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Abstract—In this article an investigation into search 

operations for the multip licat ive inverse in the ring of 

integers modulo m for Error Control Coding tasks and for 

data security is shown. The classificat ion of the searching 

operation of the multip licat ive inverse in the ring of 

integers modulo m is provided. The best values of 

parameters for Joye-Paillier method and Lehmer 

algorithm were also found. The improved Bradley  

modification for the extended Euclidean algorithm is also 

offered, which g ives the operating speed improvement 

for 10-15%. The integrated experimental research of 

basic classes of searching methods for multiplicative 

inverse in the ring of integers modulo m is conducted for 

the first time and the analytical formulas for these 

calculations of random access memory necessary space 

when operated at k-ary RS-algorithms and their 

modifications are shown. 

 

Index Terms—Integers modulo m, Error control coding, 

Data security, Euclidean algorithm. 

 

I.  INTRODUCTION 

Modular arithmetic is basic when realizing the 

majority of cryptographic algorithms, public -key  

algorithms in  particular. One of the most computationally  

intensive operations of modular arithmetic is searching 

for multip licat ive inverse in the ring of residues modulo 

m, where 2m   and m is integer. Th is operation is used 

in multiply ing the point of elliptic curve by the number in  

affine coordinates over the finite field GF(p), in Diffie-

Hellman  the key exchange method, RSA algorithm and 

many other algorithms which realize public -key  

cryptography methods [1-3]. Furthermore, while Error 

Control Coding of data and in some algorithms of 

pseudorandom-number generation the necessity of 

multip licat ive inverse searching also arises [4, 5]. That is 

why the task of searching and investigating the effective 

methods of finding the mult iplicative inverse in  the ring 

of residues modulo m by minimalistic criterion of 

computational and time complexity is topical. 

 

II.  CLASSIFICATION OF SEARCHING METHODS OF 

MULTIPLICATIVE INVERSE IN THE RING OF RESIDUES 

MODULO M 

The mult iplicative inverse for the integer b in modular 

arithmetic is such an integer y, for which the following 

equation is attained: 

 

 1 mod .b y m 
 

 

The condition for multip licative inverse existing is  

when  ; 1GCD b m  . If this condition is not met, then  

the multip licat ive inverse modulo m for the integer b  

does not exist [4, 6-8]. 

The searching methods of mult iplicative inverse can be 

divided into two classes: methods which are derived from 

greatest common div isor searching methods and methods 

which are based on modular exponentiation (figure 1). 
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Fig.1. Classification of searching methods of multiplicative inverse 

 

III.  SEARCHING METHODS OF MULTIPLICATIVE INVERSE 

BASED ON MODULAR EXPONENTIATION 

A. Euler, Carmichael and Arazi Methods 

According to Euler theorem, if  ; 1,GCD b m  than: 

 
   1 mod ,
m

b m


                          (1) 

 

where  m   Euler function. 

If we multiply the equation (1) by 
1b

 we will get: 

 
   11 mod .
m

b b m
                          (2) 

 

At the same time, accord ing to Carmichael function 

definit ion [9] for any ,b  which satisfies the condition

 ; 1GCD m b  , the following equation holds true: 

 
   1 mod ,
m

b m


                            (3) 

 

where  m   Carmichael function. 

From the equation (3) we will get the searching 

method of mult iplicative inverse in the ring of residues 

modulo ,m  based on Carmichael function (we will name 

it Carmichael method): 

 
   11 mod .
m

b b m
  

 
 

So, to find multip licat ive inverse we need to find the 

value of the Euler function  m  or Carmichael function 

 m  and to do the modular exponentiation. 

If modulo m  is a prime number, than  

    1m m m     and  1 2 mod .mb b m   

In case when multip licat ive inverse to m  modulo b  is  

to be found easier than mult iplicative inverse to  b  

modulo m , the Arazi formula is used [10, 11]: 

 

 
 1

1
1 mod

mod .
m m b

b m
b




  


 

 

When b  is a prime number, the Arazi formula is  

simplified in the following way: 

 

 
 2

1
1 mod

mod .

bm m b
b m

b




  


 

 

If b  and m  are composite numbers and the condition 

 ; 1,GCD m b  is met for them, then for  1 modb m
 

finding we can use the following formula: 

 

 

  1

1
1 mod

mod ,

b
m m b

b m
b

 


  

          (4) 

 

which allows to find  1 mod ,b m
 faster than formula  

(3), because the value  b  is calculated easier than 

 m  due to .b m  This method of multip licative 

inverse searching will be named the Arazi method. 

