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Abstract—Bezier curve is one of the most pragmatic 

curves that has vast application in computer aided 

geometry design. Unlike other normal curves, any Bezier 

curve model must follow the properties of Bezier curve. 

In our paper, we proposed the reconstruction of Bezier 

models by implementing satisfiability problem in  

Hopfield neural network as Bezier properties verification 

technique. We represent our logic construction to 2-

satisfiability (2SAT) clauses in order to represent the 

properties of the Bezier curve model. The developed 

Bezier model will be integrated with Hopfield neural 

network in order to detect the existence of any non-Bezier 

curve. Microsoft Visual C++ 2013 is used as a platform 

for training, testing and validating of our proposed design. 

Hence, the performance of our proposed technique is 

evaluated based on global Bezier model and computation 

time. It has been observed that most of the model 

produced by HNN-2SAT are Bezier curve models. 

 

Index Terms—Bezier curve, Hopfield network, 2-

satisfiability, Logic programming, Wan Abdullah‟s 

method. 

 

I.  INTRODUCTION 

Computer Aided Geometric Design (CAGD) has 

emerged as one of the most eminent fields in computer 

graphic, numerical computation, and geometrical studies. 

The renaissance of CAGD is inaugurated by the various 

form of Bezier curves that has attracted a prolific number 

of research [1]. Hence, Bezier curves are one of the most 

intensively used in CAGD [2]. Popularized by Bezier [3], 

Bezier curves are used to construct smooth curves at any 

scale by considering its own properties to be applied in 

the design. The main impetus of this research is to 

reconstruct the Bezier curves according to the correct 

properties by using neural network approach. Hence, the 

Bezier properties verification process requires a robust 

and stable algorithm in order to construct more complex 

Bezier curves. Thus, we choose to translate the Bezier 

curves properties into 2-Sat isfiability problem and 

integrate it in Hopfield neural network by using logic 

programming (HNN-2SAT). Basically, 2-Sat isfiability 

(2SAT) is the prominent counterpart of the Boolean 

satisfiability (SAT) optimization problem, that is denoted 

in Conjunctive Normal Form (CNF) form [4, 8]. W ithout 

a doubt, there have been a lot of applications of 2-

Satisfiability such as the previous work by Femer [5], 

Papadimit riou [6], Patreschi and Simeone [7]. These 

related works emphasized on the 2-Satisfiab ility as an 

optimization problem. On the separate note, we can 

transform any real dataset or mathematical p roperties into 

2SAT form with the assis tance of logic programming [9]. 

In this paper, we emphasized on the Bezier curve 

properties as 2SAT combinatorial optimizat ion problems  

in logic programming.   

The Hopfield neural network p lays an important role in  

the field of art ificial intelligence and mathemat ical 

computation. Recurrent Hopfield neural networks are 

principally dynamical schemes that feedback signals to 

themselves. The network was inaugurated by Hopfield  

and Tank [10]. One of the interesting features is the 

network possess a dynamical system with stable states 

with each own basin and attraction [11]. Moreover, the 

Hopfield neural network min imizes Lyapunov energy 

because of physical spin of the neuron states . On top of 

that, the network produced global output by minimizing 

the network energy. Gadi Pinkas and Wan Abdullah [9, 

12] demarcated a bi-direct ional mapping between logic 

and energy function of a symmetric neural network. 

Besides, both related works are the building blocks for a 

corresponding logic program. The work of Sathasivam 

[13] presented that the optimized recurrent Hopfield  

network could  be possibly used to do logic programming. 

Above all, the ability of learn ing by using Hopfield 

network is the main priority in the reconstruction of the 

Bezier curves. The memory will be stored in Hopfield‟s 

brain as content addressable memory (CAM) [14]. Hence, 

we can reconstruct the correct Bezier curves by retrieving 
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the stored memory based on the properties.  

