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Abstract—Nature is there since millenniums. Natural 

elements have withstood harsh complexities since years 

and have proved their efficiency in tackling them. This 

aspect has inspired many researchers to design algorithms 

based on phenomena in the natural world since the last 

couple of decades. Such algorithms are known as natural 

computing algorithms or nature inspired algorithms. 

These algorithms have established their ability to solve a 

large number of real-world complex problems by 

providing optimal solutions within the reasonable time 

duration. This paper presents an investigation by 

assessing the performance of some of the well-known 

natural computing algorithms with their variations. These 

algorithms include Genetic Algorithms, Ant Colony 

Optimization, River Formation Dynamics, Firefly 

Algorithm and Cuckoo Search. The Traveling Salesman 

Problem is used here as a test bed problem for 

performance evaluation of these algorithms. It is a kind of 

combinatorial optimization problem and known as one 

the most famous NP-Hard problems. It is simple and easy 

to understand, but at the same time, very difficult to find 

the optimal solution in a reasonable time – particularly 

with the increase in a number of cities. The source code 

for the above natural computing algorithms is developed 

in MATLAB R2015b and applied on several TSP 

instances given in TSPLIB library. Results obtained are 

analyzed based on various criteria such as tour length, 

required iterations, convergence time and quality of 

solutions. Conclusions derived from this analysis help to 

establish the superiority of Firefly Algorithms over the 

other algorithms in comparative terms. 

 

Index Terms—Natural Computing Algorithms, Nature 

Inspired Algorithms, Traveling Salesman Problem, 

Genetic Algorithm, Ant Colony Optimization, River 

Formation Dynamics, Firefly Algorithm, Cuckoo Search. 

 

I.  INTRODUCTION 

Nature is the best teacher. It has successfully provided 

extraordinary solutions to a large number of real-world 

complex problems by applying very simple approaches in 

systematic manners. This has attracted many researchers 

to mimic the nature in technology. As a result, natural 

computing has come up as a new era in the field of 

computing encompassing a broad range of applications. 

In the recent years, natural computing has established 

itself as an eminent force in finding promising solutions 

for complicated real world problems.  

Natural computing algorithms are computer algorithms 

whose design draws inspiration from phenomena in the 

natural world [1]. These algorithms are also referred as 

nature-inspired algorithms, bio-inspired algorithms or 

clever algorithms. Two prime aspects of any natural 

computing algorithm are: exploration and exploitation [2]. 

Exploration refers to generating diverse solutions to 

explore search space as broadly as possible. It helps to 

avoid local minima. Exploitation refers to improving the 

quality of generated solutions by applying local search or 

other means. It strives to find the best solution. Natural 

computing algorithms work in an iterative manner by 

exploring and exploiting search space iteration by 

iteration to find optimal solutions. 

The success of natural computing algorithms and their 

acceptance among researchers is mainly due to four 

factors as described in [3]. These algorithms are simple as 

they use simple concepts derived from nature. They are 

flexible and can be applied to different problems without 

major structural changes in the algorithm. They use 

derivation-free mechanisms and have abilities to avoid 

local optima (or, minima). These features provide them 

superiority over traditional algorithms such as exact 

methods involving logical or mathematical programming. 

Contrast to this, according to No Free Lunch (NFL) 

theorem [4], no single natural computing algorithm is 

best suited for solving all optimization problems. This has 

pushed researchers to develop new algorithms as well as 

to enhance existing algorithms. As a result, a number of 

various natural computing algorithms and their variations 

have been developed over the last couple of decades. 

These algorithms are summarized in next section. 

This paper concentrates on some of the well known 

natural computing algorithms along with their variations 

such as Genetic Algorithm (GA), Ant Colony 

Optimization (ACO), River Formation Dynamics (RFD), 

Firefly Algorithm (FA) and Cuckoo Search (CS). The 

performance of these algorithms is investigated by 

applying them to the Traveling Salesman Problem (TSP) 



 Investigating Performance of Various Natural Computing Algorithms 47 

Copyright © 2017 MECS                                                             I.J. Intelligent Systems and Applications, 2017, 1, 46-59 

which belongs to the class of NP-hard problems.  

The remainder of this paper is organized as follows: 

Section II summarizes natural computing algorithms. 

Section III discusses the Traveling Salesman Problem 

along with its mathematical definition and associated 

complexity. Section IV describes various natural 

computing algorithms and their adaptations to solve TSP. 

Section V presents the detailed results of experiments 

conducted on a set of benchmark TSP instances given in 

TSPLIB library [5]. Finally, section VI provides 

conclusions based on comparative analysis of various 

algorithms. 

II.  SUMMARY OF NATURAL COMPUTING ALGORITHMS 

This section summarizes various natural computing 

algorithms as given in table 1. Various algorithms are 

listed along with their abbreviations, inspirational natural 

phenomena, names of researchers and year of publication. 

An honest attempt has been made in this section to 

provide state-of-the-art sum-up information on natural 

computing algorithms. This summary is aimed to provide 

readers a comprehensive list of all natural computing 

algorithms, developed in as early as the 1970s to recent 

ones, and to inspire them for further research. 