B. Joye-Paillier Method 

If m  and b  are composite numbers , then while 

searching  1 modb m  the necessity of calculating of 

Eu ler or Carmichael function appears . To avoid it Joye 

and Paillier offered [11] to find ,b b Cm    where C   

arbitrary integer constant, and b   prime number. 

Obvious is the fact that  

 

     
11 mod mod ,b m b m
 
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that’s why the transition from argument b  to argument 

b  allows to avoid the evaluation of Euler or Carmichael 

function. 

The searching of the necessary constant C  can be 

done in a number of ways . For the purpose of 

investigation, we are to analyze four algorithms when 

searching the values of constant С, where the easiest 

algorithm is to scan all the values of С beginning with 1 

until b  is prime number (we will name such an 

approach to realize the Joye-Paillier method an algorithm 

№0). 

Another approach for choosing the constant C  lies in  

the fact that initial value of constant С is taken to be 

equal to  
1 mod ,

T
b T
 

 
 where  T  is the product of 

definite set of prime numbers, and then the value of b  

increases on value of m T  until we get prime .b  We 

will name such an approach to realize the Joye-Paillier 

method an algorithm №1.  

We can expect the operating speed improving if we 

trace modulo m  to prime number m  by adding the 

value proportional to b T  and do the calculation 

according to the following formulas : 

 

 2 mod ,mu b m
 

 
 

 
 1

1
mod ,

b m u
v m b

m


  

 


              (5) 

 

 
 1

1
mod .

m b v
b m

b


  

                   (6) 

 

Formulas (5) and (6) can be combined into one: 

 

 
 1

1
mod .

m m b u
b m

b m


   


  

 

We will name such a realization of the Joye-Paillier 

method an algorithm №2. 

If modulo m  is a  very b ig number comparing to  

argument ,b  then it is suitable to do the reduction 

 modm m b   with further bringing m  to prime 

number by increasing on the value which is proportional 

to b T  and do the calculation according to the following 

formulas: 

 

 

 

2

1

mod ,

mod .

mu b m

m
m u C

b
b m

m







 
   

 




 

 

We will name such an approach to realize the Joye-

Paillier method an algorithm №3. 

Instead of integer div ision, it is recommend to perform 

all the operations modulo 2 ,
m  where m   bit length of 

number .m  While performing the operations modulo 

2
m

 the integer division boils down to division modulo  

2
m

, which is quickly performed with the help  of 

Newton’s method. 

 

IV.  SEARCHING METHODS OF MULTIPLICATIVE INVERSE 

BASED ON SEARCHING THE GCD 

It is proved that from the computational viewpoint the 

most effective methods of searching the GCD are the 

methods based on Euclidean algorithm [4, 6]. 

The idea of searching the GCD can be adapted to the 

needs for finding the multip licat ive inverse. The extended 

Euclidean algorithm is used for it, which  allows finding 

the GCD of two numbers  m and b and such coefficients  x 

and y the following equation to hold true [4, 6-7]: 

 

,x m y b d   
                           

(7) 

 

where d – is the greatest common divisor for m  and b.  

If we perform the equation (7) modulo m, that we will 

get: 

 

 mod .y b d m 
 

 

For the case 1d   we can see that element y is 

multip licat ive inverse to b modulo m. At the same time 

 ; 1GCD b m   is the necessary condition for existing 

of the multip licat ive inverse. So, we can draw the 

conclusion: if the multip licative inverse exists , it can be 

always found with the help of extended Euclidean 

algorithm for GCD search. 

When developing the extended Euclidean algorithm 

for GCD search it is necessary to keep the performance 

of two equations: 

 

;u A m B b                               (8) 

 

,v C m D b                              (9) 

 

Furthermore, at the beginning of algorithm u m ,

v b .  

