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Abstract— The problem with metaheuristics, including 

Teaching-Learning-Based Optimization (TLBO) is that, it 

increases in the number of dimensions (D) leads to increase in 

the  search space which increases the amount of time required to 

find an optimal solution (delay in convergence). Nowadays, 

multi-core systems are getting cheaper and more common. To 

solve the above large dimensionality problem, implementation 

of TLBO on a multi-core system using OpenMP API’s with 

C/C++ is proposed in this paper. The functionality of a multi-

core system is exploited using OpenMP which maximizes the 

CPU (Central Processing Unit) utilization, which was not 

considered till now. The experimental results are compared with 

a sequential implementation of Simple TLBO (STLBO) with 

Parallel implementation of STLBO i.e. OpenMP TLBO, on the 

basis of total run time for standard benchmark problems by 

studying the effect of parameters, viz. population size, number 

of cores, dimension size, and problems of differing complexities. 

Linear speedup is observed by proposed OpenMP TLBO 

implementation over STLBO. 

 

Index Terms— Metaheuristic, Open Multiprocessing 

(OpenMP), Teaching-Learning-Based Optimization (TLBO), 

Unconstrained Function Optimization, Multicore. 

 

I. INTRODUCTION 

Optimization, in simple terms, means minimize the 

cost incurred and maximize the profit such as resource 

utilization. EAs are population based metaheuristic 

(means optimize problem by iteratively trying to improve 

the solution with regards to the  given measure of quality) 

optimization algorithms that often perform well on 

approximating solutions to all types of problem because 

they do not make any assumptions about the underlying 

evaluation of the fitness function. There are many EAs 

available viz. Genetic Algorithm (GA) [1] , Artificial 

Immune Algorithm (AIA) [2], Ant Colony Optimization 

(ACO) [3], Particle Swarm Optimization (PSO) [4], 

Differential Evolution (DE) [5], [6], Harmony Search 

(HS) [7], Bacteria Foraging Optimization (BFO) [8], 

Shuffled Frog Leaping (SFL) [9], Artificial Bee Colony 

(ABC) [10, 11], Biogeography-Based Optimization (BBO) 

[12], Gravitational Search Algorithm (GSA) [13], 

Grenade Explosion Method (GEM) [14] Firefly (FF) [15], 

[16] etc. To use any EA, a model of decision problem 

need to be built that specifies the decision variables, 

objective and constraints. These 3 parameters are 

necessary while building an optimization model. The 

solver will find values for the decision variables that 

satisfy the constraints while optimizing (maximizing or 

minimizing) the objective. But the problem with all the 

above EAs is that, to get an optimal solution, besides the 

necessary parameters. Various algorithms are parameter 

specific and that parameters need to be handled 

separately.  For example, in case of GA, adjustment of 

the algorithm-specific parameters such as crossover rate, 

mutation rate, crossover type, type of encoding etc. 

affects the optimal solution obtained. Thus, in all the 

above EAs, selection of algorithm-specific parameter’s 

value affects the optimal solution obtained. But in TLBO, 

there are no algorithm-specific parameters. 

TLBO has been an efficient metaheuristic technique 

recently developed, for solving optimization problems 

with less computational effort and high consistency. Its 

advantage over other EAs is that, it has no algorithm-

specific parameter (parameter less). The TLBO algorithm, 

which was proposed by Rao (2011), is actually based on 

the philosophy of teaching and learning. In a classroom, 

the teacher is considered as a highly learned person who 

tries to improve the outcome of learners by sharing 

his/her knowledge with them. It is called the Teacher 

phase of TLBO. Also, learners share and learn from the 

interaction among them, which help to improve their 

outcome. It is referred to as the Learner phase of TLBO 

[17]. In the entire process, TLBO tries to shift mean 

towards best. 

