
I.J. Intelligent Systems and Applications, 2016, 4, 60-66
Published Online April 2016 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijisa.2016.04.07

Copyright © 2016 MECS I.J. Intelligent Systems and Applications, 2016, 4, 60-66

Multi-Objective Memetic Algorithm for FPGA

Placement Using Parallel Genetic Annealing

Praveen T. and Arun Raj Kumar P.
National Institute of Technology (NIT) - Puducherry, Computer Science and Engineering, Karaikal, India

E-mail: tp14393@gmail.com, park286@gmail.com

Abstract—Due to advancement in reconfigurable

computing, Field Programmable Gate Array (FPGA) has

gained significance due to its low cost and fast prototyping.

Parallelism, specialization, and hardware level adaptation,

are the key features of reconfigurable computing. FPGA is

a programmable chip that can be configured or

reconfigured by the designer, to implement any digital

circuit. One major challenge in FPGA design is the

Placement problem. In this placement phase, the logic

functions are assigned to specific cells of the circuit. The

quality of the placement of the logic blocks determines the

overall performance of the logic implemented in the

circuits. The Placement of FPGA is a Multi-Objective

Optimization problem that primarily involves

minimization of three or more objective functions. In this

paper, we propose a novel strategy to solve the FPGA

placement problem using Non-dominated Sorting Genetic

Algorithm (NSGA-II) and Simulated Annealing technique.

Experiments were conducted in Multicore Processors and

metrics such as CPU time were measured to test the

efficiency of the proposed algorithm. From the

experimental results, it is evident that the proposed

algorithm reduces the CPU consumption time to an

average of 15% as compared to the Genetic Algorithm,

12% as compared to the Simulated Annealing, and

approximately 6% as compared to the Genetic Annealing

algorithm.

Index Terms—Field Programmable Gate Array (FPGA),

Genetic Algorithm (GA), Genetic Annealing (GASA),

Parallel Genetic Algorithm (PGA), Simulated Annealing

(SA), Non-Dominated Sorting Genetic Algorithm

(NSGA-II).

I. INTRODUCTION

Reconfigurable computing involves computation using

high performance hardware that can adapt to changing

computational requirements, with software flexibility.

Reconfigurable computing involves the use of

reconfigurable devices, such as FPGAs, for computing

purposes. FPGA has gained its popularity in implementing

digital circuits because of low cost and fast prototyping.

The correct placement of logical blocks in FPGA is an

optimization task, which involves multiple objectives. The

placement problem [1][2][3] deals with finding certain

locations for each cell on the entire layout such that it

minimizes the certain objective functions subjected to

certain constraints imposed by the designer. Given a set of

m modules, M = {M1, M2, …, Mm}, a set of n nets N = {N1,

N2, …, Nn}, and a set of p primary input pins and primary

output pins R = {R1, R2, …, Rp}, associate with each

module Mi∈ M a set of nets NMi where NMi⊆ N. Similarly,

associate each net Ni∈ N to a set of modules MNi where

MNi= {Mj| Ni ∈NMj}. Given a set of locations L = {L1,

L2, …,Lk}, where k ≥ n. The placement problem is defined

as follows:

 To assign each Mi ∈ M to a unique location Lj such

that the objective functions are optimized.

Usually each module is considered to be a point, and if

Mi is assigned to location Lj then it‟s position is defined by

the coordinate values (xj, yj).

The placement problem is NP-complete problem. The

Placement of FPGA is a Multi-Objective Optimization

Problem which primarily involves minimization of three or

more objective functions. The Presence of multiple

objectives in a problem gives rise to a set of optimal

solutions largely known as Pareto-optimal solutions,

instead of a single optimal solution. In the absence of

further information, one of these Pareto-optimal solutions

may not be better than the other. Thus, treating the

placement as multi-objective one and finding multiple

pareto-optimal solutions allows the designer to have a

deeper understanding of the problem and its optimal

solutions. In this paper, we propose a combination of

Multi-Objective Optimization algorithm and Simulated

Annealing technique to solve the placement problem. The

Algorithm divides the FPGA blocks into clusters, then

each cluster executes Non Dominate Sorting Genetic

Algorithm (NSGA-II) [10][12], a most widely used

multi-objective optimization algorithm in parallel for each

cluster. Further, the best solution of each cluster is

migrated to other clusters if required, based on the

migration coefficients using fuzzy logic.