To provide the execution of equations  (8) and (9) you 

need to define 1,A  0,B  0,C  D 1  at the 

beginning of algorithm. The values u and v in the process 

of the algorithm change in the same way as in the process 

of the Euclidean algorithm for searching the greatest 

common div isor. The value of A , B, C and D changes to 

exactly maintain the execution of equations  (8) and (9). 

The methods based on searching the greatest common 

divisor can be divided into two subclasses:  

 

1) methods based on Euclidean algorithm;  

2) methods based on binary Euclidean algorithm. 
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A. The Extended Euclidean Algorithm and Its 

Modifications 

The first subclass (figure 1) of the extended algorithms  

is the extended Euclidean algorithms, which main ideas 

were established in India in the 5th century [3]. 

These algorithms are based on the following identity 

   ; ; modGCD m b GCD b m b  and in the process of the 

algorithms the execution of equations like (8) and (9) are 

maintained. 

It was shown by Gordon Brad ley [4, 6], that it is  

enough to maintain the equations like: 

 

A m u  and C m v  , 

 

and in the end to find the value of the second coefficient 

using the formula u A m
B

b

 
 . 

It is obvious that to find  1 modb m there is no need 

to search both coefficients of the equation (8), it is 

enough to find the coefficient of b . Considering this fact 

and using Bradley idea we offered to modify  the 

extended Euclidean algorithm in such a way that it will 

find only  coefficient B , i.e . in  the process of performing  

the algorithm will maintain  only in equations like

B b u   and D b v  . Beside this, it  is offered  that the 

stopping of the iterative process to be performed by the 

value 1v  , not 0v  , like in the basic algorithm. We 

will name such an algorithm the improved the Bradley  

modification of the extended Euclidean algorithm. 

The modification o f the Euclidean algorithm for 

searching the GCD of two  numbers with big  bitness [4] 

was offered by French scholar Lehmer. His idea lies in  

the fact that for big numbers the fraction 
m

b
 won’t 

change if in  numbers  m  and b  we divest the certain  

amount of junior bits. Using this idea, we can build the 

extended Lehmer algorithm. The drawback to this 

algorithm is the fixed amount of junior bits which is 

divested while operands can have different length. That’s 

why efficient is to find the optimal amount of bits 

divested for operands’ length given.  

B. The Extended Binary Euclidean Algorithm and Its 

Modifications 

The second subclass (figure 1) of the extended 

algorithms is the extended binary Euclidean algorithms. 

These algorithms in  the process of performing also 

maintain the execution of equations  (8) and (9), but on 

every iteration the div ision on two of following equations 

takes place hence comes the name of th is subclass of 

algorithms. Herewith on every iteration in the checking 

of A  and B  coefficients on parity  takes place. If both 

coefficients are binary the division on two takes place, if 

not – than b  is added to A , and m  is subtracted from B.  

So, the b inary numbers are received which then are 

divided on 2 again. 

It can be proved that in case m is odd and b is binary  

and the condition A and B are binary is not true – all that 

will always evidence that A is binary and B is odd. For 

the case when m  and b  are odd, the parity of A  and B  

coincides. So, it is enough to check for parity only B . 

So, for the odd modulus it is enough to maintain only  

the equation like  .B b u   If the modulus is binary, then 

for the correct performing of the algorithm it is enough to 

maintain the equation like A m u  , and the value of B  

it is possible to find using the formula u A m
B

b

 
 . 

So, at  the beginning of the process of the binary  

algorithm it is necessary to check the modulus parity and 

then to maintain equations like A m u   or .B b u 
Only owing to it, it is possible to reduce the amount of 

operations almost doubly. 

There are two fundamental approaches to building the 

algorithms which realize binary methods : Right-Shift (RS) 

and Left-Shift (LS). 

The first approach (RS) is based on the following  

identities: 

 

1) if u and v are binary, then  

 

 ; 2 ; ;
2 2

u v
GCD u v GCD

 
   

   

 

2) if u is binary, and v is odd, then  

 

 ; ; ;
2

u
GCD u v GCD v

 
  

   

 
3) if u and v are odd, then 

 

 ; ; ;
2

u v
GCD u v GCD v

  
  

   
 

4) if 0v  , then  

 

 ; 0 .GCD u u  

 

According to binary RS-Euclidean algorithm when  

searching the GCD of two numbers  the values of 

arguments are reduced by dividing by 2, which is the 

equivalent of indentation on one binary digit bit. 