Nowadays, multi-core CPUs (Central Processing Unit) 

are getting more and more common and cheaper. One 

cannot ignore their importance anymore. With the recent 

advancement of multi-core system, researchers have been 

modifying EAs for parallel implementation on a multi-

core system.  The multi-core systems can run multiple 
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instructions simultaneously on multiple cores; it increases 

overall speed for programs [18]. 

While using multi-core system, the improvement in 

performance depends upon the algorithms used and their 

implementation. In particular, possible benefits depend 

upon (or limited by) the fraction of the algorithm that can 

be managed in parallel on multiple cores simultaneously; 

this issue is explained in Amdahl's law. The problems 

which are embarrassingly parallel may realize speedup 

factors near to the number of cores. Even more speedup 

factors can be realized by splitting up the problem so that 

it can fit within the cache of each core(s), thereby 

avoiding use of much slower main memory of the system. 

In order to accelerate performance of application, 

programmers have to work more on re-factoring the 

whole problem. The parallelization of algorithms on a 

multi-core the system is a significant ongoing topic of 

research. 

Recent advancement in High Performance Computing 

(HPC) have seen the usage of many cores of multi-core 

system (viz. i3, i5, i7 etc.) for solving computationally 

intensive task parallelly. OpenMP is an API for writing 

shared-memory parallel applications in C, C++, and 

FORTRAN. With the release of API specifications (in 

1997) by the OpenMP Architecture Review Board (ARB), 

use of CPU’s computational power (in particular, 

multiple cores of multi-core CPU) for parallel computing 

has become easy [19]. OpenMP is ideally suited for 

multi-core architectures hence it allows programs to be 

parallelized incrementally with little programming efforts. 

The designers of OpenMP developed a set of compiler 

pragmas, directives, and environment variables, function 

calls which are platform-independent. In application 

exactly where and how to insert threads are explicitly 

instructed by these constructs. Most of the loops can be 

parallelized just by adding #pragma_omp_parallel_for 

before the ‘for loop’ construct in C. The main tasks while 

using OpenMP are 1) to determine which loops should be 

threaded and 2) to restructure the algorithms for 

maximum performance. The OpenMP provides 

maximum performance, if it is applied to threads in the 

application which are most time-consuming loops.  

Thus, if the bottlenecks in the algorithm are identified 

and modified suitably, using OpenMP, one can easily 

exploit the functionality of multi-core system and can 

maximize the utilization of all the cores of multi-core 

system which is necessary from the optimization point of 

view (for example, maximize the resource utilization). 

This paper contributes towards this direction and 

undertakes a detailed study by investigating the effect of 

number of cores, dimension size, population size, and 

problem complexity on the speedup of TLBO algorithm. 

In the remainder of this paper, we give a brief literature 

review of TLBO and its applications. Thereafter, we 

discuss the possibilities of tweaking a TLBO to make it 

suitable for parallel implementation on a multi-core 

system. Then, we present results on a few test problems 

of different complexities and show appreciable speed-ups 

using our proposed algorithm. 

 

II. LITERATURE REVIEW 

TLBO is very effective than other metaheuristics 

because of its characteristics viz. parameter less, high 

consistency, and less computation effort. It outperforms 

some of the well-known metaheuristics regarding 

constrained benchmark functions, constrained mechanical 

design [20], and continuous non-linear numerical 

optimization problems [17], it is being used by various 

researchers as a replacement for the other EAs available. 

Such a breakthrough has steered Cˇrepinšek et al. [21] 

towards investigating the secrets of TLBO’s dominance. 

They investigated some mistakes regarding TLBO 

through code-reviews and experiments respectively. 

