
I.J. Intelligent Systems and Applications, 2016, 2, 35-44
Published Online February 2016 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijisa.2016.02.05

Copyright © 2016 MECS I.J. Intelligent Systems and Applications, 2016, 2, 35-44

A Model of a Generic Natural Language Interface

for Querying Database

Hanane Bais
1
, Mustapha Machkour

2
 and Lahcen Koutti

3

Information Systems and Vision Laboratory, Department Computer Sciences, Faculty of Sciences, Ibn Zohr University,

Agadir, Morocco

E-mail:
1
baishanan@gmail.com,

2
machkour@hotmail.com,

3
lkoutti@yahoo.fr

Abstract—Extracting information from database is

typically done by using a structured language such as

SQL (Structured Query Language). But non expert users

can’t use this later. Wherefore using Natural Language

(NL) for communicating with database can be a powerful

tool. But without any help, computers can’t understand

this language; that is why it is essential to develop an

interface able to translate user’s query given in NL into

an equivalent one in Database Query Language (DBQL).

This paper presents a model of a generic natural

language query interface for querying database. This

model is based on machine learning approach which

allows interface to automatically improve its knowledge

base through experience. The advantage of this interface

is that it functions independently of the database language,

content and model. Experimentations are realized to

study the performance of this interface and make

necessary corrections for its amelioration

Index Terms—Databases, Natural Language Processing

(NLP), Database Query Language (DBQL), Intermediate

XML logical Query (IXLQ), Extended Context Free

Grammar (ECFG), XML Schema, Auto Generator of

Syntactic Rules (AGSR), Module of Natural Language

Query Definitions (MNLQD), Machine Learning.

I. INTRODUCTION

Natural Language Processing (NLP) is one of the most

active techniques used in Human-Computer Interaction. It

is a branch of Artificial Intelligence (AI) that is used for

information retrieval, machine translation and linguistic

analysis. The main objective of NLP is to allow

communication between human and computers without

memorizing commands and complex procedures [1, 6]. In

other words, NLP allows computer to understand NL.

Moreover the NL is easy to learn and use.

One of the classic problems in the field of NLP which

particularly has recently attracted the attention of the

research community in this area is the Natural Language

Database Interface (NLDBI).

The objective of NLDBI is to extract information from

Database using NL [3, 2]. In this sense, the database user

doesn’t need to have expertise in programming language

to access data from database. Traditionally, people are

used to work with a form, but their anticipations strongly

depend on the capabilities of this form. Wherefore the

using of NLDBI can provide powerful improvements to

the use of data stored in a database. It offers to a large

number of users of database a simple, uniform and

unlimited access to data without learning any DBQL.

The remainder of the paper is organized as follows. In

section 2 we give an overview of existing work showing

their advantages and limitations. Section 3 presents a

brief description of the proposed system. Section 4 details

the architecture of the system. Section 5 reports the

experimental results. Finally, section 6 presents the

conclusions and possible extensions of this work.

II. RELATED WORK

Many researches have been done in the field of NLP

and one of the most important successes of NLP since it

started is NLDBI systems. The success in this area is due

of both the actual helps coming from NLDBI systems and

NLP that works very well in a single-database domain. In

general, databases deal with small enough domains that

ambiguity problems in NL can be resolved successfully

[4].

The earliest research has been started since1960s [5, 6,

2]. Since this date several systems have been created. .

BASEBALL and LUNAR (1972), appeared in late

sixties, were the first operational NLDBI. The

BASEBALL system was designed to answer questions

about baseball games [5, 2]. LUNAR Contained chemical

analysis of moon rocks. It uses an Augmented Transition

Network [7, 2]. However, these systems were Non-

Reconfigurable system. They were designed for a

particular domain and thus could not be easily modified

to interface other different databases.

By late 1970s, various research prototypes were

implemented, like LIFER/LADDER (1978). It was

developed for information about US Navy ships and was

considered one of the first good NLDBI systems [8]. The

system uses semantic grammar techniques that include

syntactic and semantic processing. Although, systems

based on semantic grammars proved difficult to interface

to different application domains since a different

grammar had to be developed if LADDER would be used

with a different application domain. Another system

namely CHAT-80 (1980) is one of the most referenced

NLP systems in the eighties. This system was

implemented in Prolog. In which English query is

converted into prolog expressions, which were evaluated

mailto:machkour@hotmail.com
mailto:lkoutti@yahoo.fr

36 A Model of a Generic Natural Language Interface for Querying Database

Copyright © 2016 MECS I.J. Intelligent Systems and Applications, 2016, 2, 35-44

against the Prolog database. The code of CHAT-80 was

widely circulated and formed the basis of several other

experimental systems such as MASQUE (i.e. Modular

Answering System for Queries) [3]. A modified version

of The MASQUE is MASQUE/SQL [10, 2] system. It

translates the NL query into an intermediate logic

representation, and then translates the logic query into

SQL. But this system has some Shortcoming. If the SQL

query fails, the system does not identify which part of the

query produced the failure. It is also domain dependent

and must be configured for other knowledge domains.