The generalization of the binary algorithm is  k-аry 

algorithm. When build ing such an algorithm comparing 

to binary the term ―pairity‖ is rep laced by ―co-prime with 

k‖ and during the realization of iterat ion process division 

by k  is done. 

The second approach (LS) is based on the following  

identities: 

 

1)    ; ;GCD u v GCD u t v v   , where t  – is any 

integer; 

2)  ; 0 .GCD u u  
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According to this approach the number t is calculated  

minus and such that is power of two, then the value of 

t v  can be found by out dent of v on certain amount of 

binary digit b its . For k-ary algorithm t is chosen like the 

power of the number k .  

So, there arises the necessity of investigation of the 

influence of the value of k  on the effectiveness of k-ary 

searching method of multip licative inverse in the ring of 

residues modulo m. 

At the same time there are two known [13] 

modifications for the binary RS-algorithm, which  

positioned the algorithms for hardware implementation. 

The peculiarity of these algorithms is that they on every 

iteration operate only  with two least significant bits of 

operands. These algorithms are called  extended plus -

minus algorithms. 

 

V.  THE EXPERIMENTAL RESEARCH 

For the experimental investigation into the software 

product on computer programming language C# was 

designed in Visual Studio 2013 framework. The 

experimental research was carried  out on the computer 

with the fo llowing technical characteristics: CPU Intel 

Core I5-3210М, 2.5 GHz, random access memory 8 Gb. 

The software product allows testing the correctness of 

the process of the algorithms, generating incoming data 

with set characteristics and receiving the timing data of 

the processes of algorithms at specified arguments . 

А.  The Research of Euler, Carmichael and Arazi 

Methods 

In the designed software product Euler method, 

Carmichael method and two modificat ions of Arazi 

method are realized, the Arazi method using Euler 

formula and the Arazi method using Carmichael formula 

in particular (figure 1).  

To carry  out the research of the algorithm operating  

speed four sets with pairs of random numbers  m  and b  
were formed. Every set of numbers contains 50 odd 

modules m of certain length (8, 16, 20, 32 bits) and 100 

numbers b for every m. 

In table 1 an average performing time of every  method 

for one pair m  andb  is given. From received results one 

can see that the best time indexes as Arazi method based 

on Euler fo rmula . At the same time Carmichael method 

and Arazi method based on Carmichael fo rmula for 

modules with length of 32 bits do not give result in 

acceptable time. 

 

Table 1. The Execution T ime of Algorithms Based on Modular Exponentiation , ms 

Method name 
The length of the module, bit  

8  16 20 32 

Euler method 0,1 3,0 50,2 201732,9 

Carmichael method 4,8 378,5 7047,7 – 

Arazi method (based on Euler formula) 0,1 0,9 16,3 9131,7 

Arazi method (based on Carmichael 
formula) 

1,0 822,0 77260,2 – 

 

В.  The Research of Joye-Paillier Method 

For the Joye-Paillier method analysis (figure 1) the 

four algorithms of realizat ion of this method were 

designed. 

For the purpose of the research in  the performance of 

Joye-Paillier method in for searching of multiplicative 

inverse the two classes of number sets with pairs of 

random numbers m and b were fo rmed, each of them 

containing four sets with different length of the module 

(128, 256, 512, 1024 bit ). To the first class sets 

containing m which are prime numbers belong, to the 

second class – sets containing odd m which have for at 

least 5 prime d ivisors . Every set consists of 50 modules 

m with specified characteristics and fixed length, and also 

100 such numbers b for every m so that the condition 

 m; 1GCD d   is satisfied.  

In the algorithms №1, №2 and №3 the parameter T is  

used which is the multip lication of certain set of prime 

numbers. About the choice of values of this parameter 

there are no  recommendations in the article [11] that’s 

why we searched for optimal set of multip liers for T by 

looking through the mult iplications of all the prime 

numbers from 2 to 23 (tables 2-3). 