However, Waghmare in [22] commented on the work of 

Cˇrepinšek et al. He not only addressed the queries raised 

by Cˇrepinšek et al. but also re-examined the 

experimental results, which demonstrates that the TLBO 

algorithm performs well on the problems where the 

fitness-distance correlations are low by proper tuning of 

the common control parameters of the algorithm, and 

corrected the understanding about the TLBO algorithm in 

an objective manner. TLBO has been used by number of 

researchers to solve their problems and found it effective 

than other Metaheuristic.  Krishnanand et al. in [23] have 

applied a multi-objective TLBO algorithm with non-

domination based sorting to solve the environmental or 

economic dispatch (EED) problem containing the 

incommensurable objectives of best economic dispatch 

and least emission dispatch. Rao and Patel in [24] 

explored the use of TLBO and ABC algorithms for 

determining the optimum operating conditions of 

combined Brayton and inverse Brayton cycles. Rao et al. 

in [25] proposed the optimization of mechanical design 

problems using TLBO and tested it on five different 

constrained benchmark test functions with different 

characteristics, four different benchmark mechanical 

design problems and six mechanical design optimization 

problems. González-Álvarez et al. in [26] proposed 

Multi-objective TLBO (MO-TLBO) for solving Motif 

Discovery Problem (MDP) and solved a set of twelve 

biological instances belonging to different organisms. 

Rao and Patel introduced and investigated the effect of 

elitism on the performance of TLBO algorithm while 

solving complex constrained optimization problems [27] 

and unconstrained benchmark problems [28]. Population 

size and Number of generation, these parameter affects 

the performance of TLBO are also investigated. Rao and 

Kalyankar in [29] made an attempt to achieve conflicting 

objectives by finding optimum parameter settings for the 

LBW process by applying TLBO for parameter 

optimization of the LBW process. Rajasekhar et al. in [30] 

proposed a new variant of TLBO, termed as Elitist 

Teaching-Learning Opposition based (ETLOBA) 

Algorithm for numerical function optimization, which is 

empowered with two mechanisms, one is elitism and 

second is Opposition method (helps to improve the 

capability of searching), to reach the accurate global 

optimum with less time complexity. Rao and Patel in [31] 

introduced a modified version of the TLBO algorithm 

and applied the same for the multi-objective optimization 
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of heat exchangers. Pawar and Rao in [32] presented 

TLBO to find the optimal combination of process 

parameters of the abrasive water jet, grinding and milling 

machining processes. Rao and Kalyankar in [33] applied 

TLBO for the process parameter optimization of 

electrochemical machining (ECM) process and 

electrochemical discharge machining (ECDM) process. 

Rao et al. in [34] proposed TLBO to solve continuous 

unconstrained and constrained optimization problems. 

Niknam et al. in [35] proposed a θ-multi-objective-TLBO 

algorithm to solve the dynamic economic emission 

dispatch problem. 

 

III. ALGORITHM 

Most of the times TLBO uses only single core of 

multi-core system thereby leaving other cores idle. One 

of the goals of optimization is to maximize the profit such 

as resource utilization, so it’s necessary to make 

algorithm parallel either by design or programming way, 

which exploits all the cores of multi-core system and 

maximize the CPU utilization.  OpenMP maps threads 

onto physical cores of CPU, hence all the OpenMP 

threads run in parallel and provide more optimal solution 

in less amount of time thereby providing speedup 

compare to Simple TLBO (STLBO). The basic TLBO 

algorithm can be stated as in fig. 1. 

 

Fig. 1. Pseudo code of TLBO 

 

The OpenMP algorithm exactly emulates the 

sequential algorithm where calculation of Fitness, 

calculation of mean, calculation of best, and comparison 

of fitness function remains same whereas small changes 

are introduced to achieve better result/performance. 

 In the following subsections, how the different 

functions of TLBO work, how we have parallelized them, 

and discuss the intricacies involved in are mentioned in 

the paper. 

A.  Initialize_Population 

This method reads the basic TLBO parameters, 

including population and generation sizes, types of 

decision variables and their lower and upper limits. This 

remains unchanged in the parallel algorithm. Thus, this 

method generates an initial population (set of possible 

candidate solutions) randomly by taking population size, 

number of decision variables, and upper & lower limit of 

decision variables into consideration. This population 

generated serves as an input to Teacher-Phase of TLBO 

algorithm. 

