
I.J. Intelligent Systems and Applications, 2017, 1, 46-59
Published Online January 2017 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijisa.2017.01.05

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 1, 46-59

Investigating Performance of Various Natural

Computing Algorithms

Bharat V. Chawda
Ph.D. Research Scholar, Gujarat Technological University, Ahmedabad, Gujarat, India

E-mail: bharat.bbit@gmail.com

Dr. Jayeshkumar Madhubhai Patel
Associate Professor, MCA Programme, Ganpat University, Kherva, Gujarat, India

E-mail: jayeshpatel_mca@yahoo.com

Abstract—Nature is there since millenniums. Natural

elements have withstood harsh complexities since years

and have proved their efficiency in tackling them. This

aspect has inspired many researchers to design algorithms

based on phenomena in the natural world since the last

couple of decades. Such algorithms are known as natural

computing algorithms or nature inspired algorithms.

These algorithms have established their ability to solve a

large number of real-world complex problems by

providing optimal solutions within the reasonable time

duration. This paper presents an investigation by

assessing the performance of some of the well-known

natural computing algorithms with their variations. These

algorithms include Genetic Algorithms, Ant Colony

Optimization, River Formation Dynamics, Firefly

Algorithm and Cuckoo Search. The Traveling Salesman

Problem is used here as a test bed problem for

performance evaluation of these algorithms. It is a kind of

combinatorial optimization problem and known as one

the most famous NP-Hard problems. It is simple and easy

to understand, but at the same time, very difficult to find

the optimal solution in a reasonable time – particularly

with the increase in a number of cities. The source code

for the above natural computing algorithms is developed

in MATLAB R2015b and applied on several TSP

instances given in TSPLIB library. Results obtained are

analyzed based on various criteria such as tour length,

required iterations, convergence time and quality of

solutions. Conclusions derived from this analysis help to

establish the superiority of Firefly Algorithms over the

other algorithms in comparative terms.

Index Terms—Natural Computing Algorithms, Nature

Inspired Algorithms, Traveling Salesman Problem,

Genetic Algorithm, Ant Colony Optimization, River

Formation Dynamics, Firefly Algorithm, Cuckoo Search.

I. INTRODUCTION

Nature is the best teacher. It has successfully provided

extraordinary solutions to a large number of real-world

complex problems by applying very simple approaches in

systematic manners. This has attracted many researchers

to mimic the nature in technology. As a result, natural

computing has come up as a new era in the field of

computing encompassing a broad range of applications.

In the recent years, natural computing has established

itself as an eminent force in finding promising solutions

for complicated real world problems.

Natural computing algorithms are computer algorithms

whose design draws inspiration from phenomena in the

natural world [1]. These algorithms are also referred as

nature-inspired algorithms, bio-inspired algorithms or

clever algorithms. Two prime aspects of any natural

computing algorithm are: exploration and exploitation [2].

Exploration refers to generating diverse solutions to

explore search space as broadly as possible. It helps to

avoid local minima. Exploitation refers to improving the

quality of generated solutions by applying local search or

other means. It strives to find the best solution. Natural

computing algorithms work in an iterative manner by

exploring and exploiting search space iteration by

iteration to find optimal solutions.

The success of natural computing algorithms and their

acceptance among researchers is mainly due to four

factors as described in [3]. These algorithms are simple as

they use simple concepts derived from nature. They are

flexible and can be applied to different problems without

major structural changes in the algorithm. They use

derivation-free mechanisms and have abilities to avoid

local optima (or, minima). These features provide them

superiority over traditional algorithms such as exact

methods involving logical or mathematical programming.

Contrast to this, according to No Free Lunch (NFL)

theorem [4], no single natural computing algorithm is

best suited for solving all optimization problems. This has

pushed researchers to develop new algorithms as well as

to enhance existing algorithms. As a result, a number of

various natural computing algorithms and their variations

have been developed over the last couple of decades.

These algorithms are summarized in next section.

This paper concentrates on some of the well known

natural computing algorithms along with their variations

such as Genetic Algorithm (GA), Ant Colony

Optimization (ACO), River Formation Dynamics (RFD),

Firefly Algorithm (FA) and Cuckoo Search (CS). The

performance of these algorithms is investigated by

applying them to the Traveling Salesman Problem (TSP)

 Investigating Performance of Various Natural Computing Algorithms 47

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 1, 46-59

which belongs to the class of NP-hard problems.

The remainder of this paper is organized as follows:

Section II summarizes natural computing algorithms.

Section III discusses the Traveling Salesman Problem

along with its mathematical definition and associated

complexity. Section IV describes various natural

computing algorithms and their adaptations to solve TSP.

Section V presents the detailed results of experiments

conducted on a set of benchmark TSP instances given in

TSPLIB library [5]. Finally, section VI provides

conclusions based on comparative analysis of various

algorithms.

II. SUMMARY OF NATURAL COMPUTING ALGORITHMS

This section summarizes various natural computing

algorithms as given in table 1. Various algorithms are

listed along with their abbreviations, inspirational natural

phenomena, names of researchers and year of publication.

An honest attempt has been made in this section to

provide state-of-the-art sum-up information on natural

computing algorithms. This summary is aimed to provide

readers a comprehensive list of all natural computing

algorithms, developed in as early as the 1970s to recent

ones, and to inspire them for further research.

