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Abstract—Forecasting CPU availab ility in volunteer 

computing systems using a single prediction algorithm is 

insufficient due to the d iversity of the world-wide 

distributed resources. In this paper, we draw-up the main  

guidelines to develop an appropriate CPU availability 

prediction system for such computing infrastructures. To 

reduce solution time and to enhance precision, we use 

simple pred iction techniques, precisely vector 

autoregressive models and a tendency-based technique. 

We propose a predictor construction process which 

automatically checks assumptions of vector 

autoregressive models in time series. Three different past 

analyses are performed. For a given volunteer resource, 

the proposed prediction system selects the appropriate 

predictor using the mult i-state based prediction technique. 

Then, it uses the selected predictor to forecast CPU 

availability indicators. We evaluated our predict ion 

system using real traces of more than 226000 hosts of 

Seti@home. We found that the proposed prediction 

system improves the prediction accuracy by around 24%. 

 

Index Terms—CPU availab ility prediction, predict ion 

system, mult ivariate time series, mult i-state based 

prediction, volunteer computing system. 

 

I.  INTRODUCTION 

Many resources connected to the Internet are idle for 

most of the time. They represent a considerable reserve of 

computing power. Volunteer computing (VC) systems 

aim to harness this extensive number of underused 

computer resources and to reach a high computing 

performance. While these world-wide distributed 

resources are heterogeneous, unreliable and belong to 

independent administrative domains, appropriate 

middleware is deployed to aggregate, on-demand, the 

unused processing power. Tasks, submitted to a VC 

system by independent users, should be scheduled on the 

appropriate computing resources. However their 

availability, for VC system usage, is highly variable 

depending on demand, owners’ behavior, their time zones 

and their location (at home, school or work), etc. [1, 2, 

38]. Consequently, the scheduler has no availability or 

speed guarantees. The scheduling optimization in such 

environments requires forecasting the future CPU 

resource availability.  

A review of related works shows that there is no single 

prediction model which is optimal for all the considered 

CPU time series [3, 4, 5, 7]. Due to  the diversity of 

world -wide distributed resources, the prediction accuracy 

is not always ensured using a single predictor. For such 

computing resources, the prediction system should be 

able to select automatically  the appropriate predictor for 

each CPU resource among several integrated predictors . 

Besides, usual prediction systems are time consuming 

and consequently inappropriate for large-scale computing 

infrastructures [3, 8]. 

In this work, we are part icularly interested in 

predicting CPU availability of volunteer resources in 

large-scale VC systems. For each computing resource, we 

predict precisely two CPU availab ility indicators (i.e. 

variables) that are the number and the mean duration of 

CPU availability intervals over the next  hour. To  reduce 

the solution time, we limit our study to simple approaches, 

which may outperform the most complex competitors [5, 

9, 10] and ensure reasonable accuracies. We extend the 

approach proposed in [7, 9] in o rder to d raw up 

guidelines to conceive a prediction system of resource 

availability in VC infrastructures. As pointed in [7], a  

volunteer resource may be in  one of the three following 

states: totally available, totally  unavailable or partially  

available over the whole hour. Mult i-state based 

predictors are appropriate to forecast discrete values 

corresponding to the possible availability states of a 

resource. In this paper, we analyze the performance of 

several mult i-state prediction techniques in order to retain  

the most accurate ones. We notice that their accuracies 

depend on the mean duration of the availability and 

unavailability intervals of volunteer resources. 

Consequently, we propose an automated approach to 

identify the appropriate mult i-state prediction technique 

for each volunteer resource regarding its availab ility and 

unavailability frequencies. 
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For the totally available and unavailable states, the 

values of CPU availab ility indicators are known. 

However, in the case of the third availability state 

(partially available), the volunteer resource is unavailable 

during some intervals of the hour. So, CPU availability 

variables correspond to continuous value data. In order to 

predict their values, we require predictors such as time 

series models. Tendency-based strategy has been 

considered as an automated, simple and improved 

prediction technique referenced in  many recent CPU load 

prediction researches [11, 4]. Autoregressive models have 

been shown to be among the simplest time series models 

using both autocorrelation and cross -correlation between 

multivariate t ime series [12, 7].They are as accurate as 

the most complex models [13, 5, 10]. Nevertheless, 

although they are well studied, their construction requires 

manual treatment [14]. Moreover, their successful usage 

requires the satisfaction of some assumptions in time 

series. To address these limits, we propose an automated 

method to construct the prediction models. We extend the 

utility of autoregressive models by exp loit ing three 

different past analyses. For a g iven resource, we analyze 

the CPU availability: first over the recent hours, second 

during the same hours of the p revious days and third 

during the same weekly hours of the previous weeks. We 

extract subseries, corresponding to each past analysis, 

from the CPU availability t ime series. We check the main  

assumptions, such as correlation and stationarity in  

subseries, to be able to apply autoregressive models. We 

compare vector autoregressive (VAR) and pure 

autoregressive (AR) models, constructed according to our 

proposed approach, against the tendency prediction 

technique. We discard AR models from our study 

because they are the least accurate. We propose a 

heuristic which selects the appropriate predictor among 

VAR models analyzed over the three past analyses and 

the tendency based strategy.  

The rest of this paper is organized as fo llows. Section 2 

discusses related works. Sect ion 3 reports a comparat ive 

study between tendency based strategy and 

autoregressive models constructed according to our 

proposed process and adapted to the three past analyzes. 

Section 4 presents the three-state availability modeling 

then describes and compares several multi-state 

predictors with respect to different subsets of volunteer 

resources. The proposed prediction system is presented in 

section 5 and evaluated in  section 6. Finally, section 7 

concludes the paper.  

 

II.  RELATED WORKS 

Many characterization studies were conducted to 

predict the availab ility in VC systems. Besides, different 

prediction algorithms were used to predict resource 

availability and load in such large distributed systems. So,  

we organize this section accordingly. 

A.  Parameter characterization to predict availability in 

VC systems 

Early researches [15, 16, 17] were focused on 

characterizing host availability in VC systems. Some of 

them claimed that hosts in networks may be classified 

into two categories: those which are almost always online 

and those which have diurnal uptime patterns [16, 17].To  

predict host availability, some other characterizat ion 

studies used parameterized models [40, 19]. Nurmi et al. 