B.  Calculate_Fitness 

This method evaluates fitness of each individual of 

population using the defined objective function, which 

indicates how much each variable contributes to the value 

to be optimized (either maximize or minimize) in the 

problem. The fitness evaluation of each individual is 

independent step; an OpenMP parallel pragma is used to 

create multiple threads, ranging from 2 to 32, to evaluate 

each individual’s fitness separately and are mapped onto 

corresponding numbers of physical cores (e.g. 2 threads 

are mapped onto 2 physical cores. Similarly, 4, 8, 16 and 

32 threads are mapped onto 4, 8, 16 and 32 physical cores 

respectively). It is possible to map more than one thread 

on a core but in practice it is best to have one-to-one 

mapping. In this way, this step is parallelized and reduced 

the overall time required to evaluate the fitness of all 

individuals of the population and also maximized the 

CPU utilization (by utilizing all the cores of the CPU). 

This method is called twice, once in Teacher phase and 

once in Learner phase (in case of elitist TLBO it is called 

more than twice), parallelization of this method helps 

significantly in reducing the amount of time required for 

total execution. 

C.  Calculate_Mean_Vector 

This method calculates the mean of each decision 

variable in the population. This method is parallelized by 

creating multiple OpenMP threads (2 to 32) which are 

deployed over the multiple cores (2 to 32) of CPU (one-

to-one mapping). Thus by calculating means of each 

decision variable simultaneously, the amount of time 

required to calculate mean of all decision variables is 

reduced and this simultaneous execution maximizes the 

CPU utilization as well. 

D.  Best_Solution 

This method finds the best solution from the 

population based on its fitness value. An individual 

candidate solution having optimum fitness value (either 

minimum or maximum, as per the requirement) is termed 

as Best_Solution (or Teacher) and is selected to calculate 

new population in Teacher-phase. The simple logic 

applied for this method is in fig. 2. 

To parallelize this method, REDUCTION (Min or Max) 

pragma of OpenMP can be used, but it is found that, the 

use of REDUCTION pragma deteriorates the 

performance of this method, because to select the 

Best_Solution, first, we need to find the optimal fitness 

value and its index and based on that index the candidate 

solution from the population is selected. This calculation 

of index adds overhead which deteriorates the 

performance. So, above simple logic is applied to avoid 

the reduction in performance.  

 

 

 

begin 

Best = pop[1] {optimal} 

Index = 1 

for(i= 2 to pop_size) 

if Fitness(pop[i]) is better 

than Fitness(pop[1]) 

Best = pop[i] 

Index = i 

endif 

end for 

Best_Solution = pop[Index] 

end 
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Fig. 2. Pseudo code of Best Solution 

 

E.  Create_New_Population 

Based on the values of Mean, Best_Solution, r and TF 

(r and TF are randomly generated), a Difference_vector is 

calculated and added to each individual solution of the 

old population to get the new population. This addition of 

Difference_Vector to each individual is an independent 

step; an OpenMP parallel pragma is used to create 

multiple threads (2 to 32) for performing the addition 

separately and are mapped onto multiple physical cores 

(2 to 32). Thus, by adding the Difference_Vector to each 

candidate solution simultaneously, the amount of time 

required to create new population is decreased 

significantly and this simultaneous creation maximizes 

the CPU utilization. After this, the fitness value of the 

new population is evaluated. 

F. Compare_Fitness 

This method compares the fitness of newly calculated 

population with the fitness of the old population. The 

fitness of each candidate solution of the new population is 

compared with the fitness of the corresponding candidate 

solution of the old population and the one with the best 

fitness value is selected (survival of the fittest). This one-

to-one comparison is also an independent step and thus, 

parallelized by creating multiple OpenMP threads (2 to 

32), which are mapped on multiple cores (2 to 32) of 

CPU. This method is also called twice, once in Teacher 

phase and once in Learner phase. Hence, the 

parallelization of this step significantly reduced the 

overall time required to compare the fitness of the new 

population with the old population and also optimize the 

CPU utilization. 