For optimal values of parameter Т the results with 

involvement of arithmetic modulo 2 are g iven in tables 4 

and 5.  
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Table 2. Optimal Values of Parameter T  for Prime Modules  

The number of algorithm 
The length of the module, bit  

128 256 512 1024 

№0 Time, ms 4,7 22,0 254,4 5087,9 

№1 
Time, ms 3,0 8,1 52,6 135,1 

Multipliers T {3;5;7;11;13} {2;7;17;19} {3;13;17;19} {2;3;13;17;23} 

№2 
Time, ms 1,9 6,2 47,3 174,5 

Multipliers T {2} {2;3;5;7;13;19} {3;13} {7;11} 

№3 
Time, ms 2,0 7,1 51,5 196,8 

Multipliers T {2} {2;3;5;7;13;19} {3;13} {7;11} 

Table 3. Optimal Values of Parameter T  for Composite Modules 

The number of algorithm 
The length of the module, bit  

128 256 512 1024 

№0 Time, ms 4,0 25,8 551,8 6285,5 

№1 
Time, ms 2,4 9,2 41,7 145,7 

Multipliers T {3;5;7;11;13;19} {2;3;11;13;17;23} {2;3;5;13;17} {2;3;5;7;11;13;17;19} 

№2 
Time, ms 2,0 6,3 57,5 184,7 

Multipliers T {2;5;11;13;17;23} {2;3;5;7;11;13;23} {2;3;5;7;17} {3;5} 

№3 
Time, ms 2,2 7,3 57,6 185,3 

Multipliers T {2;5;11;13;17;23} {2;3;5;7;11;13;23} {5;7;11} {5;7;11;13;17;19;23} 

 

From the received experimental results, it is evident 

for every fixed length of operands there exists its own set 

of optimal values of range o f multip liers for parameter T. 

Among the four algorithms were investigated, the best 

results for module with length of 512 bits shows 

algorithm №2, and fo r the module with length of 1024 

bits almost on 25% algorithm №1 is better. Such a 

tendency retains for both prime and composite modules .  
 

Table 4. Operating Time of Algorithms which realize Joye-Paillier Method for Prime Modules with Involvement of Arithmetic Modulo 2, ms  

The number of 
algorithm 

The length of the module, bit  

128 256 512 1024 

№0 4,6 20,9 250,4 7375,3 

№1 2,8 7,1 51,2 126,4 

№2 1,9 6,2 48,6 172,8 

№3 1,9 5,8 46,9 178,7 

Table 5. Operating Time of Algorithms which realize Joye-Paillier Method for Composite Modules with Involvement of Arithmetic Modulo 2, ms 

The number of 
algorithm 

The length of the module, bit  

128 256 512 1024 

№0 3,8 24,7 587,9 6507 

№1 2,3 9,3 46,9 139,1 

№2 2,1 6,5 56,8 177,2 

№3 2,1 7,2 54,3 185,8 
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Table 6. The Operating T ime of Algorithms of Searching the Multiplicative Inverse  

Name of method 
The length of the module, bit  

128 256 512 1024 2048 4096 8192 

Extended Euclidean algorithm 0,06 0,14 0,31 0,72 1,96 5,62 19,16 

Improved Bradley modification 

of extended Euclidean algorithm 
0,04 0,10 0,22 0,55 1,51 4,33 15,08 

Plus-minus algorithm №1 0,36 0,85 2,24 6,58 21,54 74,86 291,77 

Plus-minus algorithm №2 0,33 0,81 2,27 6,57 22,04 78,26 306,21 

 

In the tables 4 and 5 the operating time of algorithms  

which realize Joye-Paillier method by optimal sets of 

multip liers of parameter T with involvement of 

arithmetic modulo 2. From the given tables we can see 

that involvement of arithmetic modulo 2 instead of 

integer division for all the algorithms gives small 

increase of performance. 

С.  The Research of Methods based on Euclidean 

Algorithm 

With the purpose of research into the operating speed 

of this class of algorithms based on searching GCD 

(greatest common divisor) of two numbers with the help 

of Euclidean algorithm (figure 1), formed  seven sets with 

pairs of random numbers  m and b. Every  set contains 50 

odd modules m with fixed length (128, 256, 512, 1024, 

2048, 4096, 8192 b its) and 100 numbers b for which  

there exists multiplicative inverse modulo m. 