The process is repeated until the termination criteria are

met. Eventually, the best solution is chosen based on the

requirement. Simulated annealing is used for further

improvement of the best solution chosen.
The paper is organized as follows: In Section II, the

existing algorithms to solve the placement problem is

discussed. In Section III, the multi-objective optimization

and NSGA-II are explained. In Section IV, the proposed

 Multi-Objective Memetic Algorithm for FPGA Placement Using Parallel Genetic Annealing 61

Copyright © 2016 MECS I.J. Intelligent Systems and Applications, 2016, 4, 60-66

algorithm is elucidated. In Section V, the experimental

results and graphs are analyzed and Section VI concludes

our work.

II. EXISTING ALGORITHMS

Placement is usually separated into global and detailed

placement. Global placement algorithms [17][18] include

analytical techniques whereas detailed placement uses

various kinds of local optimizations. Some of the

placement techniques in the literature have been discussed

in this section.

The first one is Genetic algorithm

[1][3][4]: The

algorithm starts with an initial set of random solutions

termed as population. Each individual in the population

consists of a string of bits termed as genes. The

chromosome, which is made up of genes, represents a

solution to the problem. At each generation, the individuals

in the current population are evaluated using fitness

function. These individuals with high fitness values, i.e.

good placement solutions, are more likely to be selected

and genetic operators such as crossover and mutation are

employed to find a good solution. As a result, the fitness of

population evolves as the number of generation increases.

Different types of genetic algorithms with different

combination of selection and crossover operators have

been used in literature.

Second one is Simulated Annealing [1][6][9]: The

algorithm starts with random initial set of solutions and

initialization of high temperature. Perturb the solution with

a defined move, and the change in value due to the

corresponding move is calculated, depending on which

acceptance or rejection of the corresponding move is to be

decided. The temperature value is updated by lowering the

temperature and repeat the process until the freezing point

is reached.

Third one is Parallel Genetic Algorithm (PGA)[5][21]:

The algorithm divides the FPGA into different clusters and

then genetic algorithm is applied parallel to each cluster.

The best solution from one cluster is sent to the other by

using migration technique. Different approaches of PGA

such as the master-slave approach, Grid approach, parallel

simulated annealing approach, etc., have been used in

literature.

Fourth one is Genetic Annealing Technique

[7][9]: The

genetic algorithm is applied over a period of generation

and then the best solution is chosen. Simulated annealing is

used for local optimization.

Fifth one is the Stochastic Tunneling Approach [13]:

The Dynamically adaptive stochastic tunneling (DAST)

algorithm is to avoid the “freezing” problem commonly

found when using simulated annealing for circuit

placement on field programmable gate arrays (FPGAs).

The placement is achieved by allowing the DAST placer to

tunnel energetically inaccessible regions of the potential

solution space. The existing solutions in the literature are

compared and listed in Table 1.

Table 1. Comparison of Existing for FPGA Placement

ALGORITHM ADVANTAGES DISADVANTAGES

Genetic

Algorithm

(GA)

The algorithm

works over a

population of

solution and is

based on natural

selection,

therefore with

fitness function

the search is

guided to find the

optimal solution.

Sometimes it may get stuck

in local minimum and may

not yield the global

solution. It is slow process.

For large problem, the

determination of the

optimal solution may take

considerable amount of

time.

Simulated

Annealing

(SA)

It is comparatively

much faster than

the genetic

algorithm.

It does not yield the exact

global solution but solution

near to the global solution.

Parallel Genetic

Algorithm

(PGA)

Comparatively

much faster than

the both, genetic

algorithm (GA)

and simulated

annealing (SA).

The number of

iterations is much

lower.

Synchronization and

migration problem exist,

because of which it may

not give better solution.

Fixing the migration rate as

constant may hinder the

performance of the

algorithm.

Genetic

Annealing

(GASA)

Yields a much

better and quality

solution as

compared to the

other algorithms.

The number of Iteration

becomes too higher which

degrades the performance

of the algorithm.