 

IV. TEST FUNCTION 

In the field of optimization, it is a common practice to 

compare different algorithms using different benchmark 

problems. In this work also different benchmark 

problems are considered having different characteristics 

such as separability, multimodality, and regularity. If the 

function has two or more local optima then it is 

considered as a multimodal function. A separable 

function can be written as a sum of functions of variables 

separately. A function is regular if it is differentiable at 

each point of its domain. It is very difficult to optimize 

non-separable functions and difficulty increases if the 

function is multimodal. Complexity increases when the 

local optima are randomly distributed. Moreover, 

complexity increases with the increase in the 

dimensionality. The benchmark problems used for 

experimentation are shown in table 1. 

 

V. EXPERIMENT RESULT 

To validate Parallel implementation of STLBO (i.e. 

OpenMP TLBO) results are compared with the results of 

sequential STLBO algorithms for different benchmark 

problems existing in the literatures. Paper focuses on 

showing the speedup of programming parallel algorithm. 

The objective functions considered for experimentation 

are to check the algorithm’s ability to find the optimal 

solution. 

 

AlgorithmTLBO 

begin 

g ← 0; 

Initialize_Population(P, pop_size) 

Evaluate(P) 

{Calculate_Fitness(P)} 

repeat 

{Teacher Phase} 

 

r = random(0 to 1) 

TF = round(1 + r) {1 or 2} 

 

Xmean←Calculate_Mean_Vector(P) 

Xteacher ← Best_Solution(P) 

 

Difference_Vector = r ∙ (Xteacher - 

(TF ∙ Xmean)) 

 

Xnew, i = Xold,I+ Difference_Vector 

 

Evaluate(Xnew) 

 

{Calculate_Fitness(P)} 

 

ifXnew, i is better than Xold, i 

then 

{Compare_Fitness(P)} 

Xold, i ← Xnew, i 

end if {End of Teacher Phase} 

 

{Learner Phase} 

ii ← random(pop_size){ii ≠ i} 

if Xi better than Xii 

then 

 

Xnew, i = Xold, i + r ∙ (Xi - Xii) 

 

else 

Xnew, i = Xold, i + r ∙ (Xii - Xi) 

end if 

Evaluate(Xnew, i) 

{Calculate_Fitness()} 

ifXnew, i is better than Xold, i 

then 

{Compare_Fitness()} 

Xold, i ← Xnew, i 

end if {End of Learner Phase} 

end for 

g ← g + 1 
until (g ≠ num_gen) 

{Termination_Condition} 

Print_Best_Result(P) 

End 
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Table 1. List of test problems 

Sr. No. Function Name Equation Range F(x) C 

F1 De Jong 𝑓(𝑥) = ∑ 𝑥𝑖
2

𝑛

𝑖=1

 [-5.12,5.12] 0 US 

F2 
Axis Parallel 

Hyper-Ellipsoid 𝑓(𝑥) = ∑ (𝑖. 𝑥𝑖
2)𝑛

𝑖=1  
[-5.12,5.12] 0 US 

F3 
Sum of  

Different Power 
𝑓(𝑥) = ∑|𝑥𝑖|𝑖+1

𝑛

𝑖=1

 [-1,1] 0 US 

F4 Quartic 𝑓(𝑥) = ∑ 𝑖𝑥𝑖
4 +   𝑟𝑎𝑛𝑑𝑜𝑚[0, 1)