Recently many NLDBI are developed such as the

PRECISE system (2004) and NALIX (Natural Language

Interface for an XML Database) (2006). PRECISE is

developed at the University of Washington. It is one of

the best examples based on approaches interesting to the

Design of NLDBIs that are database independent [10]. By

combining the latest advances in statistical parsers with a

new concept of semantic tractability, PRECISE becomes

easily highly reconfigurable system. Therefore PRECISE

is able to perform impressively in semantically tractable

questions. However the system had the problem of

treatment nested structures.

NALIX is the first generic interactive Natural language

query interface to XML database (extensible markup

language). This system is developed at the University of

Michigan. The processes of transformation used in

NALIX are done in three phases: generating a Parse tree,

validating the parse tree, and translating the parse tree to

An XQuery expression. So NALIX can be classified as

syntax based system. The system uses Schema-Free

XQuery as the database query language. The advantage

of Schema-Free XQuery is that it is not necessary to map

a query into the exact database schema, since it will

automatically find all the relations given certain

keywords [12].

In this paper we cope with tree issues present in many

NLDBIs. The first one is that some NLDBIs are based on

intermediate representation [13]. In these the NLQ is

translated into a logical query and this latter is translated

into DBQL. But not all forms of logical query are

independent of database language. The second problem

exists in systems that use syntactic parsing in which the

syntax rules describing the terminal symbols are domain-

dependent [15].So to be ported to another domain these

rules must be manually changed. The last problem is that

many NLDBI don’t improve the waiting time for

translating the questions already processed. In the next

sections we propose some solutions to resolve these

problems.

III. PROPOSED SYSTEM

In this section we present a brief description of our

system. the proposed idea consist of the implementation

of a generic natural language query interface for

relational database based on machine learning

approach .The system architecture is based on

intermediate representation language. Firstly, the NL

query is parsed syntactically, and then the parser tree

translated by the semantic analyzer into an Intermediate

XML Logical Query (IXLQ). Then The IXLQ is

translated to an expression in the DBQL such as SQL,

and evaluated against the database system. By using the

intermediate language approach, our system is divided

into two parts. One part starts from a natural language

query to the generation of IXLQ. The second part starts

from a logical query until the generation of DBQL. The

idea to express logical Queries in XML form has the

advantage of being independent of both the database

language and natural language. Consequently the system

is independent of the database language, content and

model (Relational, Relational-Object, Object, XML, and

so on).

For parsed natural language query, our system uses two

types of syntactic rules. The first type includes the

syntactic rules linking non-terminal symbols (non-leaf

nodes in the parse tree) and the corresponding semantic

rules are domain-independent rules (i.e. they can be used

in any application domain). These rules are described

using an extended context free grammar (ECFG). The

second type is the syntactic rules linking terminal

symbols (leaf nodes) are domain-dependent rules; these

rules are generated automatically by an Auto Generator

of Syntactic Rules (AGSR). With this generator our

system becomes learning and generic system and then it

automatically improves through experience its knowledge

base.

By using some syntactic and semantic rules the user

can ask a question with multi-queries. Our system treats

this question as a complex query, divides it to elementary

queries and displays the result corresponding to each

query.

In our system we use a Module of Natural Language

query definitions (MNLQD). This module contains a set

of classes of IXLQ. Each class represents a logical

interpretation of many natural language queries. The

integration of this part in our system is going to minimize

the waiting time for translating the questions already

asked by the user. In the following sections of this article,

we will clearly describe this module.

IV. SYSTEM ARCHITECTURE

The process of transformation of natural language

query cited above is illustrated in the Figure 1, which

represents the architecture of our system.

As illustrated in figure 1, the proposed architecture is

divided into tree modules: the linguistic component

module, the database knowledge component module and

MNLQD.