Logic Programming refers to an auspicious field, and 

widely used to resolve numerous constraint optimizat ion 

problem [15]. Additionally, the logic programming can 

be demarcated as an optimization problem [13, 16]. In  

this paper, the Bezier properties will be represented by 

the clauses in 2SAT. After that, 2SAT problem will be 

translated into logic programming integrated with 

Hopfield neural network. The impetus of our study is the 

well-known Wan Abdullah‟s technique [9, 12]. Wan 

Abdullah presented a model of doing logic programming 

in Hopfield network by opt for the Horn clauses as the 

problem [12, 17]. Theoretically, the Hopfield network 

can min imize the logical inconsistency in any order of 

logic p rograms [18]. Thus, we develop a network called 

HNN-2SAT to be tested with the Bezier satisfiability 

problem. The implementation of Hopfield neural network,  

2-Satisfiab ility and logic programming as a hybrid model 

(HNN-2SAT) in the reconstruction of various Bezier 

curves is the main contribution of the study.  

The rest of the paper is organized as follows. Section II 

contains the fundamental conceptual background of 

satisfiability problems, especially the 2-satisfiability 

(2SAT) problem. In Section III, we d iscuss the core 

theory of Bezier satisfiability and the important properties 

of Bezier curves. In addition, we emphasize the different 

type of Bezier curves being used in our proposed Bezier 

satisfiability problem. Section IV accentuates the neuro-

logic parad igm, consists of Hopfield  neural network and 

logic programming. This will include the implementation 

of Hopfield network and logic programming in  

reconstructing the Bezier curves. Section V describes the 

theory implementation for our proposed algorithm in  

doing Bezier satisfiability. Section VI presents the result 

and analysis. In this section, the discussion will point on 

the trend of global Bezier curve and the running time 

recorded for d ifferent type of Bezier curves. Sect ion VII 

then highlights the future work and encloses the 

conclusion of this work.  

 

II.  SATISFIABILITY (SAT) PROBLEM 

Satisfiability (SAT) is a significant problem in  

computer science and mathematics  [4]. SAT problem 

helps researcher to deal with constraint optimizat ion 

problem such as circuit and pattern reconstruction. One 

way to learn v ia SAT is by embedding our required 

informat ion inside and SAT problem and solve it  

optimally.  In Bezier reconstruction, learning and 

verify ing is Bezier curve model work identically with 

SAT problem. 

In general, a Boolean formula is satisfiable if there 

exists an assignment of values true and false that makes 

the entire expression true [5]. The easiest way to solve 

SAT problem is by utilizing exhaustive search method, 

where SAT will try out every possible truth assignment. 

For example, g iven a problem size n , there will 

be 2n
such assignments and l literals to set for each 

assignment [13, 27]. At this point, this method involves 

 .2nO l operations [28] and it was proven by many that 

SAT is an NP-complete problem.  

SAT problem normally represented in Boolean  

variables or expressions in conjunctive normal form 

(CNF). CNF is defined as conjunction of clauses, where 

the clauses are disjunction of literal [35]. Literal is a 

variable or its negation. For example: 

 

     1 2 2 3 5 1 4x x x x x x x                   (1) 

 

Based on (1), 1 2 3 4, , ,x x x x are Boolean variables to be 

assigned,   means negations (logical NOT),   means 

negations (logical OR),  means negations (logical AND). 

We can satisfy formula (1) by taking 

1 2 3 4, , ,x true x false x false x true     . However, if 

any formula is not satisfiable, it will be  termed as 

unsatisfiable.  

In Bezier model reconstruction, we integrate the 

foundation of satisfiability in order to obtain the correct 

Bezier model. The literals in every clause will be 

represented the properties of the Bezier curve model. 

A.  2SAT 

2SAT is a subset of SAT problem. It is a classical NP-

problem that determine the satisfiability o f sets of clauses 

with at most two literals per c lause (2-CNF formulas) [8]. 

Besides, it is popular and h ighly regard  problem for  

general Boolean satisfiability which can involve 

constraints on two variables  [31]. In addition, the 

variables can allow two possibilities for the value of each 

variable. 2SAT problem can be expressed as 2-CNF (2-

Conjunctive Normal Form). Randomized 2SAT problem 

is considered as NP problem or non-determin istic 

problem [6]. The three fundamental components of 2SAT 

are summarized as follows: 

 

1. A set of m  variables, 1 2, ,......, mx x x    

2. A set of literals. A literal is a variab le or a 

negation of a variable. 