III. MULTI-OBJECTIVE OPTIMIZATION AND NSGA-II

Classical optimization methods suggest converting the

multi objective optimization problem to a single-objective

optimization problem by emphasizing one particular

Pareto-optimal solution at a time. This is done by the

weighted sum or ɛ-constraint approach. Although it is

argued that the conversion of the multi objective problem

to a single objective can find pareto-optimal solution but

there are few drawbacks. First, the multiple applications

may not always produce different optimal solutions.

Second, uniformly distributed set of pareto-optimal

solutions may not be found i.e., better spread of solution

may not be obtained. Thus, multi-objective optimization

are computationally faster and ideal for finding well

distributed set of pareto-optimal solutions.

In the proposed algorithm, NSGA-II[10] is used for the

multi-objective optimization. Our problem is a three

objective optimization problem where we have to place the

logical blocks of FPGA such that the following goals are

achieved:

 Critical path or the time for mapping is minimized.

 The power consumption of the programmable

routing is minimized.

 The overall wire-length of the mapped circuit is

minimized.

62 Multi-Objective Memetic Algorithm for FPGA Placement Using Parallel Genetic Annealing

Copyright © 2016 MECS I.J. Intelligent Systems and Applications, 2016, 4, 60-66

In NSGA-II[10][12], the offspring population Qt is

created from the parent population Pt, by using normal

genetic operators like selection, cross-over, and mutation.

Pt and Qt are combined to form a new population Rt of size

2N. Further, NSGA is used to classify the entire population

Rt and the new population is filled by solutions of different

non dominated front at a time. The filling of solutions starts

from the order of best non-dominated front, the next and so

on. Since only N slots have been occupied from the 2N

slots of the population Rt, the rest of the solution that

cannot be accommodated in N slots are discarded. When

the last allowed front is to be considered, there may be

more solution in the front than the solution to be

accommodated. Instead of arbitrarily discarding some

members from the last front, the solution that makes

diversity of the selected solution highest is chosen. This is

done by crowded distance sorting approach.

IV. PROPOSED ALGORITHM AND METHDOLOGY

The Proposed algorithm shown in Figure I combines the

Parallel NSGA-II and the Simulated Annealing (SA)

approach such that it yields a quality and faster solutions as

compared to the existing algorithms. Initially, the

algorithm divides the FPGA blocks into clusters. Further,

each cluster executes NSGA-II, in parallel for each cluster.

Within each cluster, the algorithm treats each individual as

an active entity or a process. Each process communicates

with every neighboring process. To perform selection,

each process sends its fitness value to every neighboring

process, and then waits to receive either a specified number

of communications from neighboring individuals, or a new

individual to replace itself. If a process receives

information from neighboring individuals, both selection

and mutation are done without the knowledge of the other

processes. The resulting children are combined with their

respective parents and the non-dominated sorting is

applied on them to identify different fronts. The best

children are selected from the best front, then next and so

on. These children replace the parents and a new

generation begins.

Mutations are also done such that it converges to global

solution quickly. The best solution of each cluster is

migrated to other clusters if required based on the

migration rate determined using fuzzy logic. These steps

are executed in parallel for each cluster until the value

stabilizes over a period of generations or the termination

condition is met. Finally, from the set of pareto-optimal

solutions obtained, the best solution is selected based on

the requirement and simulated annealing is done for further

improvement.

A. Chromosome Representation

The first and foremost step in the encoding process is to

identify each member of the population uniquely and

distinctly. The proposed algorithm uses a different type of

chromosome representation [12] as compared to the

traditional approach. The two dimensional array of

Choose Best Solution

Do Simulated Annealing

End

Generate Initial Random

Population

Calculate Fitness Values

Divide Into Cluster or Groups

Containing Sub Population

For each of the Cluster or Group

do in Parallel

 NSGA-II

Calculation of

Migration Values

Decision

Regarding

Degree of

Migration

Using Fuzzy

Selection of

Best Solution

Y

e

s

Migrate

Solution

If Termination

Reached

End Parallel

Start

N

o

Y

es

N

o

Fig.1. Flowchart of the Proposed Algorithm

 Multi-Objective Memetic Algorithm for FPGA Placement Using Parallel Genetic Annealing 63

Copyright © 2016 MECS I.J. Intelligent Systems and Applications, 2016, 4, 60-66

components are represented by one dimensional array by

one dimensional array by using left to right scan

performing in a top to bottom fashion. This way we have

n-element string of integers representing different

component. In this representation, the i
th

 position from left

of the string, an integer between 0 and (i-1) is allowed. The

String is decoded to obtain the placement as follows, the i
th

position denotes the placement of component „i' in the

permutation.