The experimental results for extended Euclidean  

algorithm, improved Bradley modification of extended 

Euclidean algorithm and two plus -minus algorithms are 

given in table 6. 

Within the survey RS- and LS- realization of k-ary 

extended algorithm for arbitrary k  were built. Besides, the 

simplified extended k-ary RS-algorithm was realized, 

which works only for values of k  that are the power of 

prime number. It allows to essentially simplify the 

procedure of finding the coefficient х by which the 

equations A x v   and B x u   are aliquot to k . To k-

ary LS-algorithm such modification is not efficient, 

because according to this algorithm the value of 

multip lier is chosen like a power of k  not depending on a 

value of k . 

To determine the optimal value of k  the research of 

realized algorithms on three sets of values of k  was 

conducted, namely the value of k , which is the power of 2 

(the index of power changed from 1 to 22), the value of k , 

which is the power of 3 (the index of power changed 

from 1 to 14) and the arbitrary k . In  the tables there are 

no time indexes of performing of LS-algorithm, because 

during the acceptable time it is possible to get the result 

only for values 1024k   and these results considerably 

lose on time indexes to RS-algorithms. Besides, LS-

algorithms are characterized  of considerable using the 

memory, because the amount of necessary random access 

memory for this algorithm is proportional to the value of
2k . For example, if the value of 152k   then for 

performing of this algorithm near 8 Gb of RAM is 

necessary.  

That is why it is advisable to find the analytical 

formula for calculat ing the necessary random access 

memory size fo r RS-algorithms depending on the value 

of k . After research the following algorithms we for the 

first time received such a formula, that is for k-ary 

extended RS-algorithm the necessary random access 

memory size is calculated in bytes in such a way: 

 

  
 

4 3

3 2 max{ } ,

n k k

M M

    

   
              

(10) 

 

where ( )x  – is a function of distribution of prime 

numbers, M  – is a set of prime div isors of a number k  in  

maximum possible power. 

If k  is a power of a prime number, then formula  (10) is  

simplified to the following: 

 

4 (5 ( ) 3).n k k      
 

For the simplified extended k-ary RS-algorithm we 

have the following formula for calculat ing the necessary 

random access memory size: 

 

4 (3 ( )).n k k   
 

 

Table 7. Dependence of used RAM Size on k, bytes 

k 
Algorithm 

RS Simplified RS 

2 56 28 

4 100 52 

8 180 104 

32 664 396 

1024 20536 12332 

32768 655540 393384 

131072 2621740 1573152 

262144 5243280 3146116 

1048576 20972220 12583600 

2097152 41943968 25166740 

4194304 83887328 50332884 
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The theoretically  calcu lated necessary RAM size when  

performing the algorithms for the values of k , which are 

the powers of 2 is given in table 7. 

While analyzing the received time indexes it was set 

that extended RS-algorithm for arbitrary composite 

values of k  performs slower than for the values of k , 

which are the powers of prime number, that’s why the 

research of algorithms for the values of k , which are the 

power of a prime number was conducted (tables 8-11). It  

is obvious that with increasing of the length of operands 

the optimal value of k  also increases. 

Table 8. Optimal Values of k, which is the Power of 2 for k-ary RS-
algorithm 

Length of the 

module, bits 
Value of k Performing time, ms 

128 32768 0,091 

256 65536 0,116 

512 65536 0,147 

1024 65536 0,199 

2048 65536 0,305 

4096 65536 0,558 

8192 131072 0,996 

Table 9. Optimal values of k, which is the Power of 2 for Simplified k-
ary RS-algorithm 

Length of the 

module, bits 
Value of k 

Performing time, 

ms 

128 32768 0,117 

256 65536 0,132 

512 65536 0,161 

1024 65536 0,235 

2048 65536 0,368 

4096 65536 0,725 

8192 131072 1,274 

 

Comparing the time indexes of the optimal values of k 

for every algorithm (tables 8-11) we can see simplified  

RS-algorithm in all cases precedes its universal analogue 

and the best results shows for k , which is the power of 3. 