Table 1. Natural Computing Algorithms – A Summary

Abbreviation Algorithm Underlying Natural Phenomena Author(s) Year Reference(s)

GA Genetic Algorithm
Natural selection process that mimics biological

evolution
Holland

1973

1975

1992

[6]–[8]

SA Simulated Annealing Cooling process of molten metal
Kirkpatrick, Gelatt,

Vecchi

1983

1997
[9], [10]

MA Memetic Algorithm Cultural revolution Moscato 1989 [11]

ACO Ant Colony Optimization Foraging behavior of ants Dorigo, Colorni 1991 [12]

GP Genetic Programming
Extension of GA – Solution is represented as a tree

with variable length
Koza 1992 [13]

PSO Particle Swarm Optimization Flocking behavior of birds Kennedy, Eberhart 1995 [14]

DE Differential Evolution
Genetic evolution with mutation as an arithmetic

combination of individuals
Storn, Price 1997 [15]

BEA
Bacterial Evolutionary

Algorithm

Microbial evolution phenomenon along with gene

transfer operation
Nawa, Furuhashi 1999 [16]

AIS Artificial Immune System Human immune system Dasgupta
1999

2003
[17][18]

ES Evolution Strategies Adaption and evolution by means of natural selection Beyer, Schewefel 2002 [19]

BFO Bacterial Foraging Optimization Foraging behavior of bacteria Passino 2002 [20]

FSA Fish Swarm Algorithm Schooling behavior of fish Li, Shao, Qian 2003 [21]

SFLA
Shuffled Frog Leaping

Algorithm
Frog leaping on stones in a pond Eusuff, Lansey

2003

2006
[22], [23]

SCO Social Cognitive Optimization Human social cognition Xie, Zhang 2004 [24]

IWCO
Invasive Weed Colony

Optimization

Ecological process of weed colonization and

distribution
Mehrabian, Lucas 2006 [25]

ABC Artificial Bee Colony Foraging behavior of bees Karaboga, Basturk
2005

2007
[26], [27]

GSO Group Search Optimization
Searching behavior of animals and their group living

theory
He, Wu, Saunders 2006 [28]

CFO Central Force Optimization
Metaphor of the gravitational kinematics and particle

motion in a gravitational field
Formato

2007

2008
[29], [30]

RFD River Formation Dynamics How rivers are formed
Rabanal, Rodriguez,

Rubio

2007

2009
[31], [32]

IWD Intelligent Water Drops Actions and reactions among water drop in a river Shah-Hosseini 2007 [33]

RIO Roach Infestation Optimization Social behavior of cockroaches
Havens, Spain,

Salmon, Keller
2008 [34]

MS Monkey Search Mountain climbing process of monkeys Zhao, Tang 2008 [35]

BBO
Biogeography-Based

Optimization
Distribution of species in nature over time and space Simon 2008 [36]

LCA
League Championship

Algorithm
Competition of sport teams in a league championship Kashan 2009 [37]

GSO Glowworm Swarm Optimization
Behavior of glowworms – capability to change

intensity of luciferin emission
Krishnanand, Ghose 2009 [38]

BBMO Bumble Bees Mating Mating behavior of bumble bees Marinakis, Marinaki, 2009 [39]

48 Investigating Performance of Various Natural Computing Algorithms

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 1, 46-59

Optimization Matsatsinis

HSO Hunting Search Optimization
Group hunting behavior of animals such as lions and

wolves
Oftadeh, Mahjoob 2009 [40]

FA Firefly Algorithm Flashing behavior of fireflies Yang 2009 [41]

HS Harmony Search Improvisation process of musicians Yang 2009 [42]

PFA Paddy Field Algorithm Reproduction of plant populations
Premaratne,

Samarabandu, Sidhu
2009 [43]

GSA Gravitational Search Algorithm Low of gravity and resultant mass interactions

Rashedi,

Nezamabadi-Pour,

Saryazdi

2009 [44]

CS Cuckoo Search
Breeding behavior of cuckoo – laying color-pattern

mimicked eggs in nests of other birds
Yang, Deb

2009

2010
[45], [46]

BIA Bat Inspired Approach Echolocation behavior of bats Yang 2010 [47]

FA Fireworks Algorithm
Explosion processes of fireworks and mechanisms

for maintaining diversity of sparks
Tan, Zho 2010 [48]

PPA Plant Propagation Algorithm
Propagation of the plants, particularly Strawberry

plants
Salhi, Fraga 2011 [49]

CAB Collective Animal Behavior
Collective behavior of different animal groups such

as swarming, milling, migrating in aligned groups

Cuevas, González,

Zaldivar, Pérez-

Cisneros, García

2012 [50]

WCA Water Cycle Algorithm
Real world water cycle among

transpiration/evaporation, condensation, precipitation

Eskandar, Sadollah,

Bahreininejad,

Hamdi

2012 [51]

KH Krill Herd Herding behavior of krill individuals Gandomi, Alavi 2012 [52]

BCO Bacterial Colony Optimization
Behavior of E. Coli bacteria at different development

stages in their life cycle
Niu, Wang 2012 [53]

LA Lion’s Algorithm
Social behavior of lions that helps to keep

themselves strong
Rajakumar 2012 [54]

SCO Stem Cells Optimization Reproduction behavior of stem cells
Taherdangkoo,

Yazdi, Bagheri
2012 [55]

BNMR
Blind Naked Mole-Rats

Algorithm
Social behavior of Mole-Rats Shirzadi, Bagheri 2012 [56]

FPA Flower Pollination Algorithm Fertilization/Pollination process of flowers Yang
2012

2014
[57], [58]

BH Black Hole Star swallowing behavior of black holes Hatamlou 2013 [59]

CA Cuttlefish Algorithm
Mechanism of color changing behavior adopted by

the cuttlefish

Eesa, Abdulazeez,

Orman
2013 [60]

MBA Mine Blast Algorithm Concept of mine bomb explosion

Sadollah,

Bahreininejad,

Eskandar, Hamdi

2013 [61]

SSO Social Spider Optimization Simulation of cooperative behavior of social spiders

Cuevas, Cienfuegos,

Zaldívar, Pérez-

Cisneros

2013 [62]

SMO Spider Monkey Optimization
Foraging behavior of spider monkeys based on

fission-fusion

Bansal, Sharma,

Jadon, Clerc
2014 [63]