The decoding starts from left most position and proceeds

serially towards right. When decoding i
th

position, the first

(i-1) components are already placed, by providing with „i'

place holders to position the i
th

 component. The advantage

of this type of chromosome representation is that simple

cross-over and mutation operators are used. This reduces

the complexity of the code.

For example, consider six components (p-u) to be placed

on a 3X2 array. Consider a random string which denote a

solution, (0 0 2 1 3 2) then by decoding using the above

method we get the following permutation (q s u p t r)

corresponding to the above string. On converting to two

dimensions, it is represented as follows:

q s u

p t r

B. Fitness Functions

The proposed algorithm is implemented for

optimization of three objective functions. The three

objectives that are to be minimized are as follows:

(i) Cost Function for Wiring in Placement [3]:

1

N

i

Wiring Cost q i bbx i bby j

 (1)

where N is the Number of Nets, bbx(i) and bby(i) are the x

and y dimensions of a bounding box for each net(i), and q(i)

denotes scaling factor for better wire-length estimates.

(ii) Cost Function for Timing in Placement [3]:

 , ,Timing Cost Delay i j Criticality i j CE
 (2)

where CE denotes Constant, Delay(i,j) indicates the delay

of the connection from source „i' to destination „j‟,

Criticality (i, j) denotes the measure of how close the given

i, j path is to the global critical path.

(iii) Cost Function for Power in Placement [3]:

1

N

i

Power Cost q i bbx i bby j Activity i

 (3)

where activity(i) denotes the switching activity on a

particular net, and by reducing this component, the power

consumed over long and programmable routing lines are

reduced.

C. Migration Problem

The main problem in Parallel Genetic Algorithm is

constant migration rate. Generally, the individuals of

migration are almost the best individuals in each

sub-population, so if the migration rate is set to a constant,

then a high migration rate would lead to the spreads of

advance individuals in all population and improves the

speed of convergence. However, at the same time it

decreases the population diversity. Its drawbacks are to

explore different regions of the search space. On the other

hand, setting a low migration rate would affect the

performance of the algorithm drastically by spreading of

individuals which have not fully evolved. Since we use the

non-dominated sorting genetic algorithm parallel for each

cluster in our proposed algorithm, we need to solve the

migration problem as it's a major concern affecting the

performance of the algorithm. Therefore, the migration

problem is solved in our proposed algorithm by not setting

the migration rate to constant, but instead it is tuned by

fuzzy rule according to states of each subpopulation.

D. Fuzzy Logic

In the proposed algorithm, the migration rate is decided

by fuzzy rule[14][15][16] based on the average fitness

value fai and the difference between the maximum and

average fitness value (fmi-fai) in each cluster „i'. Depending

on these two variables (fai, fmi− fai), we are able to

understand the states of each island (early stage or final

stage). In the process of the migration, some individuals in

sub-population with the advanced evolutionary condition

are easy to spread in all population. On the contrary, some

individuals in sub-population with the delayed

evolutionary condition are difficult to spread in whole

population under the tuning of fuzzy rule. So the fuzzy rule

plays a good part in guiding the evolutional direction for

improving the quality of solution effectively.

Table 2. Fuzzy Rule Application

fai /fmi− fai FS FM FL

DS EVL ELL ELS

DM EL EM ES

DL ELL ELS EVS

Table 2 describes the application of the fuzzy rule

[14][16]. FS means the average fitness in an island is small,

and it also means this island is in the early searching stage.

The same to the FL, it means the average fitness in an

island is large, and also means this island is in the final

searching stage. On the other hand, the DS means the

difference between the maximum and average fitness value

(fmi− fai) in an island is small, at the same time it also

implicate the individuals in this island is rather compact.