𝑛

𝑖=1

 [-1.28, 1.28] 0 US 

F5 SumSquares 𝑓(𝑥) = ∑ 𝑖𝑥𝑖
2

𝑛

𝑖=1

 [-10, 10] 0 US 

F6 Zakharov 𝑓(𝑥) = ∑ 𝑥𝑖
2

𝑛

𝑖=1

+ (∑ 0.5𝑖𝑥𝑖)2

𝑛

𝑖=1

+ (∑ 0.5𝑖𝑥𝑖)4

𝑛

𝑖=1

 [-5,10] 0 UN 

F7 Hper Sphere 𝑓(𝑥) = ∑ 𝑥𝑖
2

6

𝑖=1

 [-5.12, 5.12] 0 UN 

F8 Rastrigin 𝑓(𝑥) = ∑[𝑥𝑖
2 − 10 𝑐𝑜𝑠(2𝜋𝑥𝑖) + 10]

𝑛

𝑖=1

 [-5.12,5.12] 0 MS 

F9 Ackley 𝑓(𝑥) = −20𝑒𝑥𝑝 (−0.2√
1

𝑛
∑ 𝑥𝑖

2) − 𝑒𝑥𝑝 (
1

𝑛
∑ 𝑐𝑜𝑠 (2𝜋𝑥𝑖)) + 20 + 2.718

𝑛

𝑖=1

𝑛

𝑖=1

 [-32.768,32.768] 0 MN 

F10 Griewangk 𝑓(𝑥) =
1

4000
∑ 𝑥𝑖

2 − ∏ 𝑐𝑜𝑠 (
𝑥𝑖

√𝑖
) + 1

𝑛

𝑖=1

𝑛

𝑖=1

 [-600,600] 0 MN 

 

In the experimentation following system configuration 

is used - Intel(R) Core i7-2600 CPU 3.40GHz processor 

with RAM of 4.00 GB (3.16 usable) (8-cores). Results 

are taken for 1-core STLBO, 2-cores OpenMP TLBO, 4-

cores OpenMP TLBO and 8-cores OpenMP TLBO on the 

above system by setting a task set which assigns a 

particular CPU cores to process or programs. To take the 

results of OpenMP TLBO on 16-cores and 32-cores, 8 

socket Quad Core AMD Opteron™ Processor (Model 

8378, 2.4 GHz, 75W ACP), RAM 24 GB is used. 

In the experimentation, values of Pn and Dn are taken 

very large i.e. Pn = 1000 and Dn = 5000, and OSF is 

taken as a criterion for terminating the execution of the 

algorithm. In case of OSF, an algorithm is considered to 

be successful if the difference between the optimum 

solution found by the algorithm and the global optimum 

value is less than 0.001.  

A. Convergence of Proposed OpenMP TLBO Algorithms 

Programming parallelization of algorithm ensure that 

the solution achieved should be similar in quality in 

compassion serial implementation. Table 2 demonstrates 

the ability of the proposed algorithm to find the optimal 

solution on 2, 4, 8, 16 and 32 cores. Population size and 

dimensions are set to 1000 and 200 respectively. 

OpenMP TLBO algorithm converges early and produces 

the same and better OSF than STLBO algorithm. 

 
Table 2. Optimum Solution Found (OSF) on OpenMP TLBO algorithm 

Function 
STLBO OSF in OpenMP TLBO Cores 

OSF 2 4 8 16 32 

F1 0.0008 0.0007 0.0008 0.0008 0.0008 0.0008 

F2 0.0008 0.0008 0.0009 0.0008 0.0008 0.0007 

F3 0.0006 0.0006 0.0005 0.0006 0.0005 0.0004 

F4 0.0008 0.0007 0.0008 0.0008 0.0008 0.0008 

F5 0.0008 0.0007 0.0007 0.0008 0.0008 0.0008 

F6 0.0008 0.0007 0.0008 0.0008 0.0007 0.0009 

F7 0.0008 0.0008 0.0007 0.0008 0.0008 0.0009 

F8 0.0009 0.0008 0.0008 0.0008 0.0009 0.0008 

F9 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 

F10 0.0008 0.0008 0.0009 0.0008 0.0008 0.0008 
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B. Effect of Number of Cores 