3. A set of n  distinct clauses: 1 2, ........ nC C C   . Each  

clause consists of only literals combined by just 

logical OR (  ). Each clause must consist of 2 

variables.  

 

The Boolean values are  1, 1 . Researchers have 

replaced F and T in the neural networks by 1 and -1, 

respectively to emphasized false and true. Since each 

variable can take only two values, a statement with 

n variables requires a table with 2n  rows. The goal of the 

2SAT problem is to determine whether there exits an 

assignment of truth values to variables that makes the 

following Boolean formula P satisfiable. 

 

 
1

n

i
i

P C


                                    (2) 

 

Where  is a logical AND connector. iC is a clausal 
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form of DNF with 2 variables. Each clause in 2SAT has 

the following form 

 

 
1

,
n

i i i
i

C x y


                             (3) 

 

 ,i i ix k k  and  ,i i iy r r  ik and ir are negations 

of the literals. 

 

III.  BEZIER MODEL SATISFIABILITY 

Popularized by  French engineer, Pierre Bezier, Bezier 

curve is a parametric curve that frequently used in 

computer graphics and design automobile bodies . 

Currently, Bezier curves are extensively used to model 

smooth curves and other applications [20]. A Bezier 

curve is defined by a set of control points 0P  through nP , 

where n  is the o rder of the curve. In  essence, the first and 

the last control point are always the end point of the curve. 

The other point between the first control point to the last 

do not lie on the curve [21]. Since the curve is completely  

enclosed in the convex hull of its control points, the 

points can be manipulated graphically.  

A.  Properties of Bezier Curve 

Bezier curve is a parametric curve that uses the 

Bernstein polynomials as a basis. Generally, a Bezier 

curve of degree n (Order n+1) is represented by 

 

   ,

0

, 0 1

n

i n i

i

B t b t P t



              (4) 

 

where 

 

    , 1 , 0,1,2,3,.....,
n ii

i n

n
b t t t n n

i

 
   
 

           (5) 

 

The shape of the curve can be determined by using the 

coefficient iP which are the control points and  ,i nB t  are 

the basis of the function [21]. Lines can be drawn 

between the control points of the curve in order to form 

control polygon. Bezier curve possessed the following 

properties 

1) Geometry invariance property:  

Partit ion of unity of the Bernstein polynomial satisfy 

any of the Bezier curve although the curve undergoes 

translation and rotation of its control point [22]. 

The basis function of any Bezier curve can be 

represented by using the following graph: 

 

 

Fig.1. Basis function for cubic Bezier 

2) Geometric point property:  

(i) The first and the last control points are the 

endpoints of the curve. Moreover,  0 0b B and 

 1nb B .  

(ii) The curve is a tangent to the control polygon at the 

endpoints [21]. This can be verified by taking first 

derivatives of a Bezier curve 

 

 
 

   
1

1 , 1

0

' , 0 1

n

i i i n

i

dB t
B t n P P b t t

dt



 



        (6) 

 

In detail, we acquire    1 0' 0P n P P  and 

   1' 1 n nB n P P   . The above equation can further 

simplified by setting 1i i iP P P   : 

 

   
1

, 1

0

' , 0 1

n

i i n

i

B t n PB t t







                    (7) 

 

3) Convex hull property:  

A domain D is considered as a convex if any two 

points 1P and 2P  in the domain, the segment 1 2P P is 

entirely embodied in the domain D [23]. The convex hull 

of a set of points P is the boundary of the smallest convex 

domain containing P. The entire curve is contained within  

the convex hull of the control point. 

 

 

Fig.2. Convex hull built  from the control point  

B.  Type of Bezier Curve 

A Bezier curve is defined based on their control points. 

For our studies, we will examine the following curve 
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1) Linear Bezier curves 

Given points 0P  and 1P , a  linear Bezier curve is a 

straight line between those two points. The curve can be 

formulated as followed 

 

    0 11B t t P tP                      (8) 

 

Where 0 1t  .The equation normally similar to 

linear interpolation. 