[19] fitted statistical distributions to empirically uptime 

traces of machines. They derived some parameters from 

the models to estimate how long a random machine will 

remain  availab le. Most of these researches focused on 

host availability which d iffers from CPU availability 

considered in this work. Host availability may be a 

deceiving metric as a host may be connected to the grid 

but its CPU may be unavailable to the grid usage because 

of user presence on the machine, local tasks execution, 

etc. However, we focus on CPU availability which is the 

time when the CPU of a host is availab le to run grid tasks 

as a volunteer resource.  

In [1], as the goal was to characterize the correlated 

resources, authors did not consider the temporal 

dependence of resource availability. So, they represented 

each CPU trace by its average availability at  each hour of 

the week. Then, they used k-means to classify resources 

into clusters with similar levels of availability. Besides, 

they exp loited the clustering results to optimize the 

problem of resource selection and scheduling. In  

particular, to execute parallel applications, they selected 

the most rapid resources belonging to the cluster of 

highly available resources. Nevertheless, their approach 

did not consider the evolution of the availability behavior 

of volunteer resources during time. Indeed, due to  its 

unreliability, a  volunteer resource may belong to several 

clusters during different periods of time. Moreover, it was 

shown that the optimization of resource selection and 

scheduling problems, in  such computing sys tems, relies 

on temporal structure of availability [20, 21]. Anderjeak 

et al. found that the average number of changes of the 

availability status per week is the most appropriate 

parameter to estimate the availability of a resource. They, 

regularly, computed availability parameters of resources 

and used them to forecast the amount of resources that 

will be available in the computing system [22]. 

These parameterized predict ion methods based on 

characterization studies provide conservative estimates 

that facilitate dealing with the worst cases. However, they 

cannot be used to predict the evolution of the availability 

at multiple points in the future. Besides, they cannot 

accurately predict the availab ility of individual resources 

especially if the computing system is composed of 

heterogeneous hosts characterized by d ifferent 

availability behaviors. 

Using randomness tests, Javadi et al. found that 

Seti@home resources had purely random [2] or auto-

correlated [23] CPU availability and unavailability 

intervals. In [2], authors focused only on the 21% of the 

volunteer resources whose availability was random. They 

used clustering techniques to classify them into clusters 

of resources which can be modeled with similar 

probability distribution functions such as Gamma and 

hyper-exponential d istributions. In [23], authors modeled 
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the remain ing 79% of volunteer resources whose 

availability and unavailability times were auto-correlated. 

They considered several other statistical models able to 

capture the long range dependency property that was 

discovered in time series. They found that, among the 

fitted models, Markovian Arrival Process (MAP) was the 

best. The fitt ing time of these models is relatively h igh 

because it depends on a high number of parameters. To 

adapt MAP models to large scale VC systems, authors 

reduced the number of these parameters by factors up to 

50% and found reasonable accuracies. They claimed  that, 

using some parameters derived from these statistical 

models, the scheduler could estimate the probability that 

a volunteer resource remains available or unavailable 

over a given future interval of t ime. However, this 

predicted probability does not depend on the prediction 

time. Moreover, models were fitted using all observations 

of the traces and were not tested on new unseen 

observations. To make use of these statistical models in 

our study, they have to be recomputed frequently in order 

to capture changes and dynamics in VC systems and 

enhance scheduling decisions. The resulting computing 

times may be relat ively high, even reducing the number 

of parameters. Consequently, they are inappropriate to 

our case of study. 

B.  Availability predictors 

Many efforts have been made in  host load prediction in  

grids and distributed computing systems using linear 

predictors [13, 10, 3, 24, 25] or non-linear predicators [5, 

26, 27, 11]. All of them use combinations of the recent 

signal points to predict future points. 

In [13], Dinda et al. found that the pure autoregressive 

AR(16) model outperformed the windowed mean (BM), 

moving average (MA) and LAST models when predict ing 

host load. Besides, AR model had a lower computing 

time and a h igh precision, similar to ARMA, ARIMA and 

ARFIMA models. In order to improve CPU load 

prediction accuracy, Liang et al. proposed a mult ivariate 

AR prediction model, using both autocorrelation and 

cross-correlation between resources of a computing host 

[10]. The Network Weather Services (NWS) predict ion 

system was proposed, including several predict ion 

models such as: MEAN, LAST, BM, AR, MA, ARMA, 

etc. [3].Tendency prediction techniques were proposed to 

forecast the CPU load based on the polynomial fitt ing [24,  

25] and informat ion about previous similar patterns, i.e. 

successive decreases or increases between neighboring 

turning points [25]. According to the empirical studies, 

tendency prediction techniques outperformed AR(16) 

model and NWS.  

In [4, 28], a  CPU load predict ion model was proposed 

based on the assumption that CPU load wave can  be 

considered as the superposition of several small cyclic 

waves with different periods. First, the time series is 

decomposed into sub-sequences using Fourier transform 

[4] or wavelet packet decomposition [28]. At each 

prediction, tendency-based method [4] and revised 

ARIMA model [28] were used to predict the next value 

for each sub-sequence. Finally, the predicted values of all 

the sub-sequences were combined to deduce the final 

value. Experiments showed that, compared to the 

tendency-based predictor, this approach performed best 

for long-term prediction but worst for short-term 

prediction [4]. Compared to ARIMA model, this 

approach performed best for unstable time series which 

changes suddenly [28]. 

Although time series models are well studied, their 

successful application requires the satisfaction of some 

assumptions in time series. Besides, their construction 

requires manual treatment [14]. These limits reduce their 

utility for large scale dynamic computing environments. 

To address these constraints, some recent approaches 

checked assumptions in time series before apply ing time 

series models [5, 28]. To predict quality of service 

attributes such as response time, Amin et al. proposed an 

automated approach which selects among the linear 

ARIMA and the non-linear SETARMA models according 

to nonlinearity test [5]. All these predicators are 

appropriate for continuous value time series.  

Using machine learning methods, for CPU availability  

prediction, promoted another category of related literature.  

To consider cross-correlation between resources of 

different grid hosts, Andrzejak et al. reduced the 

prediction problem to a classificat ion problem by 

dividing the data range into a set of levels (classes) [26]. 