 A Model of a Generic Natural Language Interface for Querying Database 37

Copyright © 2016 MECS I.J. Intelligent Systems and Applications, 2016, 2, 35-44

Fig.1. System Architecture

The first module controls the linguistic aspect, where

the natural language Query is submitted a many analysis

operations (morphological, syntactic and semantic

analysis). At the end of this procedure, we obtain an

intermediate XML logical query (IXLQ). This expression

corresponds to the XML interpretation of the initial

natural language Query. The second module is used to

translate IXLQ to DBQ expression. This latter is sent the

to the database jet for producing the answer. In the next

we explain in depth how these modules work.

By separating between linguistic component module

and the database knowledge component module is the

guarantee that the system can be ported to another

relational database.

The Module of Natural Language Query Definitions

(MNLQD) to reduce the waiting time for translating

questions already processed.

A. Linguistic Component

The linguistic component performs three analyses:

morphological, syntactic and semantic explained as

follows:

1) Morphological Analysis

The purpose of the morphological analysis is to

segment the text into individual units that called tokens

and determines the different characteristics of these units.
This process is performed by the following functions:

 Token analyzing: this function is used to split the

input sentence in primitive units called tokens,

which is considered as a single logical unit.

 Spelling checker: this function ensures that each

token is in the system dictionary, if this is not the

case, then spell checking is performed or a new

word is added to the system vocabulary.

 Ambiguity reduction: this function minimizes the

ambiguity in a sentence to simplify the task of the

next analysis by replacing several words or

symbols with canonical internal words.

 Tagger: this function determines the grammatical

category of each token.

 Morpheme: this function is used to determine the

morpheme of each token.

2) Syntactic Analysis

After the morphological analysis stage, the syntactic

analysis is used to show how the words of query entered

38 A Model of a Generic Natural Language Interface for Querying Database

Copyright © 2016 MECS I.J. Intelligent Systems and Applications, 2016, 2, 35-44

by the user are related to each another. This transaction

will enable our system to know the syntactic structure of

the request and explain the dependency relationships

between different words. This is done by applying a set of

syntactic rules. These rules constitute a formal grammar,

which describe the grammatical structures of the request.

Our system uses the Extended Context-Free Grammar

(ECFG) [14], presented in the figure2.

─ S QU’AUX_V OBS (CONDITION) (ORDER)

(CONJ S)

─ S OBS (CONDITION) (ORDER) (CONJ S)

─ S VP OBS (CONDITION) (ORDER) (CONJ

S)

─ VP  V (PRON)

─ AUX_V IS | ARE |WANT

─ QUEWHO | WHAT | WHERE | WHICH

─ OBS  OB (CONJ OBS)

─ OB  NP

─ NP  (DET) ADJ_EXPR (CONJ NP)

─ NP  (QUANT) (POSADJ) (DET) N (CONJ NP)

─ NP  NP PP (CONJ NP)

─ QUANT  ALL | ANY | EVERY

─ PRON  ME | US | THEM | HER

─ POSADJ  MY| YOUR| HIS |HER| ITS | OUR

─ PP  PREP NP

─ PREP

─  OF | IN | AT | TO |ON

─ ADJ_EXPR  (ADJ) NP

─ CONDITIONCOND OP (CONJ CONDITION)

─ COND  WHERE | WHOSE | WHOM | HAVING |

WITH

─ OP OB SYMBOL VALUE

─ SYMBOL IS | = | > | >= | < | <= | <> |IN | LIKE

─ ORDER  ORD NP (CONJ ORDER)

─ ORD ORDER BY | SORTED BY | ACCORDING

TO

─ CONJ  AND | OR

Fig.2. Extended Context-Free Grammar used by the system

The syntax rules represented in the above ECFG are

linking non-terminal symbols and are domain-

independent rules. The syntax rules linking terminal

symbols are domain-dependent. These rules are generated

by an Auto Syntactic Rules Generator (ASRG).

This ASRG is based on machine learning approach, we

use This approach due to its experienced considerable

growth in recent years, and its interactions with the NLP
are increasingly close and frequent, therefor it allows the

system to automatically improve through experience of

its knowledge base [11].the aim of ASRG is to check

whether all the syntactic rules necessary to parse the user

query exist in the system knowledge base. If not, it

detects automatically the necessary syntactic rules; it

creates and adds them to the knowledge base. This part of

our system will help to adapt its knowledge base with

user requests and therefore it can function regardless of

the database domain and it will be generic system.