The DL is difference between the maximum and average

fitness value (fmi− fai) in an island is large. According to

different states different parameter values such as EVL, EL,

64 Multi-Objective Memetic Algorithm for FPGA Placement Using Parallel Genetic Annealing

Copyright © 2016 MECS I.J. Intelligent Systems and Applications, 2016, 4, 60-66

ELL, etc., are set. This basically solves the above problem

where the migration rate is not constant but is varied in

accordance with the different states of an island.

V. EXPERIMENTAL RESULTS

The Algorithm was implemented by Message passing

interface (MPI) program. The Program is directly run on

the test bed with hardware requirements consisting of

64-bit Linux machine consisting of Eight Processor (32

Cores) with 2.66Ghz with internal memory of 8GB and an

NVIDIA GTX280 GPU running at 1.35GHz and with 2GB

of on-chip memory. The Program was tested with large

datasets. The Performance of Proposed Algorithm was

tested using different set of MCNC benchmarked field

programmable gate arrays. The results showed that the

proposed algorithm gives better results in terms of number

of iterations and CPU time than the various traditionally

existing algorithms.

Parameter settings shown in Table 3 for NSGA-II and

simulated annealing (SA) are chosen and tested for the

certain benchmarks.

Table 3. Parameter Settings

Maximum no. of Population 500

Maximum no. of genes in each

cluster

65

Probability of cross over 0.6

Probability of Mutation 0.01

α (percentage of attempted

movements)
β

0.15 < α < 0.3 0.95

0.05 <= α <= 0.15 0.8

A. Comparison of CPU Times

The proposed algorithm effectively improves the quality

of placement and achieves less CPU time as compared to

the existing algorithms in all cases without degradation of

performance in the final routing stage. Table 4 shows the

comparison of the CPU times of the proposed solution with

the existing solutions. Figures 2, 3, 4, 5 and results show

that the proposed algorithm reduces the CPU time to an

average of nearly 15% as compared to the Genetic

Algorithm, 12% as compared to the Simulated Annealing,

nearly 6% as compares to the Genetic Annealing algorithm

(GASA) and nearly 4% as compared to Parallel Genetic

Algorithm (PGA).

The X-Axis of the graphs represents the MCNC

benchmarked FPGA‟S in which the algorithm was tested

and the Y-Axis represent the CPU Time for the placement

of the blocks in seconds. The Figure 2 and Figure 3 shows

the comparison of the CPU time of the traditionally exiting

GA and SA with the proposed algorithm. The proposed

algorithm gives better results mainly because of its parallel

execution and the use of hybrid approach. Figure 4 shows

the comparison of CPU times of the Genetic Annealing

(GASA) with the proposed Algorithm. The Proposed

algorithm gives a much better results because of the use of

NSGA-II and the Parallel approach. Figure 5 shows

comparison of proposed algorithm with the parallel genetic

algorithm. The Proposed algorithm gives better results as

compared to most of the Parallel Genetic Algorithms

because of the use of fuzzy logic to determine the

migration rate instead of fixing it to a constant. This

improves the performance of the proposed algorithm to a

great extent.

Figure 6 shows the comparison between the CPU times

of proposed algorithm with all the existing algorithms.

Table 4. Comparison of CPU Times of Proposed algorithm with the

Existing Solutions

FPGA GA SA GASA PROPOSED

9symml 25.74 24.99 22.86 20.01

alu2 91.76 80.54 74.27 69.99

apex7 38.39 38.44 38.11 36.64

example2 107.5 99.02 95.23 92.87

pcler8 47.25 44.2 42.69 40.20

k2 461.5 450.2 364.7 358.7

term1 28.06 27.98 26.35 24.01

5xp1 64.59 62.22 58.23 56.66

e64 163.70 160.8 155.21 153. 22

too-lrg 82.51 80.42 74.37 72.66

Fig.2. Comparison of CPU Times of Genetic Algorithm with the

Proposed Algorithm

Fig.3. Comparison of CPU Times of Simulated Annealing Algorithm

with the Proposed Algorithm

 Multi-Objective Memetic Algorithm for FPGA Placement Using Parallel Genetic Annealing 65

Copyright © 2016 MECS I.J. Intelligent Systems and Applications, 2016, 4, 60-66

Fig.4. Comparison of CPU Times of Genetic Annealing Algorithm with

the Proposed Algorithm

Fig.5. Comparison of CPU Times of Parallel Genetic Algorithm with the

Proposed Algorithm

Fig.6. Overall Comparison

Thus, the analysis of the CPU times for various FPGA

show that the proposed algorithm gives faster placements

as compared to the existing traditional algorithms.