According to their comparative study between several 

classifiers such as Naive Bayes, k-Nearest Neighbor (k-

NN) and  decision trees, the Support Vector Machines 

(SVM) classifier was the most accurate [26]. Experiments 

showed that Support Vector Regression (SVR) 

outperformed NWS pred ictors [27]. In [8], a predict ion 

system was proposed, including AR, Last and MA. A 

classifier, such as k-NN, was used to select the 

appropriate predictor. Historical data were pretreated 

using Principal Component Analysis in order to reduce 

data dimensions at the input of the classifier and 

consequently improve its performance. Results showed 

that such a prediction system outperformed NWS. In [11],  

a CPU load pred iction strategy which combines Bayesian 

and Neuro-fuzzy inferences was proposed. This strategy 

outperformed AR, dynamic tendency proposed in [24] 

and NWS models. It performed as well as the tendency 

based technique proposed in [25].These non-linear 

predictors are appropriate for discrete value data. So, in 

order to use them, availability time series were 

discretized. 

Compared to non-linear predictors, simple linear 

predictors, such as autoregressive time series models and 

tendency based strategy, have lower computing time and 

enough accuracy comparable to more complex 

competitors [5, 4, 11]. Similarly to  pure autoregressive 

models (AR), Vector autoregressive models (VAR) were 

shown to be among the simplest prediction models 

considering both autocorrelation and cross -correlation 

between multivariate time series variables [12, 7]. 

To predict the availability behavior of resources at 

multip le points in the future, other predictors analyzed 

transitions between the availability states of each resource. 

Mickens et al. proposed a prediction system which selects 
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the most appropriate predictor among several saturating 

counters and linear predictors according to an approach 

similar to that of NWS [29]. Saturating Counters (SC) 

predictors use the current state of a resource as the 

predicted value for the future time state. These simple 

predictors are attractive. This is because they use one bit 

to record state. However, they are not able to describe the 

availability over medium and long term t ime scales, 

unless using two or more bits to store the state. Other 

studies used mult i-state-based predictors to predict the 

availability behavior of grid  resources [30, 31, 32]. State-

based predictors use a mult i-state model presented as a 

graph to denote transitions (edges) between states (nodes) 

in a recent availability history of a resource. Generally, 

the multi-state prediction algorithm takes as input an 

interval of time and a history of a resource. It produces as 

output a transition probability vector. Each element of the 

vector represents the predicted probability that the 

resource will transit to the corresponding state. Ren et al. 

proposed a multi-state prediction model including five 

states based on several levels of CPU load, memory  

thrashing and resource unavailability [30]. To predict the 

availability behavior during a g iven future time window, 

they counted transitions in the same time window on 

previous weekdays and weekends and used them to 

model a semi-Markovian process. According to their 

experiments, this multi-state predictor outperformed 

linear time series models. Rood et al. proposed another 

multi-state prediction model including five states; four of 

them were unavailability states due to user presence on 

the machine, excess of local load  threshold, grid  task 

eviction and host failures [31]. The fifth state is related to 

availability. Besides, they proposed and compared several 

prediction algorithms. According to their comparat ive 

study using Condor traces, ―Transitional Day-o f-week 

Equal weight‖ (TDE) and ―Transitional Recent hours 

Freshness‖ (TRF) predictors were the best. The TDE 

predictor counts transitions during the interval being 

predicted on previous days. On the other hand, TRF 

predictor counts transitions over the recent hours favoring 

transitions that occur most recently. The TDE and TRF 

predictors outperformed Ren  [30] and SC [29] p redictors. 

In [32], Maleki et al. proposed a multi-state prediction 

model containing three states. They assumed that a CPU 

resource may be totally availab le, totally unavailable to 

the grid usage because of failures and membership 

cancelation or part ially unavailable to  the grid  because its 

processing power is shared between grid and local tasks. 

Authors used continuous time Markov chains to predict 

the transition probability vector. These predictions were 

combined to performance metrics in  order to improve 

scheduling decisions.  

Due to the diversity of resources in VC systems, 

resources exhib it several availability patterns with 

different statistical properties such as auto-correlation, 

randomness, periodicity  and steadiness [1, 2, 23].On the 

one hand, SC pred ictors perform well for resources which 

are most often available or unavailable [29]. On  the other 

hand, multi-state based predictors perform well for 

resources which have periodic availability patterns [6]. 

Among these predictors TDE and TRF are the most 

accurate ones. 

In this work, several predictors are integrated together 

in  a unique automated pred ict ion  system, to  improve 

accuracy . A t each  pred ict ion , the mos t appropriate 

predictor is dynamically selected then used to predict the 

next value. Three automated selection methods of the best 

predictor were used in the literature: NW S method [3, 29],  

classification based method [8, 47] and the decision-rule 

based method [24, 25, 4, 5, 28]. First, using the NWS 

method, at each prediction, all the integrated models are 

run and the one with the least cumulat ive Mean Squared 

Error (MSE) is selected [3]. However, the cumulative 

MSE is an overall criterion which may be inappropriate 

to adapt  the p red icto r select ion to  the changing  CPU 

availability in VC systems. The second method aims at 

forecasting the best predictor then using it to pred ict the 

future value. A  classifier, such as k-NN [8] and neural 

network [47], was used to select the best predictor. When 

many complex pred iction algorithms are integrated, it is 

better to use the selection method based on classification 

instead of NWS, since only one predictor is run at any 

prediction step. However, both of these selection methods 

require the execution of all the prediction models either at 

each prediction step [3, 29] or at the construction of the 

classificat ion model [8, 47]. So, both of them is t ime 

consuming and consequently inappropriate to large scale 

VC systems. The third selection method is less expensive 

as it selects the most appropriate pred icto r based on  

decis ion -ru les . Nevertheless , it  requ ires  an  expert 

knowledge to  conceive the set o f decis ion ru les. To  

reduce computing time, our p rediction system selects the 

appropriate predictor accord ing to decision ru les. Unlike 

most of the parameterized  approaches, we need to pred ict 

the evolution of the availability of indiv idual resources 

over t ime. To th is end , the majority o f the stud ies, 

described  above, us ed  their s pecific and  l imited 

availab ility t races not  necessarily  obtained from large 

scale volunteer systems [13, 24, 10, 25, 11]. Moreover, 

some of them focused  on ly on  hosts  located  in  the 

enterprise or university [30, 31]. In contrast, as [2, 23], 

we consider real CPU availability traces of 226000 hosts 

[39] located  in  the enterprise, un ivers ity  and  home. 