 

Table 1. Natural Computing Algorithms – A Summary 

Abbreviation Algorithm Underlying Natural Phenomena Author(s) Year Reference(s) 

GA Genetic Algorithm 
Natural selection process that mimics biological 

evolution 
Holland 

1973 

1975 

1992 

[6]–[8] 

SA Simulated Annealing Cooling process of molten metal 
Kirkpatrick, Gelatt, 

Vecchi 

1983 

1997 
[9], [10] 

MA Memetic Algorithm Cultural revolution Moscato 1989 [11] 

ACO Ant Colony Optimization Foraging behavior of ants Dorigo, Colorni 1991 [12] 

GP Genetic Programming 
Extension of GA – Solution is represented as a tree 

with variable length 
Koza 1992 [13] 

PSO Particle Swarm Optimization Flocking behavior of birds Kennedy, Eberhart 1995 [14] 

DE Differential Evolution 
Genetic evolution with mutation as an arithmetic 

combination of individuals 
Storn, Price 1997 [15] 

BEA 
Bacterial Evolutionary 

Algorithm 

Microbial evolution phenomenon along  with gene 

transfer operation 
Nawa, Furuhashi 1999 [16] 

AIS Artificial Immune System Human immune system Dasgupta 
1999 

2003 
[17][18] 

ES Evolution Strategies Adaption and evolution by means of natural selection Beyer, Schewefel 2002 [19] 

BFO Bacterial Foraging Optimization Foraging behavior of bacteria Passino 2002 [20] 

FSA Fish Swarm Algorithm Schooling behavior of fish Li, Shao, Qian 2003 [21] 

SFLA 
Shuffled Frog Leaping 

Algorithm 
Frog leaping on stones in a pond Eusuff, Lansey 

2003 

2006 
[22], [23] 

SCO Social Cognitive Optimization Human social cognition Xie, Zhang 2004 [24] 

IWCO 
Invasive Weed Colony 

Optimization 

Ecological process of weed colonization and 

distribution 
Mehrabian, Lucas 2006 [25] 

ABC Artificial Bee Colony Foraging behavior of bees Karaboga, Basturk 
2005 

2007 
[26], [27] 

GSO Group Search Optimization 
Searching behavior of animals and their group living 

theory 
He, Wu, Saunders 2006 [28] 

CFO Central Force Optimization 
Metaphor of the gravitational kinematics and particle 

motion in a gravitational field 
Formato 

2007 

2008 
[29], [30] 

RFD River Formation Dynamics How rivers are formed 
Rabanal, Rodriguez, 

Rubio 

2007 

2009 
[31], [32] 

IWD Intelligent Water Drops Actions and reactions among water drop in a river Shah-Hosseini 2007 [33] 

RIO Roach Infestation Optimization Social behavior of cockroaches 
Havens, Spain, 

Salmon, Keller 
2008 [34] 

MS Monkey Search Mountain climbing process of monkeys Zhao, Tang 2008 [35] 

BBO 
Biogeography-Based 

Optimization 
Distribution of species in nature over time and space Simon 2008 [36] 

LCA 
League Championship 

Algorithm 
Competition of sport teams in a league championship Kashan 2009 [37] 

GSO Glowworm Swarm Optimization 
Behavior of glowworms – capability to change 

intensity of luciferin emission 
Krishnanand, Ghose 2009 [38] 

BBMO Bumble Bees Mating Mating behavior of bumble bees Marinakis, Marinaki, 2009 [39] 
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Optimization Matsatsinis 

HSO Hunting Search Optimization 
Group hunting behavior of animals such as lions and 

wolves 
Oftadeh, Mahjoob 2009 [40] 

FA Firefly Algorithm Flashing behavior of fireflies Yang 2009 [41] 

HS Harmony Search Improvisation process of musicians Yang 2009 [42] 

PFA Paddy Field Algorithm Reproduction of plant populations 
Premaratne, 

Samarabandu, Sidhu 
2009 [43] 

GSA Gravitational Search Algorithm Low of gravity and resultant mass interactions 

Rashedi, 

Nezamabadi-Pour, 

Saryazdi 

2009 [44] 

CS Cuckoo Search 
Breeding behavior of cuckoo – laying color-pattern 

mimicked  eggs in nests of other birds 
Yang, Deb 

2009 

2010 
[45], [46] 

BIA Bat Inspired Approach Echolocation behavior of bats Yang 2010 [47] 

FA Fireworks Algorithm 
Explosion processes of fireworks and mechanisms 

for maintaining diversity of sparks 
Tan, Zho 2010 [48] 

PPA Plant Propagation Algorithm 
Propagation of the plants, particularly Strawberry 

plants 
Salhi, Fraga 2011 [49] 

CAB Collective Animal Behavior 
Collective behavior of different animal groups such 

as swarming, milling, migrating in aligned groups 

Cuevas, González, 

Zaldivar, Pérez-

Cisneros, García  

2012 [50] 

WCA Water Cycle Algorithm 
Real world water cycle among 

transpiration/evaporation, condensation, precipitation 

Eskandar, Sadollah, 

Bahreininejad, 

Hamdi 

2012 [51] 

KH Krill Herd Herding behavior of krill individuals Gandomi, Alavi 2012 [52] 

BCO Bacterial Colony Optimization 
Behavior of E. Coli bacteria at different development 

stages in their life cycle 
Niu, Wang 2012 [53] 

LA Lion’s Algorithm 
Social behavior of lions that helps to keep 

themselves strong  
Rajakumar 2012 [54] 

SCO Stem Cells Optimization Reproduction behavior of stem cells 
Taherdangkoo, 

Yazdi, Bagheri 
2012 [55] 

BNMR 
Blind Naked Mole-Rats 

Algorithm 
Social behavior of Mole-Rats Shirzadi, Bagheri 2012 [56] 

FPA Flower Pollination Algorithm Fertilization/Pollination process of flowers Yang 
2012 

2014 
[57], [58] 

BH Black Hole Star swallowing behavior of black holes Hatamlou 2013 [59] 

CA Cuttlefish Algorithm 
Mechanism of color changing behavior adopted by 

the cuttlefish 

Eesa, Abdulazeez, 

Orman 
2013 [60] 