 

 

Fig.3. Linear Bezier curve 

2) Quadratic Bezier curves 

Quadratic Bezier curve is a curve that traced by the 

function  B t given points 0P , 1P and 2P  . The curve can 

be formulated as followed: 

 

     
2 2

0 1 21 2 1B t t P t tP t P                   (9) 

 

Where 0 1t  . The equation is interpreted as the 

linear interpolant of corresponding points on the linear 

Bezier curves from 0P to 1P  and from 1P to 2P [24]. 

 

 

Fig.4. Quadratic Bezier curve 

3) Cubic Bezier curves 

Cubic Bezier curve is a curve that traced by the 

function  B t given points 0P , 1P , 2P and 3P . Cubic 

Bezier curve can be formulated as followed: 

 

       
3 2 2 3

0 1 1 31 3 1 3 1B t t P t tP t t P t P        (10) 

 

Where 0 1t  . The curve will not pass through 1P or 

2P because these points only to provide directional 

informat ion. The cubic Bezier curve can be defined as a 

linear combination of two quadratic Bezier curves [25]. 

  

 

Fig.5. Cubic Bezier curve 

C.  Bezier-SAT 

Table 1. Bezier-2SAT clause representation 

Clause Properties Descriptions 

1C  

Partition of unity 

 ,

0

1

n

i n

i

B t



  

Linear Bezier 

 11

12

1C t

C t

 


 

Total clauses: 2 
 
Quadratic Bezier 

 

 

2

11

12

2
13

1

2 1

C t

C t

C t

 

 



 

Total clauses: 3 
 
Quadratic Bezier 

 

 

 

3

11

2

12

2
13

3
14

1

3 1

3 1

C t

C t

C t t

C t

 

 

 



 

Total clauses: 4 
 

2C  

Geometric point 
where P are the 

control points of the 
curve. The curve 
must touch the first 
and the endpoint. 

 

21 0

22 1

23 2

24 3

2 1i i

C P

C P

C P

C P

C P











 

Total clause : 1i   

3C  
Convex hull property 
 

 0 1 2 3, , , ,....., i CP P P P P D

 

Where CD is the domain 

of the convex hull 
 

Total clause : 1i   

 

The properties of Bezier curve with different orders 

can be represented by using logic. In this case, 2SAT 

logic is utilized to implant the important properties of 

Bezier curve. If any of the random curve followed all the 

important properties of Bezier curve [25], the curve 

model is considered as Satisfiab le (It  is a  Bezier curve). 

On contrary, if any of the curve model does not abide 

with properties, 2SAT logic will consider the curve as 
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unsatisfiable (It is not a Bezier curve) [26]. The task of 

representing the important properties of Bezier curve in  

2SAT will be used in training phase of neural network. It  

was proven by previous researchers that the hybridizat ion 

between 2SAT logic and neural network is ab le to  solve 

constraint optimization problem such as pattern 

reconstruction. Table 1 shows the representation of the 

properties of the Bezier curve and 2SAT clause during 

training phase. 

 

IV.  BEZIER-SAT IN HOPFIELD NEURAL NETWORK 

Neuro-log ic is the blend of neural network and logic 

programming as a single hybrid network. Specifically, the 

neuro-logic methods can be applied in a various field  

such as constraint optimization problem, pattern 

recognition, circuit and curve reconstruction [33]. In this 

paper, we apply the Hopfield neural network and logic 

programming to reconstruct the Bezier curves according 

to the properties needed based on 2SAT instances. The 

effectiveness of our proposed paradigm (HNN-2SAT) 

will be discussed briefly in Section VI.  

A.  Hopfield Model 

In Bezier curve reconstruction, we select the Hopfield  

neural network because it is well distributed. Hence, 

Hopfield neural network is easier to be integrated with 

any paradigms to solve satisfiability problem [31].  

Technically, we incorporate the 2SAT with 3 clauses in 

Hopfield neural network so that we can relate it with the 

Bezier curve properties. The correctness of Bezier curve 

that will be reconstructed totally rely on the effectiveness 

our proposed network. In addition, the Hopfield neural 

network can be demarcated as a model of content 

addressable memory (CAM) [15, 16]. In layman‟s term, 

we call it as Hopfield‟s brain. Hence, Hopfield‟s brain 

replicates our b iological brain function to store and 

process the memories. Besides, the learning and 

retriev ing data in  Hopfield neural network are the 

fundamental aspect of content addressable memory  

(CAM) [11, 14].  