AMO Animal Migration Optimization
Behavior of animals during migration from one

location to another location
Li, Zhang, Yin 2014 [64]

BMO Bird Mating Optimizer Mating strategies of birds Askarzadeh 2014 [65]

FOA Forest Optimization Algorithm Seeding procedure of the trees in a forest
Ghaemi, Feizi-

Derakhshi
2014 [66]

GWO Grey Wolf Optimizer
The leadership hierarchy and hunting mechanism of

grey wolves

Mirjalili, Mirjalili,

Lewis
2014 [3]

VSA Vortex Search Algorithm
Vortex (swirl) pattern due to vertical flow of affected

fluids
Doğan, Ölmez 2015 [67]

WWO Water Wave Optimization
Propagation, refraction and breaking phenomena of

shallow water waves
Zheng 2015 [68]

EHO Elephant Herding Optimization Herding behavior of elephant groups Gai-Ge Wang 2015 [69]

RRO Raven Roosting Optimization
Social roosting and foraging behavior of common

raven

Brabazon, Cui,

O’Neill
2016 [70]

 Investigating Performance of Various Natural Computing Algorithms 49

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 1, 46-59

III. TRAVELING SALESMAN PROBLEM

Optimization strives to find the best solution from all

feasible solutions. Optimization problem can be either

continuous or discrete [71], [72]. Continuous

optimization problems contain variables that can take on

real values, such as, solving polynomial equations. In

contrast to this, discrete optimization problems, also

known as combinatorial optimization problems, contain

variables that can take on integer values, such as, the

Traveling Salesman Problem.

The Traveling Salesman Problem (TSP) [73]–[75] is

one of the most widely studied problems in the arena of

discrete combinatorial optimization problems. The basic

concept of the TSP is to find a closed tour of a given

number of cities, visiting each city exactly once and

returning to the starting city, by minimizing the length of

the tour.

In mathematical terms, the TSP can be defined as:

- Given a weighted graph G = (V, E), where V is a

set of cities and E is a set of edges between cities,

- find the tour of all cities that has the minimum

total cost, or in other words,

- minimize () ∑ i i 1

 where n is a total

number of cities and wi,i+1 represents distance

between city i and its next city in a tour.

With the increase in problem size (number of cities),

the total number of possible tours increases exponentially

in terms of n! This complexity brings the TSP under the

category of an NP-hard combinatorial optimization

problem and makes it infeasible to find optimal solution

using traditional methods.

The TSP can be either Symmetric or Asymmetric. In

the Symmetric TSP, the distance between any two cities

is same from either side, while in Asymmetric TSP, this

distance is not same. As the back and forth tours are same

for the Symmetric TSP, a total number of tours can be

given by (n-1)! / 2.

The positive point of the TSP is its simplicity and

easiness in understanding. This prevents the behavior of

the algorithm, used to solve the TSP, from being

obscured by too many technicalities. Due to this reason,

the TSP is used as the test-bed problem in this paper to

assess the performance of algorithms discussed later.

IV. NATURAL COMPUTING AND TSP

Careful examination of the natural computing

algorithms shows that most of them, particularly recently

developed ones, are more inclined towards continuous

optimization problems. There are mainly two reasons

behind this. First, it is relatively easy to solve continuous

optimization problems. Second, it is also easy to map

continuous optimization problems with natural

phenomena. In contrast to this, discrete or combinatorial

optimization problems are difficult to solve and same

applies to their mapping with natural phenomena.

In this section, five different natural computing

algorithms are described along with their pseudo code,

adaptation to solve the TSP and parameters used.

A. Genetic Algorithm

Genetic Algorithm (GA), proposed and explored in

[6]–[8], has been inspired by Darwin’s theory of

evolution, mimicking the process of natural selection for

survival of the fittest individual. GA is a population-

based natural computing algorithm that applies various

operators such as Selection, Crossover and Mutation to

solutions in a population to generate next generation.

Three important points to be considered while applying

GA to solve any problem are: First, a probable solution

must be represented in such a way that it can be encoded

on a GA chromosome. Second, each solution must have

some fitness function to evaluate it. Third, various

operators and parameters must be determined. Important

parameters affecting the performance of GA are

population size, crossover rate, mutation rate and a

number of generation.

 Pseudo code:

1. Initialize the Population

2. Evaluate the Population

3. While (Termination Criteria not Met)

a. Apply Selection

b. Apply Crossover

c. Apply Mutation

d. Update and Evaluate Population

A population is a set of solutions (chromosomes).

Random solutions are generated to initialize a population

according to given population size. Each solution is

evaluated based on an assigned fitness value. Termination

criteria can be predefined a number of generations,

maximum allowed time duration or stagnations in the

result.

Selection is used to replace worse solutions with better

solutions. Crossover is used to generate new offspring by

combining genes of selected solutions. Mutation is used

to generate new offspring by randomly changing genes of

an individual solution. Each solution in a population is

evaluated. This process continues until some convergence

criterion meets.

Different mechanisms used for selection, crossover and

mutation have been explained in [76]. According to it,

popular selection mechanisms are – truncation selection,

tournament selection, reward based selection, roulette

wheel selection (fitness proportionate selection) and rank

selection. Popular crossover mechanisms are – k-point

crossover, uniform crossover, uniform order-based

crossover, order-based crossover, partially matched

crossover (PMX) and cycle crossover (CX). Common

mutation mechanisms are bit-flip and swap genes.

 Adapting GA to TSP:

GA has been adapted to solve random TSP in [77].

Similar to that approach, a solution (or, tour) is encoded

as a random permutation for cities starting from 1 to N.

Tour length is considered as a fitness value and GA

50 Investigating Performance of Various Natural Computing Algorithms

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 1, 46-59

attempts to minimize the tour length in each generation.