Unlike traces considered to evaluate the existing mult i-

state availability models [30, 31], Seti@home traces do 

not report  causes o f unavailab ility . So , regard ing the 

possible availab ility states o f vo lunteer resources, we 

consider a mult i-state availab ility model similar to that 

proposed in [32]. To predict the future availability state 

over the next hour, we use state-based predictors, such as: 

TDE, TRF and SC, due to their accuracy. If the resource 

is totally availab le or unavailab le over the hour, values of 

the availability variables are known. Nevertheless, when 

the resource transits from one state to another, variables 

correspond  to  con t inuous  value data. In  th is  cas e, 

appropriate linear and non -linear predicto rs should be 

used . To  reduce the so lut ion  t ime and  improve the 

precision in a large-scale computing system, we consider 

simple predictors in the prediction system, in particular: 

autoregressive t ime s eries  models  and  the tendency 
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prediction technique. Moreover, we use vector 

autoregressive VAR to explo it the cross -correlation 

between the CPU availability indicators in order to 

improve the prediction accuracy. To address the 

limitat ions of the considered models, we check the main  

assumptions specific to the multivariate VAR and 

univariate AR models in t ime series. Moreover, as [5], we 

construct the prediction model according to an  automated 

approach. Besides, we extend the utility of autoregressive 

models by  exp loiting d ifferent past analyses. Considering 

the repeated behavior of users, unlike [4, 28], we do not 

consider sophisticated decomposition methods. We, 

simply, limit our study to sub-series corresponding to 

daily and weekly hours. None of the considered 

predictors was evaluated using traces of large-scale VC 

systems. In this paper, we evaluate and analyze the 

performance of these predictors in order to retain the 

most efficient ones and acquire the knowledge required to 

conceive the prediction system. 

 

III.  LINEAR MODELS: ADAPTATION, PROPOSED 

CONSTRUCTION PROCESS AND EVALUATION 

To reduce solution time and improve accuracy, we 

limit our study to linear predictors, in particular: VAR 

models, AR models and tendency prediction technique 

proposed in [25]. We focused on resources whose 

availability is auto-correlated due to repeated hourly, 

daily and weekly behavior of users. We also included 

resources that exhibit  a combination of auto-correlated 

and random availability, for instance, those whose users’ 

behavior is similar every morning, unpredictable in  the 

afternoons and almost the same at n ight. Consequently, 

the considered autoregressive time series models were 

adapted to different past analyses. Moreover, sub-series 

corresponding to the daily and weekly hours were 

extracted. To address the limitations of the considered 

time series models, the proposed automated approach 

checks assumptions in time series and constructs the 

prediction models by identify ing their appropriate orders 

p without human intervention. We further extend the 

approach, described in [9, 7], to conceive a prediction 

system of resource availability in VC systems . 

This section explains how VAR and AR models  are 

adjusted to different past analyses. Their main  

assumptions are discussed and the proposed construction 

process of the prediction model is presented. Then, a 

comparative study, of the autoregressive models and the 

tendency prediction strategy, is reported. 

A.  Adaptation of Autoregressive models to different past 

analyses 

A vector autoregressive VAR(p, s) and pure 

autoregressive AR(p, s) models of order p, span s and lag 

(p*s) use the p past observations separated by s steps 

(hours) to predict the future values of the dependent 

variables. At each predict ion, we considered three 

different past analyses as detailed in table 1 and 

consequently three VAR models and three AR models. 

For example, to examine the CPU availab ility during the 

same hours of the previous p days, we fixed  the span s of 

the second VAR and AR models at 24 hour.  In our study, 

for each past analysis corresponding to a given span s, we 

had exact ly s sub-time series to ext ract from the orig inal 

time series. Among them, we tried to identify the sub-

time series for which the assumptions of time series 

models were fu lfilled i.e. for which the VAR and AR 

models could be constructed. 

Table 1. Description of the three past analyses 

Past 
Analyses 

Description 
Span s 
[hour] 

1
st
  Over the recent past hours 1 

2
nd

 
During the same hours of the previous 

days 
24 

3
rd

 
During the same hours of the previous 

weeks 
7*24 

 

For example, according to fig. 1, to apply the second 

VAR and AR models (s = 24), we t ried to identify the 

ones among the 24 sub-time series which fulfilled the 

assumptions of time series models. So, a VAR model and 

an AR model were constructed for each hour of the day 

corresponding to predictable sub-time series. In total, at 

most 24 VAR models and 24 AR models may  be 

constructed using the second past analyses. Although a 

sub-time series is a part extracted from a time series, in  

what follows, the two terms are used interchangeably. 

B.  Assumptions of time series models 

Each variab le of the multivariate time series should, 

first, be auto-correlated over time. Second, it should be 

stationary: have constant mean (no trend), non-infin ite 

constant variance over t ime and covariance function 

depending only on the delay between observations. Third, 

variables of the multivariate time series should be cross-

correlated, so that, the causality assumption is met i.e. 

each variable is helpfu l for p redicting the other variable. 

Finally, time series models that are used to predict the 

future values should be stable i.e. errors should have 

finite values. 

C.  The construction process of the prediction model 

Fig. 1 illustrates our proposed approach to construct 

the prediction model. Before computing any time series 

model for a given past analysis of a resource, we check 

whether the time series meet the main assumptions of 

time series models using statistical tests. Otherwise, we 

try to find an appropriate transformation to fu lfill these 

assumptions. In particular, we, first, check the 

autocorrelation using Ljung-Box test [33]. Secondly, if 

this condition is fulfilled, we check the stationarity using 

KPSS test [34]. If the time series are non-stationary, we 

transform them using the first difference and check the 

stationarity assumption for the differenced data. 