MBA Mine Blast Algorithm Concept of mine bomb explosion 

Sadollah, 

Bahreininejad, 

Eskandar, Hamdi 

2013 [61] 

SSO Social Spider Optimization Simulation of cooperative behavior of social spiders 

Cuevas, Cienfuegos, 

Zaldívar, Pérez-

Cisneros 

2013 [62] 

SMO Spider Monkey Optimization 
Foraging behavior of spider monkeys based on 

fission-fusion 

Bansal, Sharma, 

Jadon, Clerc 
2014 [63] 

AMO Animal Migration Optimization 
Behavior of animals during migration from one 

location to another location 
Li, Zhang, Yin 2014 [64] 

BMO Bird Mating Optimizer Mating strategies of birds Askarzadeh 2014 [65] 

FOA Forest Optimization Algorithm Seeding procedure of the trees in a forest 
Ghaemi, Feizi-

Derakhshi 
2014 [66] 

GWO Grey Wolf Optimizer 
The leadership hierarchy and hunting mechanism of 

grey wolves 

Mirjalili, Mirjalili, 

Lewis 
2014 [3] 

VSA Vortex Search Algorithm 
Vortex (swirl) pattern due to vertical flow of affected 

fluids 
Doğan, Ölmez 2015 [67] 

WWO Water Wave Optimization 
Propagation, refraction and breaking phenomena of 

shallow water waves 
Zheng 2015 [68] 

EHO Elephant Herding Optimization Herding behavior of elephant groups Gai-Ge Wang 2015 [69] 

RRO Raven Roosting Optimization 
Social roosting and foraging behavior of common 

raven 

Brabazon, Cui, 

O’Neill 
2016 [70] 
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III.  TRAVELING SALESMAN PROBLEM 

Optimization strives to find the best solution from all 

feasible solutions. Optimization problem can be either 

continuous or discrete [71], [72]. Continuous 

optimization problems contain variables that can take on 

real values, such as, solving polynomial equations. In 

contrast to this, discrete optimization problems, also 

known as combinatorial optimization problems, contain 

variables that can take on integer values, such as, the 

Traveling Salesman Problem. 

The Traveling Salesman Problem (TSP) [73]–[75] is 

one of the most widely studied problems in the arena of 

discrete combinatorial optimization problems. The basic 

concept of the TSP is to find a closed tour of a given 

number of cities, visiting each city exactly once and 

returning to the starting city, by minimizing the length of 

the tour.  

In mathematical terms, the TSP can be defined as: 

 

- Given a weighted graph G = (V, E), where V is a 

set of cities and E is a set of edges between cities, 

- find the tour of all cities that has the minimum 

total cost, or in other words,  

- minimize   ( )   ∑  i i 1
 
    where n is a total 

number of cities and wi,i+1 represents distance 

between city i and its next city in a tour. 

 

With the increase in problem size (number of cities), 

the total number of possible tours increases exponentially 

in terms of n! This complexity brings the TSP under the 

category of an NP-hard combinatorial optimization 

problem and makes it infeasible to find optimal solution 

using traditional methods. 

The TSP can be either Symmetric or Asymmetric. In 

the Symmetric TSP, the distance between any two cities 

is same from either side, while in Asymmetric TSP, this 

distance is not same. As the back and forth tours are same 

for the Symmetric TSP, a total number of tours can be 

given by (n-1)! / 2. 

The positive point of the TSP is its simplicity and 

easiness in understanding. This prevents the behavior of 

the algorithm, used to solve the TSP, from being 

obscured by too many technicalities. Due to this reason, 

the TSP is used as the test-bed problem in this paper to 

assess the performance of algorithms discussed later. 

 

IV.  NATURAL COMPUTING AND TSP 

Careful examination of the natural computing 

algorithms shows that most of them, particularly recently 

developed ones, are more inclined towards continuous 

optimization problems. There are mainly two reasons 

behind this. First, it is relatively easy to solve continuous 

optimization problems. Second, it is also easy to map 

continuous optimization problems with natural 

phenomena. In contrast to this, discrete or combinatorial 

optimization problems are difficult to solve and same 

applies to their mapping with natural phenomena.  

In this section, five different natural computing 

algorithms are described along with their pseudo code, 

adaptation to solve the TSP and parameters used. 

A.  Genetic Algorithm 

Genetic Algorithm (GA), proposed and explored in 

[6]–[8], has been inspired by Darwin’s theory of 

evolution, mimicking the process of natural selection for 

survival of the fittest individual. GA is a population-

based natural computing algorithm that applies various 

operators such as Selection, Crossover and Mutation to 

solutions in a population to generate next generation. 

Three important points to be considered while applying 

GA to solve any problem are: First, a probable solution 

must be represented in such a way that it can be encoded 

on a GA chromosome. Second, each solution must have 

some fitness function to evaluate it. Third, various 

operators and parameters must be determined. Important 

parameters affecting the performance of GA are 

population size, crossover rate, mutation rate and a 

number of generation. 

 Pseudo code: 

1. Initialize the Population 

2. Evaluate the Population 

3. While (Termination Criteria not Met) 

a. Apply Selection 

b. Apply Crossover 

c. Apply Mutation 

d. Update and Evaluate Population 

 

A population is a set of solutions (chromosomes). 

Random solutions are generated to initialize a population 

according to given population size. Each solution is 

evaluated based on an assigned fitness value. Termination 

criteria can be predefined a number of generations, 

maximum allowed time duration or stagnations in the 

result. 

Selection is used to replace worse solutions with better 

solutions. Crossover is used to generate new offspring by 

combining genes of selected solutions. Mutation is used 

to generate new offspring by randomly changing genes of 

an individual solution. Each solution in a population is 

evaluated. This process continues until some convergence 

criterion meets. 