Execution times of OpenMP TLBO on 2 to 32 cores 

demonstrate the speedup achieved. The speedup value is 

calculated by dividing the overall computational time of 

sequential implementation STLBO by the time taken by 

the parallel implementation of STLBO (i.e. OpenMP 

TLBO). It is seen that, as the number of cores increases, 

speedup increases. The results of speedup are shown in 

table 3A and table 3B on 2 to 32 cores. Fig. 3 shows 

speedup achieved for an average of all functions (F1 to 

F10) on 2 to 32 cores. 

 

 
Table 3A. Speed ups obtained by OpenMP TLBO algorithm on 2, 4, and 8 cores system 

Function 
STLBO OpenMP TLBO on 2-cores OpenMP TLBO on 4-cores OpenMP TLBO on 8-cores 

Time Time Speedup Time Speedup Time Speedup 

F1 20.0599 12.25039 1.637490725 6.80687 2.947007949 6.388372 3.14006448 

F2 28.76988 15.71026 1.831279686 9.38783 3.064593202 8.916324 3.226652598 

F3 11.317109 5.625516 2.011745945 3.288464 3.441457471 1.957506 5.78139173 

F4 61.56627 29.45228 2.090373648 16.5931 3.710353701 15.70955 3.9190346 

F5 30.47906 16.24502 1.876209448 9.305884 3.27524607 8.906804 3.421997385 

F6 29.30387 15.63251 1.874546698 9.050192 3.237927991 9.121547 3.212598696 

F7 19.76654 10.8366 1.82405367 6.653588 2.970809133 5.648631 3.499350551 

F8 49.36975 26.42954 1.867976136 14.81388 3.332668416 11.52902 4.282215661 

F9 48.05734 25.6792 1.871450045 14.3507 3.348780199 10.58446 4.540367671 

F10 53.6774 29.20771 1.837781873 15.82984 3.390899719 11.83986 4.533617796 

 

Table 3B. Speed ups obtained by OpenMP TLBO algorithm on 16 and 32 cores system 

Function 
OpenMP TLBO on 16-cores OpenMP TLBO on 32-cores 

Time Speedup Time Speedup 

F1 5.077111 3.951046176 4.406814 4.55201876 

F2 6.983889 4.119464098 6.178805 4.656220742 

F3 1.619893 6.986331196 1.392834 8.125238901 

F4 13.5134 4.55594225 11.22061 5.486891533 

F5 7.308339 4.170449674 5.678492 5.367456712 

F6 6.979426 4.19860745 5.337963 5.489710213 

F7 4.948327 3.994590495 3.862162 5.117998675 

F8 8.550941 5.773604332 6.048994 8.161646383 

F9 8.618475 5.576083936 6.007755 7.999217678 

F10 8.781576 6.112501902 6.028889 8.903365114 

 
 

 

Fig. 3. Speedup versus number of cores 

 

C. Optimum Utilization of Computing Resource 

Fig. 4 shows the utilization of multi-core system by 

STLBO algorithm. Fig. 5 shows the utilization of multi-

core system by OpenMP TLBO. These results show the 

significant speedup, optimum utilization of multi-core 

systems. 

 

Fig. 4. Utilization of multi-core (8-cores) system by STLBO algorithm 
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Fig. 5. Utilization of multi-core (8-cores) system by OpenMP TLBO 

algorithm 

 

D.  Effect of Problem and EA Parameters 

Apply parallel implementation (OpenMP TLBO) to all 

the test problems shown in Table 1 for studying the effect 

of the following properties on the speedup of the 

algorithm:  

1) Number of design variables 

2) Population size 

3) Problem complexity 

This experimentation is taken on Intel Core i7-2600 

CPU (8-cores CPU system). Each run is terminated after 

the OSF and normalized over 10 runs.  

Table 4 show the results experimentation for speedup 

and CPU utilization on 8-core system for dimension 200. 