Tournament selection is used as a selection operator

which selects and duplicates better tour between two

randomly selected tours. Partially matched crossover is

used as a crossover operator as given in [76]. Mutation

operator flips cities between randomly selected two

points in a tour. Generated tours are evaluated against

their tour lengths and the population is updated. This

process continues until stagnation occurs in the best tour

of the population.

 Parameters Used:

Total number of cities = N, population size = 64,

crossover rate = 1.0, mutation rate = 0.4, stagnation

counter = N.

B. Ant Colony Optimization

Ant Colony Optimization (ACO), proposed in [12] and

explored in [78], has been inspired by the foraging

behavior of real ants. Ants possess natural ability to find

the shortest tour between the food source and their nest.

Ants deposit a fixed amount of pheromone while

Traveling from their nest to food source and vice versa.

Initially, they move randomly. An ant having shorter tour

will return earlier increasing pheromone value on that

tour. Other ants will prefer a tour with higher pheromone

value to travel. This results in more and more ants

following shorter tour further increasing pheromone

value on that tour. In contrast to this, longer tours possess

less movement of ants comparatively and so less

pheromone value. Also, the pheromone evaporates by a

certain amount at a fixed stable rate. These results in the

elimination of longer tours after some time and all ants

follow the shortest possible tour.

This behavior of ants is modeled mathematically in

ACO. This algorithm progresses in an iterative manner.

With each iteration, all ants construct their own tour –

initially randomly or based on some heuristic value, and

later, based on pheromone values on available tours in

combination with heuristic values. New pheromone is

deposited on tours found by each ant. Also, some

pheromone is evaporated from each possible tour. This

process continues until convergence occurs, or in other

words, all ants follow single tour – probably the shortest

one.

In ACO, the pheromone is deposited on tours found by

each ant in inverse proportions to their tour length, i.e.

depositing more pheromone on better tours and vice versa.

In Elitist ACO [78], an extra amount of pheromone is

deposited on best tour to increase the chance of selecting

that tour by ants in next iteration. The modified Elitist

ACO, which is implemented here, deposits pheromone

only on the best tour. This results in a faster convergence

of the solutions.

 Pseudo code for modified Elitist ACO:

1. Initialize the Parameters

2. While (Termination Criteria not Met)

a. Construct Solutions

b. Evaluate Solutions

c. Deposit Pheromone on best

tour only

d. Evaporate Pheromone

All problems need to be converted to graphs to apply

ACO. If a problem fulfills this criterion, the given

algorithm starts with initializing various parameters such

as a total number of ants (M), pheromone matrix (τ)

heuristic information matrix (η) evaporation rate (ρ), α

and β. Generally, M is kept same as that of a total number

of nodes. Each ant is put on the randomly selected node

(or city, in the case of TSP).

After initialization, iterative process of algorithm starts.

Each ant constructs its own tour (or solution). Once all

ants construct their tours, these tours are evaluated

according to their fitness function to find the best tour. In

next step, the pheromone is updated by evaporating it

from all tours and depositing it on the best tour. This

process continues until stagnation occurs in the best tour

or some other criteria such as predefined maximum

iterations or time duration meets.

 Adapting modified Elitist ACO to TSP:

The TSP can be easily considered as a graph having

each city as a node and a path between two cities as an

arc (or edge) between two nodes. To apply modified

Elitist ACO to TSP, various parameters are initialized.

Pheromone matrix (τ) is initially given unique constant

value. During the iterative process of the algorithm, ants

construct their own tour. A probabilistic mechanism is

used to select next city to be visited from the current city

by each ant. Suppose an ant k is currently on city i. It

selects next city j to visit based on the probability given

by

 ()

()

 (1)

Where, and

 represents pheromone value and

inverse distance between city i and city j respectively. α

and β are constant parameters used to control the relative

importance of the pheromone values (τ) and the heuristic

information (η). As in symmetric TSP any city can be

visited from a given city, equation (1) is modified from

that of given in [79], [80]. A roulette wheel selection is

applied to determine city j based on available

probabilities.

Once all ants construct their tours, these tours are

evaluated in terms of tour length to find the best tour. In

next step, the pheromone is updated by evaporating it

from all tours and depositing on the best tour. Pheromone

evaporation is performed according to the following

equation.

 () (2)

where ρ is the evaporation rate.

Pheromone is deposited according to the following

equation.

 Investigating Performance of Various Natural Computing Algorithms 51

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 1, 46-59

 (3)

where C is the length of the best tour.

This process continues until stagnation occurs in the

best tour.

 Parameters Used:

Total number of cities = N, total number of Ants = N, α

= 1.0 β = 5.0 ρ = 0.5 stagnation counter = 50.

C. River Formation Dynamics

River Formation Dynamics (RFD), introduced in [31],

is inspired based on how rivers are formed in nature.

Water drops, constitutional elements of the river, flow

down to the sea and transform the landscape. Drops erode

the ground and decrease altitude while traversing high

decreasing gradients. They also deposit carried sediments

and increase altitude in flatter areas. Based on decrease or

increase in altitudes of nodes, gradients are modified

affecting movement of subsequent drops. In this way,

decreasing gradients are formed. They represent the path

from the source to the sea in the form of a river. These

paths model the solutions for the problem under

consideration.

 Pseudo code:

1. Initialize Drops

2. Initialize Nodes

3. While (Termination Criteria not Met)

a. Move Drops

b. Erode Nodes

c. Deposit Sediments

d. Analyze Paths

Similar to ACO, all problems need to be converted to

graphs to apply RFD. Mathematical model for the RFD

has been elaborated in [31], [32], [81]. This algorithm

begins by depositing all drops in the initial node. In next

step, all nodes of the graph are initialized by assigning

them certain altitudes. A destination node is assigned

altitude zero. This node represents a sea. The altitude of

all other nodes is set to some equal positive value.