The result of syntactic analysis is a description of the

syntactic structure of natural language query in the form

of a derivation tree or parse tree (see Figure 3). A parse

tree is composed of nodes and branches; each node can

be a root node, a branch node or a leaf node. An interior

node of a parse tree is a phrase and is called a non-

terminal of the grammar, and a leaf node is a word and is

called a terminal of the grammar [16].

The figure 3 displays the parse tree representing the

syntactic structure of the NLQ “Show me the address of

client whose age > 25 and name is 'AHMED' ”:

Fig.3. Parser tree of the NLQ “Show me the address of client whose

age > 25 and name is 'AHMED'”

3) Semantic Analysis

The overall objective of the semantic analysis is to

assign a logical meaning to the parse tree created by the

syntactic analysis. This is done by applying a set of

semantic rules, which are used to translate the parse tree

to a logical query.

Each syntactic rule defined in Figure 2 has a

corresponding semantic rule. For this reason the

translation process is called rule-by-rule style [17]. In our

system we use a particular model of semantic rules.

Table1 shows some examples of semantic rules with their

corresponding syntactic rules:

Table 1. Semantic rules with their corresponding syntax rules

Semantic rule corresponding syntactic rule

<attribute > pre <object> NP PREP NP

< attribute 1> cc < attribute 2 >

pre <object>

NP CONJ NP PREP NP

< attribute > pre <object1> cc <

object2 >

NP PREP NP CONJ NP

<attribute> pre <object> symbol

<attribute value>

NP PREP NP SYMBOL

VALUE

We have already mentioned in the previous paragraph

that the application of semantic rules on the parse tree

produces the IXLQ. In xml, we can define the structure of

IXLQ by the following XML Schema:

<xs:schema elementFormDefault="qualified">

 <xs:element name="REQUEST" type="REQUEST"/>

 <xs:complexType name="REQUEST">

 <xs:sequence>

 <xs:element name="SELECT" type="SELECT"/>

 A Model of a Generic Natural Language Interface for Querying Database 39

Copyright © 2016 MECS I.J. Intelligent Systems and Applications, 2016, 2, 35-44

 <xs:element name="COND" type="COND"

minOccurs="0" maxOccurs="unbounded"/>

 <xs:element ref="ORDER" type="ORDER"

minOccurs="0" maxOccurs="1"/ >

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="SELECT">

 <xs:sequence>

 <xs:element name="OBJECT" type="OBJECT"

minOc curs="1" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="COND">

 <xs:sequence>

 <xs:element name="OBJECT" type="OBJECT"/>

 <xs:element name="SYMBOL" type="xs:string"/>

 <xs:element name="VALUE" type="xs:string"

minOccurs="1" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="ORDER">

 <xs:sequence>

 <xs:element name="OBJECT" type="OBJECT"

minOccurs="1" >

 </xs:sequence>

</xs:complexType>

<xs:complexType name="OBJECT">

 <xs:sequence>

 <xs:element name="ATTRIBUT" type="ATTRIBUT"

minOccurs="1" maxOccurs="unbounded"/>

 <xs:element name="Name" type="xs:string"/>

 </xs:sequence>

</xs:complexType>

<xs:complexType name="ATTRIBUT">

 <xs:sequence>

 <xs:element name="AGGREGA" type="xs:string"

minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="Name" type="xs:string"/>

 </xs:sequence>

</xs:complexType>

</xs:schema>

The following IXLQ displays the logical query

associated to the parse tree of the NLQ “Show me the

address of client whose age >25 and name is 'AHMED' ”

(see Figure 3):

<REQUEST>

 <SELECT>

 <OBJECT>

 <NAME> client </NAME>

 <ATTRIBUT>

 <NAME> address </NAME>

 </ATTRIBUT>

 </OBJECT>

 </SELECT>

 <COND>

 <OBJECT>

 <ATTRIBUT>

 <NAME> age </NAME>

 </ATTRIBUT>

 </OBJECT>

 <SYMBOL> > </SYMBOL>

 <VALUE> 25 </VALUE>

 </COND>

 <COND>

 <OBJECT>

 <ATTRIBUT>

 <NAME> name </NAME>

 </ATTRIBUT>

 </OBJECT>

 <SYMBOL> is </SYMBOL>

 <VALUE> AHMED </VALUE>

 </COND>

 </REQUEST>

During the generation of the IXLQ, the system uses a

Module of Natural Language Query Definitions

(MNLQD). This module is composed of a set of classes.

Each class contains multiple queries in natural languages

that have the same logical interpretation.