After preparing the time series for each past analysis, 

we construct the VAR and AR models. To identify the 

most appropriate order of the model, we estimate several 

models fo r different values of p. All these estimated 

models are d iagnosed in o rder to remove the inadequate 

ones and preselect the set of the fittest models. Among 
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the diagnoses, we, first, perform significance tests to 

retain models whose estimates (coefficient values) are 

statistically significant. For a g iven model, if all the 

estimates are statistically significant, they are kept in the 

model. Else, the model is recomputed using only 

significant estimates. Next, we perform Granger’s 

causality tests [35] to keep VAR models which agree 

with the cross-correlation assumption. Third, we carry out 

the portmanteau tests [33] to keep models whose error 

series are white noise process. Finally, we check the 

stability to retain stable models for which all the 

eigenvalues of the companion matrix are smaller than one 

in absolute value [12]. If this is the case, the stationarity 

hypothesis is fulfilled. Once the set of the fittest time 

series models is identified, we select the best VAR and 

AR models based on Bayesian informat ion criterion (BIC) 

[36], particularly the one having the minimum BIC value. 

 

 

Fig.1. The proposed approach to construct the autoregressive model for 
a sub-time series 

D.  Prediction 

At each prediction time t, the future values of CPU 

availability indicators are predicted according to  the three 

past analyses. For each past analysis, the best selected 

VAR (resp. AR) model, constructed using the sub-time 

series of the next hour t+1, is used to perform the 

prediction. Using the new observations, the prediction 

errors are computed. 

 

E.  Evaluation 

In this section, our evaluation study was conducted 

using CPU availab ility traces of 1000 hosts chosen 

randomly  among 230000 hosts of Seti@home. These 

traces were recorded over the Internet, using the 

middleware BOINC [37], for more than 1.5 years 

between April 2007 and January 2009. Each t race reports 

the start and the end epoch times of CPU availability and 

unavailability events. The CPU availability is considered 

as a binary value indicating whether the CPU was free or 

not. So, traces of each resource were pretreated to deduce 

a mult ivariate t ime series which reports two variab les that 

are: the number and the mean duration of CPU 

availability intervals per hour. In order to ensure enough 

samples to perform statistical tests for the three past 

analyses, we considered time series of a length longer 

than 50 weeks. We normalized  them using the min-max 

normalizat ion method. The prediction evaluation was 

performed in the walk-forward manner which consists in 

using a fitting interval o f N observations to construct the 

models and an adjacent interval of L observations to 

perform predictions. Then, both intervals are moved 

forward by L and the process (of fitting followed by 

predictions) is repeated. We fixed N  to 51 weeks and L to 

1 week. To construct autoregressive models, we consider 

a maximum value of p  equal to 24, 7 and 4 respectively 

for the first, second and third past analyses. At each 

prediction, the Absolute Percentage of Error (APE) was 

computed as the ratio of the absolute value of the 

prediction erro r (the d ifference between the predicted 

value and the real value) to the real value. The Mean 

Absolute Percentage of Error (MAPE) was computed as 

the average of the Absolute Percentages of Errors of all 

the predictions. All time series models and statistical tests 

were conducted using GRETL 1.9.12 [40] which is a C++ 

open-source library for which  we were  compelled  to 

implement several necessary changes and additions.  

Experiments showed that, in most cases, if the 

autocorrelation is met, then the stationarity is met, too. 

According to experiments, the number of CPU 

availability intervals is more pred ictable than the mean 

duration of CPU availability intervals. Limited by space, 

we report results for the least predictable variable. The 

main results reported below are well checked for the 

other variable. 

According to fig. 2.a., AR models outperformed the 

other prediction techniques for less than 1% of the 

predictions. So, they should be discarded from our study. 

This may reduce the computing time of our predict ion 

system. Fig. 2.a. also shows that tendency prediction 

technique outperforms VAR models for 82% of 

predictions. The majority of these predictions correspond 

to successive hours of availability or unavailab ility for 

which the predictor Last is used and the APE is equal to 0.  

VAR models outperform tendency prediction technique 

for only 18% of pred ictions. While this percentage is not 

large enough, the number of predictions, for which VAR 

models outperform tendency strategy, remains significant 

considering only intervals  when the availability changes. 
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Fig.2. Percentages of predictions with respect to t he best predictor: a) 
case of all predictions b) case of predictions performed when the 

availability changes 

Fig. 2.b. shows the percentage of predictions, 

performed around intervals of availab ility variations, with 

respect to the best predictors. According to this figure, 

VAR models outperform tendency prediction technique 

for more than 51% of predict ions performed when the 

availability changes. In particular, VAR models 

computed over the recent past, the daily hours and the 

weekly hours are the best predictors for 41%, 6% and 4% 

of these predictions, respectively. 

Boxplots of APE of pred ictions, performed when the 

availability changes, are depicted in fig.3. Considering 

only intervals of CPU availability variations, VAR 

models produce a mean APE equal to 22.12% compared 

to 23.37% produced by tendency based strategy. So, 

using VAR models, when the CPU availability changes, 

improves the prediction accuracy by around 5.65%. 

Besides, the variation of the APE exhibited by VAR 

models for these predictions is significantly lower than 

that of the tendency based technique. Indeed, 50% of the 

APE are within [1.51, 24.76] so with a range equal to 

23.25 fo r VAR models and within [0, 37.1] thus with a 

range equal to 37.1 for tendency based strategy. This 

indicates that the accuracy of predictions of VAR models 

is more stable across the different  predictions than that of 

the tendency based technique. 

 

 

Fig.3. Box-plots of the APE of the predictions performed when the 

availability changes 

F.  Retained lessons 

We discarded AR models from our study because they 

are the least accurate. The pred ictor Last should be used 

if the availability remains constant. However, VAR 

models and tendency based strategy should be used when 

the availability changes because they are accurate enough. 

So, in order to select the appropriate predictor, the 

prediction system needs to predict, first, whether the 

availability will change. In other words, it requires 

estimating whether the availability behavior remains 

constant or not over the next hour. 

 

IV.  MULTI-STATE BASED PREDICTION 

In order to select the most appropriate prediction  

technique to predict values of the CPU availability 

indicators, the prediction system requires forecasting 

whether the resource will transit to another availability 

state over the next hour. To this end, we retained state-

based predictors due to their accuracy. In particular, we 

use TDE, TRF and SC predictors. 

This section, first, introduces the proposed multi-state 

availability modeling and describes two proposed multi-

state predictors. Then, it  presents a comparative study 

between these predictors and those retained from 

literature in  order to identify the most appropriate ones 

for resources of VC systems. 