After initialization, iterative process of algorithm starts.

Drops are moved based on the altitude difference and

distance between two nodes. Based on the movement of

drops, nodes are eroded and sediments are deposited. The

resultant paths are evaluated in terms of the fitness

function. This process continues until stagnation occurs

in the best solution, i.e. all drops follow the same path, or

some other criteria such as predefined maximum

iterations or time duration meet.

Generally, drops move from higher altitude to lower

one only. A variation of RFD, called Symmetric RFD

(sRFD), is proposed and used in this paper. In symmetric

RFD, drops are allowed to move in any direction.

 Adapting Symmetric RFD to TSP:

Adapting RFD to TSP is given in [81], [82]. A TSP is

modeled as a graph having each city as a node and a path

between two cities as an arc (or edge) between two nodes.

RFD is adapted here with some improvements.

Instead of depositing all drops to a single node, drops

are deposited to randomly selected nodes to explore the

entire search space in a fair manner.

All nodes are assigned same unique altitudes values.

They are also eroded initially based on the distance

between two nodes as given by the following equation.

 (4)

 (5)

A probabilistic mechanism selects next node to be

visited from the current node by each drop based on the

decreasing gradient as given by the following equation.

 (6)

The reason behind considering absolute value of the

difference between two altitudes is symmetric TSP. For

symmetric TSP, a tour in either direction is same. For

example, two different tours A-B-C-D-A and A-D-C-B-A

have no difference in the context of symmetric TSP. An

absolute value of decreasing gradient allows a drop to

move in any direction.

Erosion during movement of drops is directly

proportional to decreasing gradient. Movement across

nodes with high decreasing gradient cause more erosion

and vice versa.

Continuous erosion may result in almost zero altitudes

for all nodes after some iteration. To avoid this, the

altitude of all nodes is slightly increased by depositing

sediments after erosion process completes. The amount of

sediment to be deposited is considered as average erosion

across all nodes.

After updating altitudes, constructed paths by each

drop are analyzed in terms of tour length to determine the

best tour. This process continues until stagnation occurs

in the best tour.

 Parameters Used:

Total number of cities = N, total number of Drops = N,

stagnation counter = N.

D. Firefly Algorithm

Firefly algorithm (FA), introduced in [41] and explored

in [83], is inspired based on flashing behavior of fireflies.

In formulating FA, three assumptions have been made:

First, a firefly is unisexual and can be attracted by any

other fireflies regardless of their sex. Second,

attractiveness depends on their brightness and varies with

distance. Less bright firefly is attracted by brighter one

and so moves towards it. A firefly can move randomly if

there is no other brighter firefly available. Third, the

landscape of the objective function determines the

brightness of a firefly. This algorithm models the quality

of solution as a brightness of the firefly. A firefly with

maximum brightness represents the best solution.

 Pseudo code:

52 Investigating Performance of Various Natural Computing Algorithms

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 1, 46-59

1. Initialize the Population

2. Initialize Light Intensity

3. While (Termination Criteria not Met)

a. Move Fireflies

b. Evaluate and Rank Fireflies

c. Update Light Intensity

d. Move Best Firefly Randomly

Each firefly represents one potential solution. A

population is a set of solutions and initialized with

randomly generated solutions. Each solution is evaluated

against its fitness function and light intensity (or

brightness) is assigned to each firefly based on the fitness

value – better the fitness, better the brightness.

Termination criteria for an iterative process can be

predefined a number of generations, maximum allowed

time duration or stagnations in the result.

In each iteration, a firefly is moved towards another

firefly based on its attractiveness. A firefly’s

attractiveness is proportional to light intensity seen by

other fireflies and can be given by

 (7)

where β0 is the attractiveness at the origin, r is the

distance between two fireflies and γ is a fixed light

absorption coefficient. β0 is determined based on the

fitness function.

Once movement of fireflies completes, they are

evaluated and assigned ranks to determine the best firefly.

Light intensity, β0, is updated based on fitness values for

each firefly. At the end, best firefly is allowed to move

randomly to explore the search space. This process

continues until some termination criteria occur.

A variation of FA, called improved FA (iFA), is

proposed and used in this paper. Instead of only best

firefly, this variation allows a fraction of better fireflies to

move randomly.

 Adapting Improved FA to TSP:

FA has been adapted to solve TSP in [84], [85]. A

solution (or, tour) is encoded as a random permutation for

cities. Each firefly represents a single tour. A population

is initialized with such randomly generated tours. The

fitness of each tour is evaluated in terms of tour length.

Light intensity, β0, for each firefly is assigned as given by

the following equation.

 (8)

The movement of a firefly has been improved by

allowing it to move towards only the best firefly in this

paper. Number of steps taken for such movement is

randomly selected between 2 and dij as given by,

 () (9)

where, dij is the hamming distance between two tours.

During each step, firefly moves towards best firefly, i.e.

best tour, using inversion mutation, improving its solution

quality.

After moving fireflies, each tour is evaluated and light

intensities of fireflies are updated. In addition, this

adaptation allows top 20% fireflies to move randomly

rather than a single best one as suggested in original

algorithm. This helps to explore the search space in a

better way as well as avoids local minima.

This process continues until stagnation occurs in the

best tour.

 Parameters Used:

A total number of cities = N, a total number of fireflies

= either 10 or N/4, whichever is maximum, stagnation

counter = N.

E. Cuckoo Search

Cuckoo Search (CS), given in [45], [46], is inspired by

breeding behavior of cuckoo – laying color-pattern

mimicked eggs in nests of other birds. In formulating CS,

three main rules are idealized. First, each cuckoo lays one

egg at a time and dumps it in a randomly chosen nest.