The integration of MNLQD in our system has multiple

advantages. It becomes able to reuse the already

processed query and then reduces the query response time.

The function of this module is based on a classification

method that’s used to classify natural language queries

according to their logical interpretation (IXLQ). The

graph in Figure 4 describes the operation of MNLQD:

Fig.4. The operation of MNLQD

B. Database Knowledge Component

The database knowledge component consists of two

parts: DBQ generation and DBQ execution.

1) DBQ Generation

The task of the DBQ generation is to translate the

IXLQ created by the semantic analyzer into SQL. By

mapping each element of the logical query to its

40 A Model of a Generic Natural Language Interface for Querying Database

Copyright © 2016 MECS I.J. Intelligent Systems and Applications, 2016, 2, 35-44

corresponding clause in the SQL query. The DBQ

generation consists of four phases. Each phase

manipulates only one specific part of the SQL query. The

concatenation of the results of the four phases constructs

the final SQL query.

The first phase deals with the part of the logical query

that corresponds to the names of attribute for building the

SELECT clause. The second phase, builds the FROM

clause by selecting the portion of the logical query that is

mapped the table name or a group of table names. The

third phase extracts the conditions of selection from of

the logical query to construct the WHERE clause. At the

fourth phase, we select the portions of the logical query

that corresponds to the order of presenting the result of

SQL query (i.e. ORDER BY clause). Each one of these

phase is followed by a test which consists to verify if the

name of tables and attributes, extracted from logical

query, are valid or exist in dictionary of database. If it’s

not the case, the system uses a domain specific dictionary

(mapping table) which stores the synonyms of table and

attribute names. The mapping table helps the user to write

his query with different natural language sentences.

2) DBQ Execution

Once the DBQ is generated it will be executed by the

Database Management System (DBMS), and then,

displays the answers returned in tabular form.

V. SYSTEM RESULTS

In this section, we present some results of our proposed

system. The user can ask the same question with different

ways (often more than sixty ones) using different query

verbs such as: Show, Find, Tell, Search, Give, List and

Display. Also it’s possible to put a natural language

question without query verb. Each of these questions can

be written in eight different syntactic manners (see figure

2).

The interface represented in figure 5 shows the

translation of the NLQ: “Show me the clients whose

age > 25” into a SQL query. It composes by four

textboxes: The first textbox used to enter the user NLQ.

The second textbox shows the parse tree of the NLQ

entered by the user. While the third textbox displays the

logical interpretation of the parse tree. Finally the fourth

textbox shows the SQL query. This interface has also two

buttons: button “Start” for start the translation processes

and button “Execute SQL” for execute the SQL query,

and then, displays the answers returned in tabular form.

The following tables show a list of variety of NLQ that

are successfully translated and executed by our system.

The first section of these NLQs is queries without

projection and selection. In this type of query the user

doesn’t specify any attribute and any conditions. The

table 2 presents some example of these queries.

Fig.5. The system interface

Table 2. NLQ without projection and selection

Natural language query
Generated

SQL
Comment

Give projects

SELECT *

FROM
project

─ Many ways

to ask the same

question.

─ All these

NLQ belong to
the same

MNLQD class

Give all projects

Give me our projects

Give me all projects

Give me projects

Give our projects

Give me all our projects

Give all our projects

Projects?

What are our projects?

All our projects?

list all our clients
SELECT *

FROM
customer

Use of the

Synonymous of
table name list all our customers

Show me all our clients
 and projects

SELECT *

FROM
customer

Question with

multi-queries

SELECT *

FROM project

The table 3 displays some example the second section

of NLQs, which are queries with projection and without

selection. In This type of query the user identify some

attribute, but he doesn’t specify any conditions

 A Model of a Generic Natural Language Interface for Querying Database 41

Copyright © 2016 MECS I.J. Intelligent Systems and Applications, 2016, 2, 35-44

Table 3. With Projection and without Selection

Natural language

query

Generated SQL Comment

give me the names of
our employee

SELECT
employee.name

FROM employee

query with one
attribute

give me all our clients

names

Names, age and sex of

student

SELECT

student.name,

student.age,
student.sex

FROM student

query with many

attributes

display me all our
student names and age

and sex

What are our projects
labels

SELECT
project.designatio

n

FROM project

Using the
Synonyms of

attribute name

Find all the names of

clients and projects

SELECT

customer.name
FROM customer

Question with

multi-queries

SELECT
project.disignatio

n FROM project

Table 4. Queries with selection

Natural language
query

Generated SQL Comment

display all clients
whose names are

"Hanane"