Different mechanisms used for selection, crossover and 

mutation have been explained in [76]. According to it, 

popular selection mechanisms are – truncation selection, 

tournament selection, reward based selection, roulette 

wheel selection (fitness proportionate selection) and rank 

selection. Popular crossover mechanisms are – k-point 

crossover, uniform crossover, uniform order-based 

crossover, order-based crossover, partially matched 

crossover (PMX) and cycle crossover (CX). Common 

mutation mechanisms are bit-flip and swap genes. 

 Adapting GA to TSP: 

GA has been adapted to solve random TSP in [77]. 

Similar to that approach, a solution (or, tour) is encoded 

as a random permutation for cities starting from 1 to N. 

Tour length is considered as a fitness value and GA 
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attempts to minimize the tour length in each generation. 

Tournament selection is used as a selection operator 

which selects and duplicates better tour between two 

randomly selected tours. Partially matched crossover is 

used as a crossover operator as given in [76]. Mutation 

operator flips cities between randomly selected two 

points in a tour. Generated tours are evaluated against 

their tour lengths and the population is updated. This 

process continues until stagnation occurs in the best tour 

of the population. 

 Parameters Used: 

Total number of cities = N, population size = 64, 

crossover rate = 1.0, mutation rate = 0.4, stagnation 

counter = N. 

B.  Ant Colony Optimization 

Ant Colony Optimization (ACO), proposed in [12] and 

explored in [78], has been inspired by the foraging 

behavior of real ants. Ants possess natural ability to find 

the shortest tour between the food source and their nest. 

Ants deposit a fixed amount of pheromone while 

Traveling from their nest to food source and vice versa. 

Initially, they move randomly. An ant having shorter tour 

will return earlier increasing pheromone value on that 

tour. Other ants will prefer a tour with higher pheromone 

value to travel. This results in more and more ants 

following shorter tour further increasing pheromone 

value on that tour. In contrast to this, longer tours possess 

less movement of ants comparatively and so less 

pheromone value. Also, the pheromone evaporates by a 

certain amount at a fixed stable rate. These results in the 

elimination of longer tours after some time and all ants 

follow the shortest possible tour. 

This behavior of ants is modeled mathematically in 

ACO. This algorithm progresses in an iterative manner. 

With each iteration, all ants construct their own tour – 

initially randomly or based on some heuristic value, and 

later, based on pheromone values on available tours in 

combination with heuristic values. New pheromone is 

deposited on tours found by each ant. Also, some 

pheromone is evaporated from each possible tour. This 

process continues until convergence occurs, or in other 

words, all ants follow single tour – probably the shortest 

one. 

In ACO, the pheromone is deposited on tours found by 

each ant in inverse proportions to their tour length, i.e. 

depositing more pheromone on better tours and vice versa. 

In Elitist ACO [78], an extra amount of pheromone is 

deposited on best tour to increase the chance of selecting 

that tour by ants in next iteration. The modified Elitist 

ACO, which is implemented here, deposits pheromone 

only on the best tour. This results in a faster convergence 

of the solutions. 

 Pseudo code for modified Elitist ACO: 

1. Initialize the Parameters 

2. While (Termination Criteria not Met) 

a. Construct Solutions 

b. Evaluate Solutions 

c. Deposit Pheromone on best 

tour only 

d. Evaporate Pheromone 

 

All problems need to be converted to graphs to apply 

ACO. If a problem fulfills this criterion, the given 

algorithm starts with initializing various parameters such 

as a total number of ants (M), pheromone matrix (τ)  

heuristic information matrix (η)  evaporation rate (ρ), α 

and β. Generally, M is kept same as that of a total number 

of nodes. Each ant is put on the randomly selected node 

(or city, in the case of TSP). 

After initialization, iterative process of algorithm starts. 

Each ant constructs its own tour (or solution). Once all 

ants construct their tours, these tours are evaluated 

according to their fitness function to find the best tour. In 

next step, the pheromone is updated by evaporating it 

from all tours and depositing it on the best tour. This 

process continues until stagnation occurs in the best tour 

or some other criteria such as predefined maximum 

iterations or time duration meets. 

 Adapting modified Elitist ACO to TSP: 

The TSP can be easily considered as a graph having 

each city as a node and a path between two cities as an 

arc (or edge) between two nodes. To apply modified 

Elitist ACO to TSP, various parameters are initialized. 

Pheromone matrix (τ) is initially given unique constant 

value. During the iterative process of the algorithm, ants 

construct their own tour. A probabilistic mechanism is 

used to select next city to be visited from the current city 

by each ant. Suppose an ant k is currently on city i. It 

selects next city j to visit based on the probability given 

by 

 

   
  (   )

 
(   )

 
                          (1) 

 

Where,     and  
  

 represents pheromone value and 

inverse distance between city i and city j respectively. α 

and β are constant parameters used to control the relative 

importance of the pheromone values (τ) and the heuristic 

information (η). As in symmetric TSP any city can be 

visited from a given city, equation (1) is modified from 

that of given in [79], [80]. A roulette wheel selection is 

applied to determine city j based on available 

probabilities. 

Once all ants construct their tours, these tours are 

evaluated in terms of tour length to find the best tour. In 

next step, the pheromone is updated by evaporating it 

from all tours and depositing on the best tour. Pheromone 

evaporation is performed according to the following 

equation. 

 

    (   )                              (2) 

 

where ρ is the evaporation rate. 

Pheromone is deposited according to the following 

equation. 
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                                      (3) 

 

where C is the length of the best tour. 

This process continues until stagnation occurs in the 

best tour. 

 Parameters Used: 

Total number of cities = N, total number of Ants = N, α 

= 1.0  β = 5.0  ρ = 0.5  stagnation counter = 50. 