Specifically, the Hopfield  neural network is a class of 

recurrent auto-associative network [33]. The units in 

Hopfield models are predominantly binary threshold unit 

[34]. Hence, the Hopfield nets will y ield a binary value 

such as 1 and -1. The definition for unit  I‟s activation, 

ia are given as follows: 

 

 

1

1

ij j i

ji

if W S

a

Otherwise

 


 



                   (11) 

 

where ijW is the connection strength from unit j to i . 

jS is the state of unit j and i is the threshold of unit i . 

The connection in Hopfield net typically has no 

connection with itself 0iiW  and connections are 

symmetric or bidirectional [12, 13].  

Hopfield network work asynchronously with each 

neuron updating their state determin istically. The system 

consists of N  formal neurons, each is described by an 

Ising variable. Neurons are bipolar  1, 1iS   obeying 

the dynamics  sgni iS h where the local field ih . The 

connection model can be generalized to include higher 

order connection. This changes the field to 

 

   2 1

i ij j i

j

h W S J                       (12) 

 

The weight in  Hopfield  network is always symmetrical. 

The weight in Hopfield network denotes to the 

connection strength between the neurons. The updating 

rule maintains as follows: 

 

   1 sgni iS t h t                           (13) 

 

This property guarantee the energy will decrease 

monotonically even though following the activation 

system [14, 30]. However, it will drive the network to 

search for the possible minimum energy. The following 

equation represents energy for Hopfield network.  
 

   2 11
....

2
ij i j i j

i j i

E W S S W S              (14) 

 

This energy function is vital to improve the degree of 

convergence of the proposed network [18]. Thus, the 

energy value is  important to obtain global Bezier curves. 

The power o f reconstructing the curves  depends on how 

the synaptic weights are computed. Hence, our proposed 

networks are ab le to update the weights and proceed the 

Bezier curves reconstruction effectively.  

B.  Logic Programming in Hopfield Network  

Fundamentally, logic programming can be treated as a 

problem in constraint optimization outlook [22]. Hence, it  

can be carried out in the Hopfield neural network to 

obtain global solutions. This can be done by using the 

neurons to store the truth values of the literal and writ ing 

a cost function which is min imized when all clauses are 

satisfied [13, 29]. In other words, the core mission is to 

discover „models‟ corresponding to the given logic 

program. The important of Hopfield  network in doing 

logic programming was brought up because of its 

exceptional content addressable memory properties 

during learning process.  

Implementation of HNN-2SAT in Logic Programming. 

i. The 2SAT clauses are transformed into Boolean  

algebra. Thus, the clauses will form a formula that will be 

used to check the properties of Bezier curves. In this 

paper, each clause represents the properties of the Bezier 

curve. 

ii. Identify a neuron to each ground neuron. Then, 

initialize all the possible weights to zero. 
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iii. Derive a cost function with negation of all 2SAT 

clauses. As an illustration, we have the following cost 

functions,  
1

1
2

XX S  and  
1

1
2

XX S  . Hence, 

the states are represented as 1XS 
 
(True) and  

1XS   (False). For this scenario, the multiplication  

signifies conjunction and addition symbolizes disjunction. 

iv. Comparing the cost function with energy, E  by 

obtaining the values of the connection strengths. (Wan 

Abdullah‟s Method) [9] 

v. Check clauses satisfaction by using exhaustive 

search. Hence, the satisfied assignments will be stored. In  

this paper, the satisfied assignments for the Bezier curves 

(correct properties) will be stored as content addressable 

memory (CAM).   

vi. The states of the neurons are randomized. The 

network undergoes sequences of network relaxation [14]. 

Calculate the resultant local field  ih t  of the state. Let  

say if the final state is stable for 5 runs, we consider it as 

final state. 

vii. Compute the corresponding final energy E of the 

final state via implementing Lypunov equation. 