SELECT * FROM
customer where

customer.names

=‘Hanane’

Conditioned

query without
selected

attributes
all our client whose

names are "Hanane" or

"Mustapha"

SELECT* customer

FROM customer

where customer.names
in(‘Mustapha’,

‘Hanane’)

display all invoice

whose sum is between

1000 and 20000

SELECT * FROM

invoice where

invoice.amount
between 1000 and

20000

Search all customers

whose names ends

with p

SELECT * FROM

customer where

customer.names like
‘ percentp’

What are our Clients

names and sex whose
address is "Hay

Dakhla Agadir"?

SELECT

customer.name,
customer.sex FROM

customer where
customer.address

=‘Hay Dakhla Agadir’

Conditioned

query with
specific

Selected

attributes display all sum of
invoice

where sum is more
than 1000

SELECT
invoice.amount

FROM invoice where
invoice.amount > 1000

Give me the addresses
of clients

where age greater than

or equal to 25 and
name is "Hanane"

SELECT
customer.address,

customer.sex FROM

customer where
customer.names

=‘Hanane’ and
customer.age >= 25

give me the names of

all our clients and
projects and show me

the clients whose age
is greater than 20

SELECT * FROM

customer

Question with
multi-queries SELECT * FROM

project

SELECT * FROM
customer where

customer.age > 25

The third section of NLQs is queries with selection;

these queries can be with projection or without projection.

In this question the user defined some specific criteria.

Table 4 depicts some examples of conditioned query.

The last section of questions is a query with aggregate

function. Table 5 depicts some examples of those queries:

Table 5. Query with aggregate function

Natural language query Generated SQL

Give me the number of
clients whose names are

"Hanane"

SELECT COUNT (*) AS
NB_client FROM customer where

customer.names =‘Hanane’

Count me all our project SELECT COUNT (*) AS
NB_project FROM project

Display me the totality of

invoice amount where

amount of invoice is older

than 1200

SELECT SUM(invoice.amount) AS

SUM_INVOICE_AMOUNT

FROM invoice where

invoice.amount >1200

Display me the average of

invoice amount

SELECT AVG(invoice.amount) AS

AVG_INVOICE_AMOUNT

FROM invoice

Give me the smallest

amount of invoice

SELECT MIN (invoice.amount)AS

MIN_INVOICE_AMOUNT

FROM invoice

show the max amount of

invoice where sum is less

than 1000

SELECT MAX

(invoice.amount)AS

MIN_INVOICE_AMOUNT
FROM invoice where

invoice.amount < 1000

What is the invoice with

the max amount?

SELECT * FROM invoice where

invoice.amount in (SELECT MAX
(invoice.amount) FROM invoice)

We have tested the performance of system by a set of

13493NLQ, which created using a program. To classify

the result obtained with this experiment, we use the

decision tree show in figur6.

Fig.6. Decision tree

We said that query is correctly generated if the

Database queries produced is syntactically correct. The

different results obtained by our test were tabulated in

table 6.

42 A Model of a Generic Natural Language Interface for Querying Database

Copyright © 2016 MECS I.J. Intelligent Systems and Applications, 2016, 2, 35-44

Table 6. The results obtained by the first test

NLQ Answered Queries
Unanswered

Queries

13493

(100 percent)

12622 (93.5480 percent)

871

(6.4508 percent)

DBQ Correctly

generated

DBQ
Incorrectl

y

generated

11956 (94.7948
percent)

666(5.20

51
percent)

The Table 6 shows that our system gave an answer of

94.79 percent in the 13493 queries. For 6.4508 percent of

queries, the system didn’t give any answer. 11956 NLQs

are correctly converted into DBQ. While 666 queries

produce incorrect database queries.

To find explanation for errors, we have examined the

output of the NLQ and obtained the result presented at

Table 7.

Table 7. The result of errors explanation

 Error in Incorrectly

generated

(666)

Error in

Unanswered queries

(871)

Error in

Morphological
analysis

151 (22.9832

percent)

64 (7.3478 percent)

Error in

syntactic

analysis

111 (15.5251

percent)

807 (92.6521

percent)

Error in

Semantic
analysis

389 (58.2085

percent)

0 (0 percent)

Error in

Generation of
database

query

15 (2.2831 percent) 0 (0 percent)

From Table 7, we observe that the Morphological

analysis produced 7.34 percent of errors in unanswered

queries and 22.983 percent of errors in incorrectly

generated queries. Generally, one of the reasons of these

errors is that in some NLQ the system considers some

verb like noun. For Example in the query "count all

clients whose ages > 50" the token "count" is considered

as a noun not a verb.