C.  River Formation Dynamics 

River Formation Dynamics (RFD), introduced in [31], 

is inspired based on how rivers are formed in nature. 

Water drops, constitutional elements of the river, flow 

down to the sea and transform the landscape. Drops erode 

the ground and decrease altitude while traversing high 

decreasing gradients. They also deposit carried sediments 

and increase altitude in flatter areas. Based on decrease or 

increase in altitudes of nodes, gradients are modified 

affecting movement of subsequent drops. In this way, 

decreasing gradients are formed. They represent the path 

from the source to the sea in the form of a river. These 

paths model the solutions for the problem under 

consideration. 

 Pseudo code: 

1. Initialize Drops 

2. Initialize Nodes 

3. While (Termination Criteria not Met) 

a. Move Drops 

b. Erode Nodes 

c. Deposit Sediments 

d. Analyze Paths 

 

Similar to ACO, all problems need to be converted to 

graphs to apply RFD. Mathematical model for the RFD 

has been elaborated in [31], [32], [81]. This algorithm 

begins by depositing all drops in the initial node. In next 

step, all nodes of the graph are initialized by assigning 

them certain altitudes. A destination node is assigned 

altitude zero. This node represents a sea. The altitude of 

all other nodes is set to some equal positive value. 

After initialization, iterative process of algorithm starts. 

Drops are moved based on the altitude difference and 

distance between two nodes. Based on the movement of 

drops, nodes are eroded and sediments are deposited. The 

resultant paths are evaluated in terms of the fitness 

function. This process continues until stagnation occurs 

in the best solution, i.e. all drops follow the same path, or 

some other criteria such as predefined maximum 

iterations or time duration meet. 

Generally, drops move from higher altitude to lower 

one only. A variation of RFD, called Symmetric RFD 

(sRFD), is proposed and used in this paper. In symmetric 

RFD, drops are allowed to move in any direction. 

 Adapting Symmetric RFD to TSP: 

Adapting RFD to TSP is given in [81], [82]. A TSP is 

modeled as a graph having each city as a node and a path 

between two cities as an arc (or edge) between two nodes. 

RFD is adapted here with some improvements. 

Instead of depositing all drops to a single node, drops 

are deposited to randomly selected nodes to explore the 

entire search space in a fair manner.  

All nodes are assigned same unique altitudes values. 

They are also eroded initially based on the distance 

between two nodes as given by the following equation. 

 

                                          (4) 

 

                                             (5) 

 

A probabilistic mechanism selects next node to be 

visited from the current node by each drop based on the 

decreasing gradient as given by the following equation. 

 

              
                      

   
                   (6) 

 

The reason behind considering absolute value of the 

difference between two altitudes is symmetric TSP. For 

symmetric TSP, a tour in either direction is same. For 

example, two different tours A-B-C-D-A and A-D-C-B-A 

have no difference in the context of symmetric TSP. An 

absolute value of decreasing gradient allows a drop to 

move in any direction. 

Erosion during movement of drops is directly 

proportional to decreasing gradient. Movement across 

nodes with high decreasing gradient cause more erosion 

and vice versa. 

Continuous erosion may result in almost zero altitudes 

for all nodes after some iteration. To avoid this, the 

altitude of all nodes is slightly increased by depositing 

sediments after erosion process completes. The amount of 

sediment to be deposited is considered as average erosion 

across all nodes. 

After updating altitudes, constructed paths by each 

drop are analyzed in terms of tour length to determine the 

best tour. This process continues until stagnation occurs 

in the best tour. 

 Parameters Used: 

Total number of cities = N, total number of Drops = N, 

stagnation counter = N. 

D.  Firefly Algorithm 

Firefly algorithm (FA), introduced in [41] and explored 

in [83], is inspired based on flashing behavior of fireflies. 

In formulating FA, three assumptions have been made: 

First, a firefly is unisexual and can be attracted by any 

other fireflies regardless of their sex. Second, 

attractiveness depends on their brightness and varies with 

distance. Less bright firefly is attracted by brighter one 

and so moves towards it. A firefly can move randomly if 

there is no other brighter firefly available. Third, the 

landscape of the objective function determines the 

brightness of a firefly. This algorithm models the quality 

of solution as a brightness of the firefly. A firefly with 

maximum brightness represents the best solution. 

 Pseudo code: 
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1. Initialize the Population 

2. Initialize Light Intensity 

3. While (Termination Criteria not Met) 

a. Move Fireflies 

b. Evaluate and Rank Fireflies 

c. Update Light Intensity 

d. Move Best Firefly Randomly 

 

Each firefly represents one potential solution. A 

population is a set of solutions and initialized with 

randomly generated solutions. Each solution is evaluated 

against its fitness function and light intensity (or 

brightness) is assigned to each firefly based on the fitness 

value – better the fitness, better the brightness. 

Termination criteria for an iterative process can be 

predefined a number of generations, maximum allowed 

time duration or stagnations in the result. 

In each iteration, a firefly is moved towards another 

firefly based on its attractiveness. A firefly’s 

attractiveness is proportional to light intensity seen by 

other fireflies and can be given by 

 

     
                                   (7) 

 

where β0 is the attractiveness at the origin, r is the 

distance between two fireflies and γ is a fixed light 

absorption coefficient. β0 is determined based on the 

fitness function. 

Once movement of fireflies completes, they are 

evaluated and assigned ranks to determine the best firefly. 

Light intensity, β0, is updated based on fitness values for 

each firefly. At the end, best firefly is allowed to move 

randomly to explore the search space. This process 

continues until some termination criteria occur. 

A variation of FA, called improved FA (iFA), is 

proposed and used in this paper. Instead of only best 

firefly, this variation allows a fraction of better fireflies to 

move randomly. 