B. Comparison of Number of iterations

The proposed algorithm reduces the number of

iterations as compared to the existing algorithms. Figure 7

shows the comparison of number of iterations of the

proposed algorithm with the existing solutions. The

proposed algorithm reduces the number of iterations to

nearly 50% as compared to the Genetic Algorithm and the

Genetic Annealing algorithm. This is mainly due to the

parallel approach and the use of NSGA-II.

Fig.7. Comparison of Number of Iterations

C. Quality of Solutions

The proposed algorithm also gives better spread of

solution and quality solutions as compared to the existing

solutions. This is mainly achieved due to the use of

Non-Dominated Sorting Genetic Algorithm (NSGA-II).

VI. CONCLUSION

Since the algorithm uses parallel approach, the

determination of migration coefficient is an important

factor affecting the performance of the code. This problem

is solved by using fuzzy logic. Since it uses NSGA-II for

Multi-Objective Optimization it finds better spread of

solutions and it also gives quality solutions. The proposed

algorithm uses different chromosome representation which

makes it possible for the usage of simple crossover and

migration operator, as compared to all existing algorithm.

It also reduces the complexity of the code. The further final

optimization of best solution using Simulated Annealing

gives the best solution.

Results and graphs show that the proposed algorithm is

better than the existing algorithms in terms of CPU time

and the number of iterations and the quality of solutions

obtained.

As a part of future research, the algorithm can be tested

with various different mating and selection operators to

achieve more efficiency and speed. The algorithm can also

be modified to determine the crossover and the mutation

rate by using the fuzzy logic. This may further improve the

performance of the proposed algorithm.

REFERENCES

[1] Sang-Joon Lee and Dr.Kaamran Raahemifar, “FPGA

Placement Optimization Methodology Survey”, CCECE

2008.

[2] J.Rose, A.ElGamal, A.Sangiovanni Vincentelli,

"Architecture of field programmable gate arrays", Proc. of

the IEEE, vol. 81, no. 7, July 1993.

[3] Zoltan Baruch, Octavian Creţ, And Horia Giurgiu,

“Genetic Algorithm for FPGA Placement”,Computer

Science Department, Technical University of Cluj-Napoca

[4] Peter Jamieson, “Exploring Inevitable Convergence for a

Genetic Algorithm Persistent FPGA Placer”, Oxford, OH,

45056.

66 Multi-Objective Memetic Algorithm for FPGA Placement Using Parallel Genetic Annealing

Copyright © 2016 MECS I.J. Intelligent Systems and Applications, 2016, 4, 60-66

[5] Siva NageswaraRaoBorra A. Muthukaruppan S. Suresh

V.Kamakoti, “A Parallel Genetic Approach To The

Placement Problem For Field Programmable Gate Arrays”,

Parallel and Distributed Processing Symposium, 2003.

Proceedings. International.

[6] H. Esbensen, P. Mazumder, "SAGA: Unification of genetic

algorithm with simulated annealing and its application to

macro-cell placement", Proc. of IEEE the Seventh Intl.

Conf on VLSI Design,India, 1994.

[7] Yang, Meng, Almaini, A E A, Wang, Lun Yao and Wang,

P (2005) FPGA placement using genetic algorithm with

simulated annealing. ASICON 2005: Proceedings of the

6th International Conference on ASIC, 2005, 2. pp.

808-811. ISSN 0 7803 9210 8

[8] C.L. Cheng, "RISA: Accurate and Efficient Placement

Routability Modeling", Proc. of IEEE/ACM ICCAD, San

Jose, Califomia, US, 1994

[9] Alexander Choong, Rami Beidas, Jianwen

Zhu,”Parallelizing Simulated Annealing-Based Placement

using GPGPU”, International Conference on Field

Programmable Logic and Applications, 2010.