A.  Availability modeling and multi-state predictors 

We consider a multi-state availability  modeling similar 

to that of [32]. However, we do not generate traces but, as 

mentioned above, we use real t races of Seti@home. From 

the perspective of the computing grid, the CPU of the 

volunteer resource may be in  one of the three following 

states: 

 

 Totally available, to the grid usage, over the whole 

hour: in this case, the entire processing power of 

the resource belongs to the grid environment 

during the whole hour. 

 Unavailab le, to  the grid  over the whole hour, due 

to failures, user present on the machine, turn off, 

etc. 

 Partially available to the grid usage over the whole 

hour: in some intervals of the hour, the volunteer 

resource may  be unavailab le to the grid  usage. In 

this case, only a part of its processing power is 

available to the grid usage during the hour. 

 

The proposed modeling for the availab ility of a 

volunteer resource is shown in fig.4. 

In addition, to improve the pred ictor TDE, we, first, 

propose to filter weekdays (working days) and weekends. 

TDEW denotes the predictor which operates as TDE but 

computes transitions over the same hours of the previous 

weekdays or weekends. Second, we propose to exploit  

the repetitive availability behavior over the weekly hours. 

TW denotes the predictor which counts transitions during 

the interval being predicted on the same days of the 

previous weeks. To further understand the differences 

between our proposed predictors and TDE, we present the 

following example. To predict  the availability behavior at 
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11am on Tuesday using historical data of the previous 

four days, the TDE pred ictor counts transitions between 

11am and 12am on Wednesday, Thursday, Monday and 

Sunday. However, the TDEW predictor computes 

transitions between 11am and 12am on  Wednesday, 

Thursday, Monday of the same week and Friday of the 

previous week. On the other hand, the TW predictor 

performs the prediction based on the resource transitions 

exhibited between 11am and 12am, on each Tuesday of 

the previous four weeks. 

 

 

Fig.4. The proposed multi-state availability modeling 

We conducted several experiments to analyze the 

performance of the predictors. We noticed that the best 

multi-state predictor for a g iven resource depends on the 

frequency of its availability and unavailability events, i. e. 

whether it remains available or unavailable for most of 

the time or it changes frequently from an availability state 

to another. To this end, we t ried  to classify resources into 

groups according to the mean lengths of their availability 

and unavailability intervals. As detailed in table 2, we 

subdivided the range of the mean availability (resp. 

unavailability) intervals of resources into five orders of 

magnitude. In particu lar, for each resource, we consider 

that the mean availability (resp. unavailability) intervals 

may  be in the order of minutes, hours, days, weeks or 

months. 

In what follows, to identify the appropriate predictor, 

we conduct a comparative study between the five 

considered mult i-state predictors that are: TRF, TDE, SC, 

TDEW and TW, with respect to the different groups of 

resources. 

Table 2. Ranges of the mean availability (resp. unavailability) intervals 

O rder of magnitude 
Length of the mean availability 
(resp. unavailability) interval 

[hour] 

Minutes Inferior or equal to 1 

Hours ]1, 24] 

Days ]24, 7*24] 

Weeks ]7*24, 4*7*24] 

Months Superior to 4*7*24 

 

B.  Evaluation 

The evaluation of predictions was performed in  the 

walk-forward manner using the 226000 traces of 

Seti@home hosts. We focused on traces which are longer 

than 50 weeks and for which host locations and time 

zones are mentioned. We define the mult i-state predictor 

accuracy to predict the future availability states, for each 

resource, as the ratio o f correct pred ictions to the total 

number of pred ictions. In this comparat ive study, the 

number o f past hours, days and weeks was varied and the 

appropriate ones which maximize the predict ion accuracy 

of the predictors were selected automatically for each 

resource. We considered a maximum value of 168 past 

hours, 60 past days, 60 past days and 48 past weeks 

respectively for the predictors TRF, TDE, TDEW and 

TW. 

Experiments showed that, in average, the p redictors 

TDEW, TDE and TW produce a mean accuracy equal to 

94.34%, 94.29% and 94.24%, respectively. So, in average 

TDEW is slightly more accurate than TDE and TW 

predictors. According to fig.5.a and fig.5.b, the predictor 

TDEW is as accurate as TDE and TW for 29% and 7% of 

the considered resources, respectively. It is more accurate 

than TDE and TW for 38% and 63% of resources, 

respectively.  

 

 

Fig.5. Percentage of resources per best predictor: a) case of TDEW and 
TDE, b) case of TDEW and TW, c) case of TDEW, TRF and SC 

According to fig.5.c, accuracies of TDEW , TRF and 

SC are equivalent for around 3% of resources. TDEW 

and TRF are equally the most accurate predictors for 1% 

of resources. TRF and SC predictors are the most 

accurate for 6% and 1% of resources, respectively. 

However, the predictor TDEW is the most accurate for 

89% of the compared resources. Moreover, the mean 

accuracy of TDEW, TRF and SC are respectively around 

94.53%, 92.47% and 91.56%. So, on average, TDEW  

outperforms TRF and SC predictors. 

Figure 6 presents the percentage of resources per 

ranges of mean  availab ility and unavailab ility intervals. 

Notice that the mean availability and unavailability 

intervals of the majority of resources are in the order of 

hours, days and minutes. A few resources are 

characterized by mean  availability  and unavailability 

intervals in the range of weeks and months. 
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Fig.6. Percentage of resources per ranges of mean availability then 
unavailability intervals 

 

Fig.7. Accuracy of TDEW compared to other predictors: a) Case of 
TDEW compared to TDE and TW, b) Case of TDEW compared to TRF 

and SC 

As we can see in figure 7, the predictor accuracy  

increases with the length of the mean availab ility and 

unavailability intervals. Th is may be exp lained by the fact 

that, time series of resources whose mean availability and 

unavailability intervals are of order up to days are 

relatively variable. However, those corresponding to an 

order of weeks and months are more stable. Generally, it  

is more difficult to predict time series which are more 

variable than those which are relatively stable. 

