vol. 229, pp. 159–169, 2013. DOI:

10.1016/j.ins.2012.11.009

[23] K.R. Krishnanand, et al, “Application of Multi-Objective

Teaching-Learning-Based Algorithm to an Economic Load

Dispatch Problem with Incommensurable Objectives,”

SEMCCO, LNCS, vol. 7076, pp. 697-705, 2011. DOI:

10.1007/978-3-642-27172-4_82.

[24] R.V. Rao and V. Patel, “Multi-objective optimization of

combined Brayton and inverse Brayton cycles using

advanced optimization algorithms,” Engineering

Optimization, Vol. 44, pp. 965-983, 2012. DOI:

10.1080/0305215X.2011.624183.

[25] R.V. Rao, et al, “Teaching–learning-based optimization: A

novel method for constrained mechanical design

optimization problems,” Computer-Aided Design, vol. 43,

pp. 303–315, 2011. DOI: 10.1016/j.cad.2010.12.015

[26] D.L. González-Álvarez, et al, “Multiobjective Teaching-

Learning Based Optimization (MO-TLBO) for Motif

Finding,” 13th IEEE International Symposium on

Computational Intelligence and Informatics, vol. 68, pp.

141-146, 2012. DOI: 10.1109/CINTI.2012.6496749

[27] R.V. Rao and V. Patel, “An elitist teaching–learning-based

optimization algorithm for solving complex constrained

optimization problems,” International Journal of Industrial

Engineering Computations 3, pp. 535–560, 2012. DOI:

10.5267/j.ijiec.2012.03.007

[28] R.V. Rao and V. Patel, “Comparative performance of an

elitist teaching-learning-based optimization algorithm for

solving unconstrained optimization problems,”

International Journal of Industrial Engineering

Computations, vol. 4, pp. 29-50, 2013. DOI:

10.5267/j.ijiec.2012.09.001

http://dx.doi.org/10.1109/MCS.2002.1004010
http://dx.doi.org/10.1109/TEVC.2008.919004
http://dx.doi.org/10.1016/j.swevo.2013.06.001
http://www.futurechips.org/tips-for-power-coders/parallel
http://openmp.org/wp/about-openmp/
http://www.tandfonline.com/loi/geno20?open=44#vol_44

 OpenMP Teaching-Learning Based Optimization Algorithm Over Multi-Core System 65

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 07, 57-65

[29] R.V. Rao and V.D. Kalyankar, “Multi-objective multi-

parameter optimization of the industrial LBW process

using a new optimization algorithm,” Proceedings of the

Institution of Mechanical Engineer sPart B: Journal of

Engineering Manufacture, vol 226, pp. 1018-1025, 2012.

DOI: 10.1177/0954405411435865.

[30] A. Rajasekhar, et al, “Elitist Teaching Learning Opposition

based Algorithm for Global Optimization,” IEEE

International Conference on Systems, Man, and

Cybernetics, pp. 1124-1129, 2012. DOI:

10.1109/ICSMC.2012.6377882

[31] R.V. Rao and V. Patel, “Multi-objective optimization of

heat exchangers using a modified teaching-learning-based

optimization algorithm,” Applied Mathematical Modeling,

vol. 37, pp. 1147-1162, 2013. DOI:

10.1016/j.apm.2012.03.043

[32] P.J Pawar and R.V. Rao, “Parameter optimization of

machining processes using teaching–learning-based

optimization algorithm,” The International Journal of

Advanced Manufacturing Technology, Springer-Verlag,

vol. 67, pp.995-1006, 2013. DOI: 10.1007/s00170-012-

4524-2

[33] R.V. Rao and V.D. Kalyankar, Parameters optimization of

advanced machining processes using TLBO algorithm, The

International Journal of Advanced Manufacturing

Technology 67 (5-8) July 2013, 995-1006. [Online].

http://dx.doi.org/10.1007/s00170-013-4961-6.

[34] R.V. Rao, et al, “Teaching–learning-based optimization

algorithm for unconstrained and constrained real-parameter

optimization problems,” Engineering Optimization, vol. 44,

pp. 1-16, 2012. DOI: 10.1080/0305215X.2011.652103

[35] T. Niknam, et al, “θ-Multiobjective Teaching–Learning-

Based Optimization for Dynamic Economic Emission

Dispatch,” IEEE Systems Journal, vol. 6, pp. 341-352.

2012 DOI: 10.1109/JSYST.2012.2183276

Authors’ Profiles

A. J. Umbarkar is presently working as

an Assistant Professor in Information

Technology at Walchand College of

Engineering, Sangli, MS, India. He has

received his Bachelor of Engineering

(BE) in Computer Engineering from

PICT, Pune, MS, India and his Master of

Engineering (ME) from Computer

Science and Engineering (CSE) from Walchand College of

Engineering, Sangli, MS, India.

He has 12 years of teaching experience at UG and 6 years at

PG. His research interests include Parallel Genetic Algorithms,

Parallel Evolutionary Algorithms and Parallel programming. He

has published about 16 research papers in Conferences and

Journals.

N.M.Rothe is presently working as

Software Engineer in TCS. He has

completed his B.Tech in Computer

Engineering from Government College of

Engineering, Amravati, MS, India and his

M.Tech from Computer Science and

Engineering (CSE) from Walchand College

of Engineering, Sangli, MS, India.

A.S.Sathe has completed Bachelor of

Engineering (BE) from Pune Vidyarthi

Grihas COET-Pune, MS, India. He has

Industrial Experience of 6 months. He is

currently Pursuing M.Tech in Information

Technology at Walchand College of

Engineering, Sangli, MS, India.

How to cite this paper: A. J. Umbarkar, N. M. Rothe, A.S.

Sathe,"OpenMP Teaching-Learning Based Optimization

Algorithm over Multi-Core System", International Journal of

Intelligent Systems and Applications (IJISA), vol.7, no.7,

pp.57-65, 2015. DOI: 10.5815/ijisa.2015.07.08

http://dx.doi.org/10.1007/s00170-013-4961-6
http://dx.doi.org/10.1109/JSYST.2012.2183276