The number of available host nests is fixed. Each nest (or

egg) represents one potential solution. Second, the better

nests with high-quality eggs will continue to next

generation. Third, the host bird discovers an egg, laid by

a Cuckoo, with a probability of Pa ϵ (0, 1) from some set

of worst nests. In this case, the host bird can either throw

away this alien egg or simply abandon the nest and build

a new nest.

 Pseudo code:

1. Initialize Population of ‘N’ Nests

2. Evaluate Nests

3. While (Termination Criteria not Met)

a. Randomly Generate New Solution Si

from Best Nest

b. Randomly Choose Nest Sj from

Population

c. If Si is better than Sj

Replace Sj with Si

d. Abandon Worse Nests, Replace with

Randomly Generated Nests

e. Evaluate Nests

Algorithm begins with initialization of a population

with randomly generated solutions. Each solution is a

nest (or an egg) and is evaluated against its fitness

function to find out the best nest. Termination criteria for

an iterative process can be predefined a number of

generations, maximum allowed time duration or

stagnations in the result.

In each iteration, new solutions are generated by

applying random walk or levy flights to the best solution.

If these solutions are better than randomly chosen

solutions from the population, later ones are replaced. In

proportion to given Pa, worse nests are abandoned and

replaced with randomly generated solutions. The entire

population is evaluated again to find out the best solution.

This process continues until termination criteria meet.

 Investigating Performance of Various Natural Computing Algorithms 53

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 1, 46-59

 Adapting CS to TSP:

CS has been adapted to solve spherical TSP in [86].

Similar to TSP, another problem is PCB Holes Drilling.

CS has been adapted to solve this problem in [87].

To represent a random tour, as given in [87], a vector

of random values between 0 and 1 is generated. For

example, if total number of cities, N = 5, then

S = [0.9134, 0.6324, 0.0975, 0.2785, 0.5469]

S is sorted in ascending order and the relative order of

each of the values of S is found. This relative order

represents the sequence of cities in a tour as given below.

Sorted S = [0. 0975, 0.2785, 0.5469, 0.6324, 0.9134]

So, city sequence in tour will be, T = [3 4 5 2 1]

A population of N solutions is initialized by randomly

generating a set of N different S. Each solution is

evaluated in terms of tour length and best solution is

determined.

After this, in iterative process, a new solution is

generated using equation,

 (10)

where α is a constant value and rand represents random

values between -1 and 1.

If the new nest has a better tour, i.e. with shorter tour

length, compared to randomly chosen nest from the

population, the later one is replaced with a new nest.

From entire population, 20% worse nests are

abandoned and replaced with the randomly generated tour

as given by the following equation.

 (11)

At the end of each iteration, the entire population is

evaluated to determine the best solution. This process

continues until stagnation occurs in the best tour.

 Parameters Used:

Total number of cities = N, total number of nests = N,

α = 0.1, percentage of abandon (Pa) = 0.2, stagnation

counter = N.

V. RESULTS AND DISCUSSION

Various natural computing algorithms – GA, modified

elitist ACO, symmetric RFD, improved FA and CS –

have been applied to 8 different TSP instances given in

TSPLIB [5] named burma14, ulysses22, eil51, eil76,

kroa100, bier127, kroa150, and kroa200. The number in

the instance identifier is the problem size in terms of a

total number of cities, for example, burma14 has 14 cities.

For a stopping criterion, stagnation in the best tour has

been used. Derived results have been averaged over 10

different runs. Algorithms have been implemented using

MATLAB R2015b and executed on a system with

Windows 7 as an operating system.

Table 2. GA Results for 8 different TSP Instances

TSP

Instance

Tour Length
Iteration

Time

(Sec) Best Average Worst

burma14 3462.30 3490.59 3613.91 32.80 0.11

ulysses22 6993.08 7078.62 7282.15 72.60 0.25

eil51 443.47 455.97 471.44 344.50 1.42

eil76 573.21 595.94 610.10 653.00 3.24

kroa100 22123.86 23422.65 25280.06 1189.00 6.90

bier127 123477.30 129260.90 135798.20 2448.60 16.91

kroa150 28181.29 29450.92 31623.33 2486.70 20.34

kroa200 32302.35 33548.14 35078.73 4068.40 46.91

Table 3. Modified Elitist-ACO Results for 8 different TSP Instances

TSP

Instance

Tour Length Iteratio

ns

Time

(Sec) Best Average Worst

burma14 3492.17 3523.03 3584.03 12.00 0.03

ulysses22 6993.08 7119.28 7222.63 14.40 0.08

eil51 429.48 442.09 450.34 18.60 0.64

eil76 549.17 560.05 575.62 21.70 1.84

kroa100 21794.41 22382.56 22929.07 24.30 3.90

bier127 121372.10 123031.10 124467.30 29.40 8.13

kroa150 27436.48 28253.22 29352.55 26.60 11.37

kroa200 30563.38 31102.27 31753.81 31.60 27.89

Table 4. Symmetric RFD Results for 8 different TSP Instances

TSP

Instance

Tour Length Iteratio

ns

Time

(Sec) Best Average Worst

burma14 3569.32 3625.37 3653.76 15.20 0.06

ulysses22 7097.08 7196.98 7383.61 30.10 0.28

eil51 439.55 449.12 467.57 147.20 5.01

eil76 571.56 577.39 589.80 240.90 35.40

kroa100 22166.38 22706.78 23144.83 124.30 35.02

bier127 125958.10 128379.30 132107.20 101.30 28.70

kroa150 28089.45 28494.95 29262.93 68.50 47.93

kroa200 30330.92 31185.46 32198.42 93.40 142.15

Table 5. Improved FA Results for 8 different TSP Instances

TSP

Instance

Tour Length Iteratio

ns

Time

(Sec) Best Average Worst

burma14 3462.30 3474.92 3527.95 23.70 0.06

ulysses22 6993.08 7047.63 7110.34 43.10 0.12

eil51 433.54 443.27 450.09 95.90 0.41

eil76 558.37 569.61 583.45 141.40 1.80

kroa100 21456.26 21876.10 22608.27 180.50 5.14

bier127 120479.80 123247.40 128880.00 222.10 9.79

kroa150 28077.07 28268.49 28588.13 226.20 18.09

kroa200 29630.90 30159.03 30769.78 272.60 51.97

54 Investigating Performance of Various Natural Computing Algorithms

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 1, 46-59

The following tables 2 to 6 represent results for various

algorithms such as GA, eACO, sRFD, iFA and CS

respectively. Each of these tables shows best, average &

worst tour lengths, average iterations & average time

required over 10 different runs for each of the 8 different

TSP instances.