In the Lehmer modification (figure 1) there are two  

parameters s  and h are used, where s – is a basis of 

number system, h – is the amount of junior s-like b its of 

operands, which are reduced while division.  

Table 10. Optimal Values of k, which is the Power of 3 for k-ary RS-
algorithm 

Length of the 

module, bits 
Value of k 

Performing time, 

ms 

128 59049 0,086 

256 59049 0,108 

512 59049 0,143 

1024 177147 0,248 

2048 177147 0,303 

4096 177147 0,552 

8192 177147 0,977 

Table 11. Optimal values of k, which is the Power of 3 for Simplified k-
ary RS-algorithm 

Length of the 

module, bits 
Value of k 

Performing time, 

ms 

128 59049 0,096 

256 59049 0,130 

512 59049 0,202 

1024 177147 0,238 

2048 177147 0,373 

4096 177147 0,652 

8192 177147 1,267 

 

For researching the extended Lehmer algorithm the 

software product was designed, which allows to 

determine the certain amount of least significant s-like 

bits can be reduced for fixed length of module m, to 

maintain the maximum performance. During the 

investigation for the fixed value of s and fixed length of 

module  m the value of h changed from 2 to 0.5 l , where 

l  – is the length of the module. For example, accord ing 

to received experimental data if 2s   and the length of 

the module is 4096 bits  than the optimal amount of junior 

bits which are to be reduced is 3226 bits  (table 12). As 

we can  see for every length of m it is impossible to 

analytically determine such values, it is possible to find 

only experimentally with the help of designed software.  

 

Table 12. T ime of Performance of Extended Lehmer Algorithm Depending on Parameter Values 

s 
Parameter h, 

performing time t, ms 

Length of the module, bits 

128 256 512 1024 2048 4096 8192 

2 
h 126 251 509 997 2023 3226 6551 

t, ms 0,067 0,155 0,388 0,925 2,478 7,076 22,808 

3 
h 80 160 323 641 1227 2304 3998 

t, ms 0,068 0,166 0,373 0,947 2,502 7,313 22,926 

4 
h 58 123 256 504 1015 1748 3215 

t, ms 0,076 0,176 0,372 0,960 2,501 7,067 22,582 

8 
h 43 85 171 341 670 1245 2011 

t, ms 0,065 0,175 0,371 0,971 2,638 7,165 22,779 

16 
h 30 63 128 256 508 897 1451 

t, ms 0,073 0,173 0,370 0,885 2,382 7,040 22,633 
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VI.  CONCLUSIONS 

Among the methods that are based on modular 

exponentiation (figure 1), the best results is the Joye-

Paillier method. At the same time for operands with 

length smaller than 512 bits’ algorithm №2 of realizat ion 

of this method is leading, and for the operands with 

length above 512 bits – algorithm №1. The involvement 

of arithmet ic modulo 2 in these algorithms gives 

additionally near 5% of performance increasing.  

Comparing the search methods of mult iplicative 

inverse in the ring of integers modulo m based on 

modular exponentiation and methods based on GCD 

searching (figure 1), the best results prove to be those 

based on algorithms of GCD searching of two numbers 

and the worst – those based on modular exponentiation. 

Within the class of methods based on GCD searching 

extended Euclidean algorithm leads over extended 

Lehmer algorithm with optimal values of parameters on 

almost 20%. At the same t ime the offered improved 

Brad ley modification of extended Euclidean algorithm 

comparing to basic algorithm gives the increase of 

performance for almost 17%. 

In the given investigation we for the first time have got 

analytical formulas for calculating the necessary random 

access memory when performing k-ary RS-algorithm and 

simplified k-ary RS-algorithm for searching the 

multiplicative inverse in the ring of integers modulo m.  

Further investigations should be focused on analysis of 

the k-ary RS-algorithms, namely  on values of k , which  

are the mult iplication of two powers of p rime numbers 

and on building the adapted simplified RS-algorithm, 

which will do the preliminary analysis of operands and 

determine the optimal value of k . Besides, it is necessary 

to build the analytical dependence function of operating 

time of algorithm and the length of operands and the 

value of k , which is used. 
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