 Adapting Improved FA to TSP: 

FA has been adapted to solve TSP in [84], [85]. A 

solution (or, tour) is encoded as a random permutation for 

cities. Each firefly represents a single tour. A population 

is initialized with such randomly generated tours. The 

fitness of each tour is evaluated in terms of tour length. 

Light intensity, β0, for each firefly is assigned as given by 

the following equation. 

 

   
 

           
                           (8) 

 

The movement of a firefly has been improved by 

allowing it to move towards only the best firefly in this 

paper. Number of steps taken for such movement is 

randomly selected between 2 and dij as given by, 

 

            (     )                     (9) 

 

where, dij is the hamming distance between two tours. 

During each step, firefly moves towards best firefly, i.e. 

best tour, using inversion mutation, improving its solution 

quality.  

After moving fireflies, each tour is evaluated and light 

intensities of fireflies are updated. In addition, this 

adaptation allows top 20% fireflies to move randomly 

rather than a single best one as suggested in original 

algorithm. This helps to explore the search space in a 

better way as well as avoids local minima. 

This process continues until stagnation occurs in the 

best tour. 

 Parameters Used: 

A total number of cities = N, a total number of fireflies 

= either 10 or N/4, whichever is maximum, stagnation 

counter = N. 

E.  Cuckoo Search 

Cuckoo Search (CS), given in [45], [46], is inspired by 

breeding behavior of cuckoo – laying color-pattern 

mimicked  eggs in nests of other birds. In formulating CS, 

three main rules are idealized. First, each cuckoo lays one 

egg at a time and dumps it in a randomly chosen nest. 

The number of available host nests is fixed. Each nest (or 

egg) represents one potential solution. Second, the better 

nests with high-quality eggs will continue to next 

generation. Third, the host bird discovers an egg, laid by 

a Cuckoo, with a probability of Pa ϵ (0, 1) from some set 

of worst nests. In this case, the host bird can either throw 

away this alien egg or simply abandon the nest and build 

a new nest.  

 Pseudo code: 

1. Initialize Population of ‘N’ Nests 

2. Evaluate Nests 

3. While (Termination Criteria not Met) 

a. Randomly Generate New Solution Si 

from Best Nest 

b. Randomly Choose Nest Sj from 

Population 

c. If Si is better than Sj 

Replace Sj with Si 

d. Abandon Worse Nests, Replace with 

Randomly Generated Nests 

e. Evaluate Nests 

 

Algorithm begins with initialization of a population 

with randomly generated solutions. Each solution is a 

nest (or an egg) and is evaluated against its fitness 

function to find out the best nest. Termination criteria for 

an iterative process can be predefined a number of 

generations, maximum allowed time duration or 

stagnations in the result. 

In each iteration, new solutions are generated by 

applying random walk or levy flights to the best solution. 

If these solutions are better than randomly chosen 

solutions from the population, later ones are replaced. In 

proportion to given Pa, worse nests are abandoned and 

replaced with randomly generated solutions. The entire 

population is evaluated again to find out the best solution. 

This process continues until termination criteria meet. 



 Investigating Performance of Various Natural Computing Algorithms 53 

Copyright © 2017 MECS                                                             I.J. Intelligent Systems and Applications, 2017, 1, 46-59 

 Adapting CS to TSP: 

CS has been adapted to solve spherical TSP in [86]. 

Similar to TSP, another problem is PCB Holes Drilling. 

CS has been adapted to solve this problem in [87]. 

To represent a random tour, as given in [87], a vector 

of random values between 0 and 1 is generated. For 

example, if total number of cities, N = 5, then 

 

S = [0.9134, 0.6324, 0.0975, 0.2785, 0.5469] 

 

S is sorted in ascending order and the relative order of 

each of the values of S is found. This relative order 

represents the sequence of cities in a tour as given below. 

 

Sorted S = [0. 0975, 0.2785, 0.5469, 0.6324, 0.9134] 

 

So, city sequence in tour will be, T = [3 4 5 2 1] 

A population of N solutions is initialized by randomly 

generating a set of N different S. Each solution is 

evaluated in terms of tour length and best solution is 

determined. 

After this, in iterative process, a new solution is 

generated using equation, 

 

                                      (10) 

 

where α is a constant value and rand represents random 

values between -1 and 1. 

If the new nest has a better tour, i.e. with shorter tour 

length, compared to randomly chosen nest from the 

population, the later one is replaced with a new nest. 

From entire population, 20% worse nests are 

abandoned and replaced with the randomly generated tour 

as given by the following equation. 

 

                                          (11) 

 

At the end of each iteration, the entire population is 

evaluated to determine the best solution. This process 

continues until stagnation occurs in the best tour. 

 Parameters Used: 

Total number of cities = N, total number of nests = N, 

α = 0.1, percentage of abandon (Pa) = 0.2, stagnation 

counter = N. 

 

V.  RESULTS AND DISCUSSION 

Various natural computing algorithms – GA, modified 

elitist ACO, symmetric RFD, improved FA and CS – 

have been applied to 8 different TSP instances given in 

TSPLIB [5] named burma14, ulysses22, eil51, eil76, 

kroa100, bier127, kroa150, and kroa200. The number in 

the instance identifier is the problem size in terms of a 

total number of cities, for example, burma14 has 14 cities. 

For a stopping criterion, stagnation in the best tour has 

been used. Derived results have been averaged over 10 

different runs. Algorithms have been implemented using 

MATLAB R2015b and executed on a system with 

Windows 7 as an operating system. 