We also observe that syntactic analysis has resulted

around 15.52 percent of errors in the 666 queries that are

incorrectly generated and 92.6521 percent of Errors in

unanswered queries. These errors occurred because the

parser generates some parse trees that don't match the

initial NLQ. For instance, in the query "Display me the

sum of ages and names of clients", the parser considered

the chunk “sum of age” refers to the age object and the

chunk “names of client” refers to the client object,

whereas both of them refer to one object: "clients".

The errors in semantic analysis represent 58.20 percent

of the total errors found in database queries that are

incorrectly generated. The cause of these errors is that the

semantic analysis doesn’t convert correctly the parser tree

into IXLQ. As example in the sentence: "give me the

ages and names of clients and employees", the parse tree

demonstrates that the "names" and "ages" refer to "client"

and "employee", however the IXLQ result of this parse

tree shows that "name" and "age" refer just to "client".

The errors relate to the generation of database query

has just been 2.28 percent. These errors can be avoided at

program level.

For the Queries that are correctly generated, not all of

the generated DBQ match NLQs. The Table 8 displays

the number of DBQ matches NLQ and the numbers of

DBQ don’t match NLQ.

Table 8. DBQ matches NLQ

 DBQ matches

NLQ

DBQ not matches

NLQ

 Number of queries

(11956)

10900 1056

percent 91.1676 percent 8.8323 percent

As presented in Table 8, we show that 91, 99 percent

of database queries that are correctly generated match

NLQ, while 8.83 percent of answers not match NLQ.

In the figure 7 present the decision tree decorated by

values obtained by the experimentations.

Fig.7. Decision tree decorated by obtained values

The table 9 shows the results for runtime minimization

of the some NLQ when they are executed on a notebook

with AMD C-50 processor 1.00 GHz and 2GO of RAM

Table 9. Results for runtime minimization

 runtime of

query asked
in first time

(s)

runtime if

query is
already

asked (s)

performance

achieved

queries without
projection and

selection

7.80 0.26 96.6 percent

queries with
projection and

without selection

8.85 0.43 95.14 percent

queries without
projection and

with selection

9.92 1.55 84.37 percent

queries with
projection and

selection

10.76 1.917 82.24 percent

Query with
aggregate

function

10.452 1.87 82.10 percent

 A Model of a Generic Natural Language Interface for Querying Database 43

Copyright © 2016 MECS I.J. Intelligent Systems and Applications, 2016, 2, 35-44

VI. CONCLUSION AND FUTURE WORKS

This research paper presents a study on constructing a

generic natural language query interface for database

based on machine learning approach. The main objective

of this system is to allow communication between

database and its users using natural language. The system

has the capabilities to translate natural language query

into an equivalent SQL query after processing through

multiple steps and generates answers in tabular form. The

primary advantages of this system are that it’s

independent of the database language, domain and model

and it’s able to automatically improve its knowledge base

through experience.

The results show that the techniques used by our

system can produce reasonable answers for very

important types of natural language queries also the

integration of MNLQD in our system provides important

advantages. It reduces the runtime for translating the

questions already asked by the user.

As future work we intend to continue to solving more

complex queries and using other mechanism for better

performance. Also we would like to construct a generic

multi-langue query interface for database.

REFERENCES

[1] Gauri Rao, et al., ‘Natural language Query Processing

Using Semantic Grammar’, in International Journal on

Computer Science and Engineering, Vol. 02, pp.219-223,

2010.

[2] Avinash J. Agrawal, Dr. O. G. Kakde, ‘Semantic Analysis

of Natural Language Queries Using Domain Ontology for

Information Access from Database’, in I.J. Intelligent

Systems and Applications, 12, pp. 81-90, 2013.

[3] N. Nihalani, S. Silakari, M. Motwani., ‘Natural language

interface for database: a Brief review’, in International

Journal of Computer Science Issues 8 (2), pp.600-608,

2011.

[4] Jasmeen Kaur, Bhawna chauhan and Jatinder Kaur

Korepal, ‘Implementation of Query Processor Using

Automata and Natural Language Processing’, in

International Journal of Scientific and Research

Publications, Vol. 3, Issue 5, pp.1-5, 2013.