Table 6. CS Results for 8 different TSP Instances

TSP

Instance

Tour Length Iteratio

ns

Time

(Sec) Best Average Worst

burma14 3462.30 3515.59 3642.32 22.50 0.02

ulysses22 6993.08 7079.14 7224.24 67.70 0.08

eil51 436.13 443.51 453.62 115.40 0.65

eil76 557.01 570.64 580.25 135.30 1.73

kroa100 21294.40 21863.33 23106.86 223.80 5.09

bier127 120877.70 122941.20 126945.70 359.10 14.61

kroa150 27177.12 27791.13 28546.68 709.80 188.68

kroa200 29635.76 30045.30 30811.75 698.80 113.30

The performance of algorithms has been compared

using five different parameters – best tour length,

perfective error, precision error, the number of iterations

and time required – as discussed below.

 Best Tour Length

Table 7 represents best tour lengths obtained by

different algorithms along with optimal tour length as

given in [88]. Numbers in bold fonts are best results for a

given TSP instance, while, numbers in italic fonts are

second best results.

This table shows that modified Elitist ACO performs

well when problem size is smaller. But with an increase

in a number of cities, FA and CS outperform all other

algorithms.

 Perfective Error

Perfective error stands for the difference between

optimal tour length and best tour length obtained by an

algorithm. Mathematically it can be calculated as,

 (12)

Table 8 represents the perfective error. Results

establish the superiority of CS over other algorithms.

Also, note that negative error for the TSP instance

ulysses22 shows that our algorithms have furnished better

results compared to optimal results given in [88].

Table 7. Best Tour Length for Different NCAs

Instance Optimal [88] GA eACO sRFD iFA CS

burma14 3323.00 3462.30 3492.17 3569.32 3462.30 3462.30

ulysses22 7013.00 6993.08 6993.08 7097.08 6993.08 6993.08

eil51 426.00 443.47 429.48 439.55 433.54 436.13

eil76 538.00 573.21 549.17 571.56 558.37 557.01

kroa100 21282.00 22123.86 21794.41 22166.38 21456.26 21294.40

bier127 118282.00 123477.33 121372.14 125958.13 120479.81 120877.71

kroa150 26524.00 28181.29 27436.48 28089.45 28077.07 27177.12

kroa200 29368.00 32302.35 30563.38 30330.92 29630.90 29635.76

Table 8. Perfective Error (%) for Different NCAs

Instance GA eACO sRFD iFA CS

burma14 4.19 5.09 7.41 4.19 4.19

ulysses22 -0.28 -0.28 1.20 -0.28 -0.28

eil51 4.10 0.82 3.18 1.77 2.38

eil76 6.54 2.08 6.24 3.79 3.53

kroa100 3.96 2.41 4.16 0.82 0.06

bier127 4.39 2.61 6.49 1.86 2.19

kroa150 6.25 3.44 5.90 5.86 2.46

kroa200 9.99 4.07 3.28 0.90 0.91

Average 4.89 2.53 4.73 2.36 1.93

 Precision Error

Precision error reflects the failure of an algorithm in

providing consistent results. It stands for the difference

between best and worst tour lengths in the context of

average tour length. Mathematically it can be calculated

as,

 (13)

Table 9 represents the precision error. Results establish

the superiority of FA over other algorithms. For this

parameter, CS performs poorly even compared to ACO

and RFD.

 Investigating Performance of Various Natural Computing Algorithms 55

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 1, 46-59

Table 9. Precision Error (%) for Different NCAs

Instance GA eACO sRFD iFA CS

burma14 4.34 2.61 2.33 1.89 5.12

ulysses22 4.08 3.22 3.98 1.66 3.27

eil51 6.14 4.72 6.24 3.73 3.94

eil76 6.19 4.72 3.16 4.40 4.07

kroa100 13.48 5.07 4.31 5.27 8.29

bier127 9.53 2.52 4.79 6.82 4.94

kroa150 11.69 6.78 4.12 1.81 4.93

kroa200 8.28 3.83 5.99 3.78 3.91

Average 7.97 4.18 4.37 3.67 4.81

 Number of Iterations

Table 10 represents a number of iterations taken by

each algorithm to solve the TSP. These iteration values

are obtained by subtracting stagnation counter from the

total iterations. For example, if stagnation counter is 100

and total iterations are 280, then actual iterations taken to

reach to the best solution are 280-100+1 = 181.

These results show that required iterations increase

with an increase in problem size for each of the

algorithms. Also, it can be observed that modified Elitism

approach helps ACO to reduce required number of

iterations drastically.

Table 10. Total Number of Iterations for Different NCAs

Instance GA eACO sRFD iFA CS

burma14 32.80 12.00 15.20 23.70 22.50

ulysses22 72.60 14.40 30.10 43.10 67.70

eil51 344.50 18.60 147.20 95.90 115.40

eil76 653.00 21.70 240.90 141.40 135.30

kroa100 1189.00 24.30 124.30 180.50 223.80

bier127 2448.60 29.40 101.30 222.10 359.10

kroa150 2486.70 26.60 68.50 226.20 709.80

kroa200 4068.40 31.60 93.40 272.60 698.80

 Time Required

Table 11 represents the time required by each

algorithm to solve the TSP. The required time is counted

only till the best solution appears first time, avoiding the

time spent for stagnation period. Required time duration

increases with increase in problem size for each of the

algorithms.