It shows that minimum speedup is 2.97 and maximum 

speedup is 4.67. CPU utilization increases up to 93% 

using OpenMP TLBO algorithm as compare to STLBO. 

Table 5 show the results experimentation for speedup and 

CPU utilization on 8-core system for dimension 2000. It 

shows that minimum speedup is 3.38 and maximum 

speedup is 5.21. CPU utilization increases up to 93% 

using OpenMP TLBO algorithm as compare to STLBO. 

 

Table 4. Performance of STLBO and OpenMP TLBO on 8-cores system for Pn=1000 and Dn=200. 

Type 
STLBO 

Time 

OpenMP 

TLBO Time 
Speedup Efficiency 

STLBO CPU 

Utilization 

OpenMP TLBO 

CPU Utilization 

F1 0.5943917 0.1999474 2.972740331 37.15925413 22.11 89.88 

F2 0.7966197 0.2425574 3.284252305 41.05315381 23.01 92.11 

F3 0.10658835 0.03465242 3.07592803 38.44910038 25.1 92.33 

F4 1.744723 0.5422093 3.217803531 40.22254414 24.31 92.31 

F5 0.855884 0.2612472 3.276146118 40.95182647 23.74 90.11 

F6 0.7974406 0.2474692 3.22238323 40.27979037 26.54 93.21 

F7 0.586408 0.1817133 3.227105556 40.33881945 23.54 93.24 

F8 1.870083 0.4234461 4.416342481 55.20428102 28.47 90.12 

F9 1.872172 0.4246587 4.408650994 55.10813743 24.56 90.21 

F10 1.937671 0.414895 4.670268381 58.37835476 24.65 90.12 

 

Table 5. Performance of STLBO and OpenMP TLBO on 8-cores system for Pn=1000 and Dn=2000. 

Type 
TLBO 

Time 

OpenMP 

TLBO Time 
Speedup Efficiency 

TLBO CPU 

Utilization 

OpenMP TLBO 

CPU Utilization 

F1 7.389233 2.182785 3.385231711 42.31539639 21.32 89.98 

F2 10.71307 3.246257 3.300129965 41.25162456 29.54 91.24 

F3 2.911842 0.5580366 5.218012582 65.22515727 24.51 89.62 

F4 19.90186 6.123099 3.25029205 40.62865062 23.54 93.24 

F5 11.27272 3.225995 3.494338956 43.67923695 24.56 90.21 

F6 10.695324 3.287837 3.252997031 40.66246289 23.66 91.27 

F7 7.442053 2.217287 3.356377862 41.95472327 28.87 92.22 

F8 19.44875 4.591783 4.235555121 52.94443901 26.44 92.22 

F9 19.07972 4.297528 4.439696495 55.49620619 20.12 90.11 

F10 21.24441 4.552396 4.666643675 58.33304594 22.11 89.88 

 

Results clearly indicate that for larger population size 

and design variables size, the use of OpenMP 

implementations of existing STLBO on a multi-core 

platform is beneficial. 

Efficiency of the proposed algorithm is calculated 

using (1). 

Efficiency = (Speedup / Number of cores)*100        (1) 

VI. CONCLUSION 

This paper experimented the programming parallel 

TLBO(OpenMP TLBO) on multi-core system for 

unconstrained optimization.  

OpenMP TLBO is successful in utilizing all the cores 

of multicore system than the STLBO. For all function the 

OpenMP TLBO gives remarkable speedup over STLBO. 
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The maximum utilization of multicore system helps 

OpenMP TLBO to converge early.  

Results show that, the OpenMP TLBO gives linear 

speedup and optimizes the CPU utilization against the 

sequential implementation of TLBO (STLBO). 

In future scope, researchers can experiment the 

proposed OpenMP TLBO on CEC 2013 function bed. 

Further constrained optimization test bed could be also 

experimented. 
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