Table 2. GA Results for 8 different TSP Instances 

TSP  

Instance 

Tour Length 
Iteration 

Time 

(Sec) Best Average Worst 

burma14 3462.30 3490.59 3613.91 32.80 0.11 

ulysses22 6993.08 7078.62 7282.15 72.60 0.25 

eil51 443.47 455.97 471.44 344.50 1.42 

eil76 573.21 595.94 610.10 653.00 3.24 

kroa100 22123.86 23422.65 25280.06 1189.00 6.90 

bier127 123477.30 129260.90 135798.20 2448.60 16.91 

kroa150 28181.29 29450.92 31623.33 2486.70 20.34 

kroa200 32302.35 33548.14 35078.73 4068.40 46.91 

Table 3. Modified Elitist-ACO Results for 8 different TSP Instances 

TSP  

Instance 

Tour Length Iteratio

ns 

Time 

(Sec) Best Average Worst 

burma14 3492.17 3523.03 3584.03 12.00 0.03 

ulysses22 6993.08 7119.28 7222.63 14.40 0.08 

eil51 429.48 442.09 450.34 18.60 0.64 

eil76 549.17 560.05 575.62 21.70 1.84 

kroa100 21794.41 22382.56 22929.07 24.30 3.90 

bier127 121372.10 123031.10 124467.30 29.40 8.13 

kroa150 27436.48 28253.22 29352.55 26.60 11.37 

kroa200 30563.38 31102.27 31753.81 31.60 27.89 

Table 4. Symmetric RFD Results for 8 different TSP Instances 

TSP  

Instance 

Tour Length Iteratio

ns 

Time 

(Sec) Best Average Worst 

burma14 3569.32 3625.37 3653.76 15.20 0.06 

ulysses22 7097.08 7196.98 7383.61 30.10 0.28 

eil51 439.55 449.12 467.57 147.20 5.01 

eil76 571.56 577.39 589.80 240.90 35.40 

kroa100 22166.38 22706.78 23144.83 124.30 35.02 

bier127 125958.10 128379.30 132107.20 101.30 28.70 

kroa150 28089.45 28494.95 29262.93 68.50 47.93 

kroa200 30330.92 31185.46 32198.42 93.40 142.15 

Table 5. Improved FA Results for 8 different TSP Instances 

TSP  

Instance 

Tour Length Iteratio

ns 

Time 

(Sec) Best Average Worst 

burma14 3462.30 3474.92 3527.95 23.70 0.06 

ulysses22 6993.08 7047.63 7110.34 43.10 0.12 

eil51 433.54 443.27 450.09 95.90 0.41 

eil76 558.37 569.61 583.45 141.40 1.80 

kroa100 21456.26 21876.10 22608.27 180.50 5.14 

bier127 120479.80 123247.40 128880.00 222.10 9.79 

kroa150 28077.07 28268.49 28588.13 226.20 18.09 

kroa200 29630.90 30159.03 30769.78 272.60 51.97 
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The following tables 2 to 6 represent results for various 

algorithms such as GA, eACO, sRFD, iFA and CS 

respectively. Each of these tables shows best, average & 

worst tour lengths, average iterations & average time 

required over 10 different runs for each of the 8 different 

TSP instances. 

Table 6. CS Results for 8 different TSP Instances 

TSP  

Instance 

Tour Length Iteratio

ns 

Time 

(Sec) Best Average Worst 

burma14 3462.30 3515.59 3642.32 22.50 0.02 

ulysses22 6993.08 7079.14 7224.24 67.70 0.08 

eil51 436.13 443.51 453.62 115.40 0.65 

eil76 557.01 570.64 580.25 135.30 1.73 

kroa100 21294.40 21863.33 23106.86 223.80 5.09 

bier127 120877.70 122941.20 126945.70 359.10 14.61 

kroa150 27177.12 27791.13 28546.68 709.80 188.68 

kroa200 29635.76 30045.30 30811.75 698.80 113.30 

 

The performance of algorithms has been compared 

using five different parameters – best tour length, 

perfective error, precision error, the number of iterations 

and time required – as discussed below. 

 Best Tour Length 

Table 7 represents best tour lengths obtained by 

different algorithms along with optimal tour length as 

given in  [88]. Numbers in bold fonts are best results for a 

given TSP instance, while, numbers in italic fonts are 

second best results.  

This table shows that modified Elitist ACO performs 

well when problem size is smaller. But with an increase 

in a number of cities, FA and CS outperform all other 

algorithms. 

 Perfective Error 

Perfective error stands for the difference between 

optimal tour length and best tour length obtained by an 

algorithm. Mathematically it can be calculated as, 

 
                          

              
                  (12) 

 

Table 8 represents the perfective error. Results 

establish the superiority of CS over other algorithms. 

Also, note that negative error for the TSP instance 

ulysses22 shows that our algorithms have furnished better 

results compared to optimal results given in [88]. 

Table 7. Best Tour Length for Different NCAs 

Instance Optimal [88] GA eACO sRFD iFA CS 

burma14 3323.00 3462.30 3492.17 3569.32 3462.30 3462.30 

ulysses22 7013.00 6993.08 6993.08 7097.08 6993.08 6993.08 

eil51 426.00 443.47 429.48 439.55 433.54 436.13 

eil76 538.00 573.21 549.17 571.56 558.37 557.01 

kroa100 21282.00 22123.86 21794.41 22166.38 21456.26 21294.40 

bier127 118282.00 123477.33 121372.14 125958.13 120479.81 120877.71 

kroa150 26524.00 28181.29 27436.48 28089.45 28077.07 27177.12 

kroa200 29368.00 32302.35 30563.38 30330.92 29630.90 29635.76 

 