Authenticate whether the final energy achieved is a 

global minimum energy or local min ima. In Bezier curves 

reconstruction, the final energy depicts the correct 

properties of the Bezier curves. Finally, the global Bezier 

model and running time are computed for every Bezier 

models. 

 

V.  IMPLEMENTATION 

In this exp loration, we require methodical procedures. 

The procedures would work by using Microsoft Visual 

C++ 2013 as a platfo rm to simulate our logic program.  

First of all, we generate a random program based on 

2SAT clauses. In Bezier curve reconstruction, we 

represent each of the properties of Bezier model as the 

clauses. Each of the clauses form randomized 2SAT 

formula. Each of the clauses consist of the randomized 

state. The states of the 2SAT clauses (representing 

properties of the Bezier) will be verified and the correct 

clauses will be retained (train ing stage). After undergo 

HNN-2SAT, the network reached the final states. 

Equation (13) is vital to ensure the network achieve stable 

states. Stable final states will be achieved when the state 

remains unchanged for 5 consecutive runs. Pinkas
 
[18] 

emphasized that by permitting an ANN to evolve in time 

shall lead to the stable state where the energy function 

obtained does not change further. In this case, the 

corresponding final energy for the stable state will be 

calculated. If the difference between the final energy and 

the global min imum energy is within the termination 

criteria, then consider the solution as global min imum 

energy. 0.001 was chosen as a termination criterion since 

this value gave us better output accuracy. We run 100 

training and 100 combinations of neurons in order to 

reduce statistical error. Since the network will produce 

10000 Bezier models, we calculate the percentage of 

global Bezier model. Running time will be recorded from 

the start to the end of the program. In this paper, the 

global Bezier model is considered as the global solution.  

 

VI.  RESULT AND DISCUSSION 

In order to test the performance of HNN-2SAT in  

reconstructing the Bezier curve model, we evaluated the 

proposed paradigm based on global Bezier model and 

running time. 

A.  Global Bezier model 

Table 2. Global Bezier model for reconstructed linear Bezier curves 

Number of Reconstructed 
Linear Bezier Curves 

Global Bezier Model (%) 

20 100 

40 100 

60 98.3 

80 96.7 

100 96.2 

120 94.9 

140 93.7 

Table 3. Global Bezier model for reconstructed quadratic Bezier curves 

Number of Reconstructed 
Quadratic Bezier Curves 

Global Bezier Model (%) 

20 100 

40 99.9 

60 98.6 

80 96.6 

100 95.7 

120 94.8 

140 92.3 

Table 4. Global Bezier model for reconstructed cubic Bezier curves 

Number of Reconstructed 

Cubic Bezier Curves 
Global Bezier Model (%) 

20 100 

40 98.9 

60 98.0 

80 96.1 

100 95.3 

120 92.5 

140 90.8 

 

Table 2, 3 and 4 illustrate the global Bezier model 

configuration for the d ifferent type of curve. Based on the 

table, we successfully reconstruct the correct Bezier 

model for all type curves. HNN-2SAT are ab le to 

reconstruct 20 Bezier curves (Global Bezier model) for 

all order of the curve without encountering any non-

Bezier model (Local Bezier model). The proposed 

paradigm is able to train the network with the properties 

of the Bezier via 2SAT and successfully ret rieved the 

correct clause during  the reconstruction phase. As the 

number o f reconstructed Bezier curve increased, the 
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complexity of the network increased. Local Bezier 

models are expected to emerge because the solution of 

HNN-2SAT trapped at the suboptimal solution. This is 

due to spurious min ima occurred during the retrieval 

phase and the network recalled the wrong states for the 

clauses (Bezier properties) [14, 13] Consequently, the 

existence of local Bezier model will create a curve which 

does not follow the properties of the Bezier curve.  

Comparatively, cubic Bezier model produced the highest 

number of local Bezier curve compared to linear and 

quadratic Bezier curve. Th is is because cubic Bezier has 

more basis and control points compared  to linear and 

quadratic Bezier curve. By the same token, the cubic 

Bezier constraints embedded in HNN-2SAT will be 

larger and more complex compared to linear and 

quadratic Bezier curve. Local Bezier curves are expected 

to increase if the order of the Bezier curve increased. For 

example, quartic Bezier curves are expected to produce 

more local Bezier model compared to cubic Bezier.  In  

general, almost 90% of the curve (linear, quadratic and 

cubic) produced by HNN-2SAT are global Bezier curve.  