[10] Kalyanmoy Deb, Associate Member, IEEE,AmritPratap,

Sameer Agarwal, and T. Meyarivan,”A Fast and Elitist

Multiobjective Genetic Algorithm: NSGA-II.”, IEEE

Transactions on Evolutionary Computation, Vol. 6, No. 2,

April 2002

[11] V. Betz and J. Rose, "VPR: A New Packing, Placement

and Routing Tool for FPGA Research," Seventh

International Workshop on Field-Programmable Logic and

Applications, 1997.

[12] Kalyanmoy Deb, Prateek Jain, Naveen Gupta, HemantMaji,

Kanpur Genetic Algorithm Laboratory, IIT Kanpur,

“Multi-Objective Placement of Electronic Components

Using Evolutionary Algorithms”.

[13] Mingjie Lin and John Wawrzynek,”Improving FPGA

Placement with Dynamically Adaptive Stochastic

Tunneling”, IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 2010.

[14] Maeda, Y., Fuzzy Adaptive Search Method for Genetic

Programming, International Journal of Advanced

Computational Intelligence, Vol.3, No.2, 1999.

[15] Lee., M.A. and Takagi., H., Dynamic Control of Genetic

Algorithms Using Fuzzy Logic Techniques,Proc. of 5th

International Conference on Genetic Algorithms

(ICGA‟93),1993.

[16] Maeda, Y., A Method for Improving Search performance

of GA with Fuzzy Rules, Proc. of the 6th Intelligent System

symposium, Vol.3,1996.

[17] Kleinhans, J.M., Sigl, G., Johannes, F.M., Antreich, K.J,

(March 1991). "GORDIAN: VLSI placement by quadratic

programming and slicing optimization". IEEE

Transactions on Computer-Aided Design of Integrated

Circuits and Systems 10.

[18] Kahng, A.B, Qinke Wang; (May 2005). "Implementation

and extensibility of an analytic placer". IEEE Transactions

on Computer-Aided Design of Integrated Circuits and

Systems 24 (5).

[19] Akoglu, Ali. Application specific reconfigurable

architecture design methodology. Arizona State University,

2005.

[20] Gudise, Venu G., and Ganesh K. Venayagamoorthy.

"FPGA placement and routing using particle swarm

optimization." VLSI, 2004. Proceedings. IEEE Computer

society Annual Symposium on. IEEE, 2004.

[21] Chin Hau Hoo, Kumar Akash, Yajun Ha, “ParaLaR: A

parallel FPGA router based on Lagrangian relaxation”,

25th IEEE International Conference on Field

Programmable Logic and Applications, 2015, pp. 1-6.

Authors’ Profiles

Praveen T. has completed his B.Tech in

Computer Science and Engineering from

National Institute of Technology (NIT)

Puducherry, Karaikal, India. His research

interests include soft Computing, Machine

learning, Computer Networks, Artificial

Intelligence and Cryptography. He has

presented lots of papers on National and

International Conferences.

Arun Raj Kumar, P., is working as

Assistant Professor in the Computer Science

and Engineering Department at National

Institute of Technology (NIT) Puducherry,

Karaikal. He completed Ph.D. in Computer

Science and Engineering at National

Institute of Technology (NIT)

Tiruchirappalli, India. He completed

M.Tech. With Distinction in Computer Science and Engineering

at National Institute of Technology (NIT) Tiruchirappalli, India.

He graduated B.E. in Computer Engineering at Malaviya

Regional Engineering College, Jaipur, India. His research

interests include Computer Networks, Network Security,

Machine Learning, and Wireless Sensor Networks. He has

published papers in Science Citation Indexed (SCI) journals,

reputed and refereed International Journals and IEEE

Conferences. Recently, he received Young Faculty award in

Computer Science and Engineering. He is also Invited reviewer

for Journals such as International Conferences and International

Journals.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8608
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8608
https://en.wikipedia.org/wiki/IEEE_Transactions_on_Computer-Aided_Design_of_Integrated_Circuits_and_Systems
https://en.wikipedia.org/wiki/IEEE_Transactions_on_Computer-Aided_Design_of_Integrated_Circuits_and_Systems
https://en.wikipedia.org/wiki/IEEE_Transactions_on_Computer-Aided_Design_of_Integrated_Circuits_and_Systems