 
Table 8. Perfective Error (%) for Different NCAs 

Instance GA eACO sRFD iFA CS 

burma14 4.19 5.09 7.41 4.19 4.19 

ulysses22 -0.28 -0.28 1.20 -0.28 -0.28 

eil51 4.10 0.82 3.18 1.77 2.38 

eil76 6.54 2.08 6.24 3.79 3.53 

kroa100 3.96 2.41 4.16 0.82 0.06 

bier127 4.39 2.61 6.49 1.86 2.19 

kroa150 6.25 3.44 5.90 5.86 2.46 

kroa200 9.99 4.07 3.28 0.90 0.91 

Average 4.89 2.53 4.73 2.36 1.93 

 Precision Error 

Precision error reflects the failure of an algorithm in 

providing consistent results. It stands for the difference 

between best and worst tour lengths in the context of 

average tour length. Mathematically it can be calculated 

as, 

 
                        

              
                    (13) 

 

Table 9 represents the precision error. Results establish 

the superiority of FA over other algorithms. For this 

parameter, CS performs poorly even compared to ACO 

and RFD. 



 Investigating Performance of Various Natural Computing Algorithms 55 

Copyright © 2017 MECS                                                             I.J. Intelligent Systems and Applications, 2017, 1, 46-59 

Table 9. Precision Error (%) for Different NCAs 

Instance GA eACO sRFD iFA CS 

burma14 4.34 2.61 2.33 1.89 5.12 

ulysses22 4.08 3.22 3.98 1.66 3.27 

eil51 6.14 4.72 6.24 3.73 3.94 

eil76 6.19 4.72 3.16 4.40 4.07 

kroa100 13.48 5.07 4.31 5.27 8.29 

bier127 9.53 2.52 4.79 6.82 4.94 

kroa150 11.69 6.78 4.12 1.81 4.93 

kroa200 8.28 3.83 5.99 3.78 3.91 

Average 7.97 4.18 4.37 3.67 4.81 

 

 Number of Iterations 

Table 10 represents a number of iterations taken by 

each algorithm to solve the TSP. These iteration values 

are obtained by subtracting stagnation counter from the 

total iterations. For example, if stagnation counter is 100 

and total iterations are 280, then actual iterations taken to 

reach to the best solution are 280-100+1 = 181. 

These results show that required iterations increase 

with an increase in problem size for each of the 

algorithms. Also, it can be observed that modified Elitism 

approach helps ACO to reduce required number of 

iterations drastically. 

Table 10. Total Number of Iterations for Different NCAs 

Instance GA eACO sRFD iFA CS 

burma14 32.80 12.00 15.20 23.70 22.50 

ulysses22 72.60 14.40 30.10 43.10 67.70 

eil51 344.50 18.60 147.20 95.90 115.40 

eil76 653.00 21.70 240.90 141.40 135.30 

kroa100 1189.00 24.30 124.30 180.50 223.80 

bier127 2448.60 29.40 101.30 222.10 359.10 

kroa150 2486.70 26.60 68.50 226.20 709.80 

kroa200 4068.40 31.60 93.40 272.60 698.80 

 

 Time Required 

Table 11 represents the time required by each 

algorithm to solve the TSP. The required time is counted 

only till the best solution appears first time, avoiding the 

time spent for stagnation period. Required time duration 

increases with increase in problem size for each of the 

algorithms. 

Results also show that modified Elitism approach helps 

ACO to reduce required time duration drastically. But if 

tour length is also considered as solution quality, FA is 

proved superior. 

 

 

Table 11. Required Time Duration (in Sec) for Different NCAs 

Instance GA eACO sRFD iFA CS 

burma14 0.11 0.03 0.06 0.06 0.02 

ulysses22 0.25 0.08 0.28 0.12 0.08 

eil51 1.42 0.64 5.01 0.41 0.65 

eil76 3.24 1.84 35.40 1.80 1.73 

kroa100 6.90 3.90 35.02 5.14 5.09 

bier127 16.91 8.13 28.70 9.79 14.61 

kroa150 20.34 11.37 47.93 18.09 188.68 

kroa200 46.91 27.89 142.15 51.97 113.30 

 

Best tours obtained for the TSP instance kroa200 by 

each of our algorithms are presented graphically in 

figures 1 to 5. 

 

 

Fig.1. GA Best Tour for TSP instance Kroa200 

 

Fig.2. eACO Best Tour for TSP instance Kroa200 

 

Fig.3. sRFD Best Tour for TSP instance Kroa200
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Fig.4. iFA Best Tour for TSP instance Kroa200 

 

Fig.5. CS Best Tour for TSP instance Kroa200 

 

VI.  CONCLUSIONS 

This paper experimentally investigated the 

performance of five different natural computing 

algorithms. A summary of the natural computing 

algorithms, introduced as early in 1970 to as recently in 

2016, presented. Five different algorithms – GA, ACO, 

RFD, FA and CS – implemented with slightly different 

approaches to solving TSP. GA applied tournament 

selection, partially matched crossover and flip as 

selection, crossover, and mutation operators respectively. 

ACO applied modified elitism approach. RFD allowed 

water drop to move in any direction. FA allowed top 20% 

fireflies to move randomly rather than single best one. CS 

applied real numbered sequence to represent a tour 

instead of permutation of integer numbers to allow 

arithmetic operations on solutions. 

For smaller city instances all algorithms perform fairly. 

But with an increase in problem size, their performance 

degrades compared to FA and CS. Also required 

iterations and required time increases with increase in 

problem size. Modified elitist ACO is proved faster. But 

it fails to provide better solutions to larger problems. CS 

beats other algorithms with perfection but fails to provide 

precise results. FA takes less time to converge and 

provides good quality solutions irrespective of problem 

size in terms of best tour length, perfective error and 

precision error. This proves the superiority of FA over 

other algorithms. 
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