Figure 7.a presents the accuracy of the predictor 

TDEW compared  to TDE and TW. For resources which 

have mean availability or unavailability intervals in the 

range of days, weeks or months, the predictors TDE, 

TDEW and TW perform similarly to one another. Their 

accuracy exceeds 97% for these resources which are 

mostly available or unavailable. However, fo r resources 

which have mean availability and unavailability intervals 

in the range of minutes or hours, TDEW is slightly more 

accurate than TDE and TW predictors. For these subsets 

of resources whose time series are highly variab le, the 

accuracies of the predictors are about 83% to 92%. 

According to figures 7.b. and 8, TDEW is the most 

accurate for the majority of resources which have mean 

availability and unavailability intervals up to the range of 

days. Its accuracy increases with the range of the 

availability and unavailability intervals, from 83.64% up 

to 98.88%. For this first subset of resources, TDEW 

reaches an accuracy increase of up to 4% over TRF and 

up to 5.25% over SC. So, TDEW is appropriate to pred ict 

the availability states of this first subset of resources. On 

the other hand, TRF becomes slightly more accurate or 

similar to TDEW for resources which have mean 

availability (resp. unavailability) intervals in the range of 

weeks or months (resp. months). Nevertheless, the 

difference in accuracy is small and all the compared 

predictors have a high accuracy exceeding 99%. It is 

worth-reminding that the number of this second subset of 

resources is quite small. Time series are relat ively stable 

as CPUs remain availab le or unavailable for most of their 

time. Consequently, using TFR to explo it the recent past 

may be more useful and less expensive to predict the 

availability states of this second subset of resources. 

 

 

Fig.8. Percentage of resources per best prediction algorithm among 
TDEW, TRF and SC 

 

V.  PREDICTION SYSTEM MODELING 

The proposed prediction system selects the most 

appropriate predictor using a multi-state prediction 
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technique. Then, it uses the selected predictor to predict 

the CPU availability indicators. 

In this section, we, first, introduce the proposed 

prediction algorithm which uses VAR models or 

tendency strategy based on decision rules. Then, we 

describe the proposed approach to identify the 

appropriate multi-state prediction technique for each 

volunteer resource. Finally, we present the prediction 

system. 

A.  The prediction algorithm using linear predictors 

Experiments showed that VAR models outperform 

tendency prediction technique for a significant number 

(around 51%) of predict ions performed  when the 

availability changes. In particular, VAR models 

computed over the daily and weekly hours are the best 

predictors for around 10% of these predictions. Moreover, 

the three subsets of resources, for which VAR models are 

computed over the different past analyses, are 

complementary rather than overlapping. Consequently, 

when the availability is expected to change, we propose 

to predict CPU availab ility indicators using a prediction 

heuristic which identifies the most appropriate predictor 

according to decision rules. This heuristic integrates VAR 

models over the three past analyses and tendency based 

technique. To this end, we evaluated different 

conceivable prediction heuristics with several reversed 

combinations of the three past analyses. Experiments 

showed that the different resulting prediction systems 

have similar prediction errors. 

In what  follows, we retain the predict ion heuristic 

denoted RDW which selects the appropriate predictor 

according to decision rules favoring the recent, the Daily  

then the Weekly past analyses and finally the tendency 

based strategy (fig.9.). At  the prediction  time t, 

assumptions of time series models are checked. Once the 

autocorrelation and stationarity assumptions are met  for a 

given past analysis, then the corresponding VAR model, 

constructed using the sub-time series of the next hour t+1, 

is used to perform the prediction. If none of the VAR 

models computed over the three past analyses is selected, 

then the tendency based strategy is used to carry out the 

prediction. Using the new observations, the prediction 

errors are computed. 

 
At the prediction time t, 

1. if models’ assumptions are met for the previous hours, then 

use VARHourly. Else, 

2. if models’ assumptions are met for the same hours of the 

previous days, then use VARDaily. Else 

3. if models’ assumptions are met for the same weekly hours of 

the previous weeks, then use VARWeekly. Else, 

4. use the tendency based strategy. 

 

 

Fig.9. The proposed heuristic RDW 

B.  The approach to identify the most appropriate multi -

state prediction technique 

As shown in section IV.B, the magnitude of the mean  

availability and unavailability durations are useful to 

identify the appropriate mult i-state prediction technique 

for each volunteer resource. 

For the small subset of resources which have a mean 

availability (resp. unavailability) interval in the range of 

weeks or months (resp. months), TDEW  is a little  less 

accurate than TRF and relat ively similar to TDE, TW and 

SC predictors. For these volunteer resources, exploit ing 

the recent past seems more appropriate to predict the 

availability behavior which is relatively stable.  

Consequently, we propose to use TRF predictor for this 

subset of resources. 

For the other resources whose time series are relatively  

variable, errors are so high. The predictor TDEW is both 

significantly more accurate than TRF and SC and slightly 

better than TDE and TW. So, TDEW  is the most accurate 

predictor and consequently the most appropriate one for 

these resources. 

Fig. 10 presents the proposed approach to identify the 

appropriate mult i-state prediction technique for a 

volunteer resource in order to predict its future 

availability state. 

 

 For a given volunteer resource, 

1. if the mean unavailability interval is in the range of months, 

then use TRF. Else, 

2. if the mean availability interval is in the range of weeks or 

months, then use TRF. Else, 

3. if the mean availability interval is in the range of minutes, 

hours or days, then use TDEW. 

 

Fig.10. The proposed approach to identify the most appropriate multi-

state predictor for a volunteer resource 

C.  The prediction system 

Now, we combine both techniques, described above, in  

the prediction system. Before performing predict ions, at 

each walk-forward step: 

 

 the mean availab ility and unavailability durations 

are computed; 

 their ranges are identified according to table 2;  

 the appropriate mult i-state prediction technique is 

identified according to the approach proposed in 

fig.10; 

 and VAR models are constructed according to the 

process described in fig.1. 

 

At each prediction time t, g iving historical data of the 

volunteer resource, the multi-state prediction technique is 

used to estimate the probabilit ies of transitioning to 

another state from the current state and the probability to 

remain in the same current state during the next hour. The 

future state of the volunteer resource is predicted 

according to these probabilities. In particular, it  

corresponds to the highest probability. If the CPU is 

predicted to be partially available to the grid usage over 

the next hour then the heuristic RDW is used to predict 

the availability indicators. Otherwise, if the volunteer 

resource is predicted to remain  in the same availability or 

unavailability state, then the predictor Last is used to 

perform the prediction. If the volunteer resource is 

predicted to be available (respectively unavailable) over 
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the whole next hour, then the mean  duration of the 

availability intervals is estimated to be equal to 1 hour 

(respectively 0). The proposed prediction system denoted 

PS is shown in fig.11. 