B.  Running Time 

Table 5. Running time for reconstructed linear Bezier curves 

Number of Reconstructed 

Linear Bezier Curves 

Running  

T ime (s) 

20 0.0100 

40 0.2600 

60 0.5238 

80 1.263 

100 1.640 

120 2.050 

140 2.503 

Table 6. Running time for reconstructed quadratic Bezier curves 

Number of Reconstructed 
Quadratic Bezier Curves 

Running  
T ime (s) 

20 0.1500 

40 0.2900 

60 1.040 

80 1.113 

100 1.530 

120 2.440 

140 3.450 

Table 7. Running time for reconstructed cubic Bezier curves 

Number of Reconstructed 
Cubic Bezier Curves 

Running  
T ime (s) 

20 0.2772 

40 0.6600 

60 1.318 

80 1.790 

100 2.175 

120 3.326 

140 4.100 

 

Running time is another measure or indicator to check 

the effectiveness of our proposed network [15]. Table 5, 6 

and 7 depict the running time for our proposed network, 

HNN-2SAT to reconstruct different Bezier curves 

correctly. A closer look at the running time ind icates that 

the HNN-2SAT has successfully reconstructed the curves 

within the stipulated time frame. The running time 

obtained in this study provides convincing evidence that 

the time taken for the HNN-2SAT to learn and retrieve 

the correct curves slightly varies for the different type of 

Bezier curves. As a matter of fact, the training process 

consumed most of the running time as our proposed 

network will be checking the properties of the correct 

Bezier curves. Strict ly speaking, in order to generate the 

correct Bezier curves, three main properties (constraints) 

must be fulfilled. Hence, the verificat ion requires 

particular t ime to complete the entire process. 

Theoretically, as the number of Bezier curves model 

increases, the running time will also increase. In the 

previous measures, the issue under scrutiny is the 

existence of local Bezier in any complex model. Table 5, 

6 and 7 delineates the significant differences in the 

running time obtained for the linear, quadratic and cubic 

Bezier model if the number of curves is ranging from 100 

to 140. According to the results, the running time for 

linear Bezier model is faster than quadratic Bezier, 

especially when more curves are introduced. Conversely, 

the cubic Bezier model required more running time. This 

is due to the cubic Bezier comprised of more basis and 

control points compared to linear and quadratic Bezier 

curve. Thus, the training process in order to reconstruct 

the correct Bezier curve became much slower. There is 

overwhelming evidence corroborating the notion that 

more running time required for high ly complex Bezier 

model. A clear ev idence is the computation burden to 

reconstruct higher order curves. Hence, better 

optimization technique can be applied to improve the 

running time for highly  complex Bezier models. For the 

time being, HNN-2SAT is still the best network. 

 

VII.  CONCLUSION 

We have presented our proposed paradigm, namely  

HNN-2SAT network to  reconstruct various Bezier curves  

model. It had been presented by the computer simulat ions 

that our proposed model that incorporated with Hopfield  

neural networks were able to retrieve and reconstruct 

correct curves model with in the exceptional time frame. 

Information from the various Bezier models can be stored 

in the clausal form in Hopfield and most of the retrieved 

model are exact  Bezier models. Hence, the proposed 

models are supported by the strong agreement of global 

Bezier model obtained and running time.  This early  work 

may have some limitations which will be addressed in 

future work. Finding satisfied interpretations which have 

been a build ing block for clause during simulation can  be 

very complex and detrimental. We have noted that 

optimized and effective searching technique should be 

drawn in order to find the correct clausal state. This 

requires further investigation. For future work, 
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approximation algorithm such as heuristic methods can 

be implemented in order to find the correct interpretation 

for clauses. On the separate note, we can consider variety 

satisfiability logic such as 3-Satisfiability to represent the 

clauses in Hopfield network. 
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