[5] Androutsopoulos, G.D. Ritchie, and P. Thanisch, ‘Natural

Language Interfaces to Databases – An Introduction’, in

Journal of Natural Language Engineering 1 Part 1, pp.29-

81,1995.

[6] Huangi, Guiang Zangi, Phillip C-Y Sheu, ‘A Natural

Language database Interface based on probabilistic

context free grammar’, in IEEE International workshop on

Semantic Computing and Systems, 2008.

[7] Woods, W. A. Progress in natural language understanding:

An application to LUNAR geology. AFIPS Natl.

Computer. Conj: Expo. Conference Proc. 42, pp.441-450,

1973.

[8] Hendrix, G.G., Sacerdotal, E.D., Sagalowicz, D., Slocum,

J. ‘Developing a natural language interface to complex

data’ in ACM Transactions on database systems, 3(2),

pp.105-147, 1978.

[9] Androutsopoulos, I., Ritchie, G.D., and Thanisch, P,

‘MASQUE/SQL - An Efficient and Portable Natural

Language Query Interface for Relational Databases’, in

Proceedings of the 6th International Conference on

Industrial and Engineering Applications of Artificial

Intelligence and Expert Systems,1_4 June1993 Edinburgh,

Scotland, pp.327-330, 1993.

[10] Ana-Maria Popescu, Alex Armanasu, Oren Etzioni, David

Ko and Alexander Yates., ‘Modern Natural Language

Interfaces to Databases’, Composing Statistical Parsing

with Semantic Tractability COLING, 2004.

[11] Y.W. Wong,’ learning for semantic parsing using

statistical machine translation techniques’, in Technical

Report UT-AI-05-323, University of Texas, Austin, 2005.

[12] Y. Li, H. Yang, H.V. Jagadish, ‘NALIX: an interactive

natural language interface for querying XML’, in

Proceedings of the International Conference on

Management of Data, pp.900-902, 2005.

[13] Minock, M, ‘C-Phrase: A System for Building Robust

Natural Language Interfaces to Databases’, in Journal of

Data Engineering (DKE), 69(3), pp.290-302.

[14] Jurgen Albert, Dora Giammarresi and Derick Wood.

(2001), ’Normal form algorithms for extended context-

free grammars’, in Theoretical Computer Science 267,

pp.35-47, 2010.

[15] C. Manning, H. Schütze, ‘Foundations of Statistical

Natural Language Processing’, MIT Press, Cambridge,

1999.

[16] Luis Tari, Phan Huy Tu, Jorg Hakenberg, Yi Chen, Tran

Cao Son, Graciela Gonzalez and Chitta Baral, ‘Parse Tree

Database for Information Extraction’, in IEEE

transactions on knowledge & data, engineering, 2010.

[17] P. Reis, J. Matias and N. Mamede, ‘Edit – A Natural

Language Interface to Databases’: A New Dimension for

an Old Approach’, in Proceedings of the Fourth

International Conference on Information and

Communication Technology in Tourism (ENTER’ 97),

Edinburgh, 1997.

Authors’ Profiles

Bais Hanane received her Master's degree

in Computer Science and Network Systems

in 2013 from Departments of Mathematics

and Computer Science, Faculty of Science,

University Ibn Zohr, Agadir, Morocco. she

is currently a Ph.D. candidate of the Ibn

Zoher University, Agadir, Morocco. her

research interests include DataBase system,

natural language processing and artificial intelligence.

Mustapha. Machkour is a professor of

higher education, department of

Mathematics and computer Sciences, Ibn

Zohr University, Agadir, Morocco.

Member of Laboratory of Computer

Systems and Vision, Faculty of Science,

Ibn Zohr University, Agadir Morocco.

Current research interests include Image

processing, Data security in Information systems, multimedia

information, DataBase System, logic and artificial intelligence.

44 A Model of a Generic Natural Language Interface for Querying Database

Copyright © 2016 MECS I.J. Intelligent Systems and Applications, 2016, 2, 35-44

Lahcen Koutti is currently a Professor at

Department of Computer Science in Faculty

of Science, Ibn Zohr University, Agadir,

Morocco. He received the Ph.D. degree in

computational physics in 1999 from

University Paul Verlaine, France and the

Habilitation degree in 2010, from Ibn Zohr

University, Morocco. He was a software

engineer in a multinational company "ALDATA". His research

interests include Artificial Intelligence and Computer Vision.

Koutti is a member of the Computer Systems and Vision

Laboratory.

http://www.univ-montp2.fr/