 

VI.  EXPERIMENTS AND EVALUATION 

The prediction evaluation was performed in the walk-

forward manner. We considered the same experimental 

setups described in section 3.5. Moreover, for each 

volunteer resource, we used 168 past hours and 20 past 

days to perform pred ictions according to TRF and TDEW,  

respectively. At each walk forward step, we used 

historical data of the three past months to identify ranges 

of the mean availab ility and unavailability durations. 

Experiments were run on a linux based laptop equipped 

with an Intel 2.20 GHz dual core i7 p rocessor inside and 

a 4 GB memory. 

 

 At each prediction time t,  

1. Use the multi-state prediction technique to forecast the 

future availability state. 

2. if the volunteer resource is partially available then use 

RDW. Else, 

3. if it remains in the same availability or unavailability state, 

then use LAST. Else, 

4. if it is available, then both availability indicators will be 

equal to 1. Else, 

5. if it is unavailable, then both availability indicators will be 
equal to 0. 

 

Fig.11. The proposed prediction system PS to predict the availability 
indicators of a volunteer resource 

A.  Applicability of the prediction system 

We evaluated the PS using 226000 CPU availability  

traces of Seti@home hosts. Among them, we ignored 

47% of hosts for which the location and the time zone are 

not indicated. In order to ensure enough samples to 

perform statistical tests for the three past analyses, we 

considered traces longer than 50 weeks. About 80% of 

hosts do not have enough samples. Finally, we applied 

the PS to 22424 traces (about 20% of the considered 

hosts). Although the number of considered hosts is not 

large enough, they remain significant considering their 

deliverable computing power gathered over the large-

scale computing system. In total, their t ime series 

correspond to 4687 years of CPU time. The considered 

hosts are well distributed throughout the time zones and 

locations as those considered in [1, 2]. In particular, 77% 

of them are located at home, 20% at work and 3% at 

school. 

B.  Accuracy of the muti-state predictor 

In this section we evaluate the ability of the PS to  

predict the future availab ility states of the resources. 

Worth-reminding that, at each walk forward step, PS 

identified the appropriate predictor among TDEW and 

TRF according to the approach presented in fig.10. 

Experiments showed that TDEW  predictor was used to 

perform the majority (around 91%) of the predictions. 

However, TRF predictor was used for only 9% of the 

predictions. This may be exp lained by the fact that few 

subseries are relatively stable. For the prediction of these 

subseries, PS used the TRF predictor. Th is fact is 

confirmed in fig.6 which shows that the majority of time 

series are not stable but quite variable. 

The mean accuracy of PS to predict the availability  

states is high (around 94.05%). Fig.12 presents the 

accuracy of the multi-state predictors used by PS for the 

different subsets of predictions. The mean accuracy of the 

TDEW and TRF pred ictors are around 93.31% and 

98.91% respectively. 

 

 

Fig.12. Accuracy of the multi-state predictors used by PS 

C.  Accuracy of the prediction system 

In this section, we compare the proposed PS to the 

predictor Last in order to predict the availability 

indicators of the resources. The mean MAPE of the PS is 

equal to 2.43%. The PS is slightly better than Last whose 

mean  MAPE is around 2.77%. At first, we believed that 

this slight difference may  be because the PS used the 

predictor Last for many times. Experiments, however, 

showed that this is not the case. The PS used Last for 

only 4.36% of the predictions. However, our PS and Last 

are similar for 90.42% of the predictions. Hereafter, we 

ignored predictions for which errors of the PS and LAST 

are similar. We limited our evaluation to  the 5.22% 

remain ing predict ions for which  APEs of the PS and Last 

are different. A lthough the number of these predictions is 

limited, they correspond to more than 244 years of CPU 

time. Experiments showed that the majority (more than 

97%) of these predictions were performed when the 

availability changes. In particular, they correspond to 

hosts whose time series are relatively variable. 

Fig.13. presents the box-p lots of MAPE of hosts. It 

indicates that, when the PS and  Last are equivalent, 

MAPE of resources are very low with a mean equal to 

0.98%. Moreover, 50% of the MAPE of hosts are within  

[0.18%, 1.44%] so with a range equal to 1.26. However, 

when errors are different, the PS produced a mean MAPE 

equal to 16.54% compared to 20.5% produced by Last. 

So, using our prediction system improves the prediction 

quality by around 24%. Besides, the variation of the 

MAPE, exh ibited by the PS for these hosts, is 

significantly lower than Last. Indeed, 50% of the MAPE 

of hosts are within [8.42%, 23.03%] so with a range equal 

to 14.61 for the PS and within [11.69%, 29.82%] thus 
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with a range equal to 18.13 for Last. This indicates that 

the accuracy of the PS is more stable across the different 

hosts than that of LAST. 

 

 

Fig.13. Box-plots of MAPE of hosts computed when the errors of our 

prediction system and Last are equivalents and different  

 

VII.  CONCLUSION 

In this paper, we propose an automated approach to 

identify, at each pred iction time, the most appropriate 

prediction model, for a g iven volunteer resource, 

according to the nature of its time series. To this end, we 

analyzed the performance of several predict ion 

techniques. We extended the usefulness of autoregressive 

models analyzed over the recent past by exp loiting two  

other different past analyses. Our approach was evaluated 

using real CPU traces of the large scale computing 

project Seti@home. The comparat ive study showed that 

VA R models outperform the other considered prediction 

techniques for a significant fraction of predictions. We 

retained the most suitable models in order to reduce 

solution time and to min imize pred iction errors. 

Considering their accuracy, VAR models combined to the 

tendency-based strategy should be used when the 

availability changes. To predict whether the resource 

availability will change, the adequate multi-state 

prediction technique is identified, then, used. Accordingly, 

the most appropriate prediction model is selected among 

the retained models. On  average, the proposed approach 

improves the accuracy by around 24%. 
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