Results also show that modified Elitism approach helps

ACO to reduce required time duration drastically. But if

tour length is also considered as solution quality, FA is

proved superior.

Table 11. Required Time Duration (in Sec) for Different NCAs

Instance GA eACO sRFD iFA CS

burma14 0.11 0.03 0.06 0.06 0.02

ulysses22 0.25 0.08 0.28 0.12 0.08

eil51 1.42 0.64 5.01 0.41 0.65

eil76 3.24 1.84 35.40 1.80 1.73

kroa100 6.90 3.90 35.02 5.14 5.09

bier127 16.91 8.13 28.70 9.79 14.61

kroa150 20.34 11.37 47.93 18.09 188.68

kroa200 46.91 27.89 142.15 51.97 113.30

Best tours obtained for the TSP instance kroa200 by

each of our algorithms are presented graphically in

figures 1 to 5.

Fig.1. GA Best Tour for TSP instance Kroa200

Fig.2. eACO Best Tour for TSP instance Kroa200

Fig.3. sRFD Best Tour for TSP instance Kroa200

56 Investigating Performance of Various Natural Computing Algorithms

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 1, 46-59

Fig.4. iFA Best Tour for TSP instance Kroa200

Fig.5. CS Best Tour for TSP instance Kroa200

VI. CONCLUSIONS

This paper experimentally investigated the

performance of five different natural computing

algorithms. A summary of the natural computing

algorithms, introduced as early in 1970 to as recently in

2016, presented. Five different algorithms – GA, ACO,

RFD, FA and CS – implemented with slightly different

approaches to solving TSP. GA applied tournament

selection, partially matched crossover and flip as

selection, crossover, and mutation operators respectively.

ACO applied modified elitism approach. RFD allowed

water drop to move in any direction. FA allowed top 20%

fireflies to move randomly rather than single best one. CS

applied real numbered sequence to represent a tour

instead of permutation of integer numbers to allow

arithmetic operations on solutions.

For smaller city instances all algorithms perform fairly.

But with an increase in problem size, their performance

degrades compared to FA and CS. Also required

iterations and required time increases with increase in

problem size. Modified elitist ACO is proved faster. But

it fails to provide better solutions to larger problems. CS

beats other algorithms with perfection but fails to provide

precise results. FA takes less time to converge and

provides good quality solutions irrespective of problem

size in terms of best tour length, perfective error and

precision error. This proves the superiority of FA over

other algorithms.

REFERENCES

[1] J. Dang A. Brabazon D. Edelman and M. O’Neill ―An

Introduction to Natural Computing in Finance ‖ in

Applications of Evolutionary Computing, M. Giacobini, A.

Brabazon, S. Cagnoni, G. A. D. Caro, A. Ekárt, A. I.

Esparcia-Alcázar, M. Farooq, A. Fink, and P. Machado,

Eds. Springer Berlin Heidelberg, 2009, pp. 182–192.

[2] X.-S. Yang, Nature-inspired metaheuristic algorithms.

Luniver press, 2010.

[3] S. Mirjalili S. M. Mirjalili and A. Lewis ―Grey wolf

optimizer ‖ Adv. Eng. Softw., vol. 69, pp. 46–61, 2014.

[4] D. H. Wolpert and W. G. Macready ―No free lunch

theorems for optimization ‖ Evol. Comput. IEEE Trans.

On, vol. 1, no. 1, pp. 67–82, 1997.

[5] G. Reinelt ―TSPLIB—A Traveling Salesman Problem

Library ‖ ORSA J. Comput., vol. 3, no. 4, pp. 376–384,

Nov. 1991.

[6] J. H. Holland ―Genetic algorithms and the optimal

allocation of trials ‖ SIAM J. Comput., vol. 2, no. 2, pp.

88–105, 1973.

[7] J. H. Holland, Adaptation in natural and artificial systems:

an introductory analysis with applications to biology,

control, and artificial intelligence. U Michigan Press,

1975.

[8] J. H. Holland, Adaptation in Natural and Artificial

Systems. Cambridge, MA, USA: MIT Press, 1992.

[9] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi,

―Optimization by simulated annealing ‖ SCIENCE, vol.

220, no. 4598, pp. 671–680, 1983.

[10] D. Bookstaber, Simulated Annealing for Traveling

Salesman Problem. Spring, 1997.

[11] P. Moscato, On Evolution, Search, Optimization, Genetic

Algorithms and Martial Arts - Towards Memetic

Algorithms. 1989.

[12] A. Colorni, M. Dorigo, V. Maniezzo, and others,

―Distributed optimization by ant colonies ‖ in

Proceedings of the first European conference on artificial

life, 1991, vol. 142, pp. 134–142.

[13] J. R. Koza, Genetic Programming: On the Programming

of Computers by Means of Natural Selection. Cambridge,

MA, USA: MIT Press, 1992.

[14] J. Kennedy and R. Eberhart ―Particle swarm

optimization ‖ in , IEEE International Conference on

Neural Networks, 1995. Proceedings, 1995, vol. 4, pp.

1942–1948 vol.4.

[15] R. Storn and K. Price ―Differential evolution–a simple

and efficient heuristic for global optimization over

continuous spaces ‖ J. Glob. Optim., vol. 11, no. 4, pp.

341–359, 1997.

[16] N. E. Nawa and T. Furuhashi ―Fuzzy system parameters

discovery by bacterial evolutionary algorithm ‖ Fuzzy Syst.

IEEE Trans. On, vol. 7, no. 5, pp. 608–616, 1999.

[17] D. DasGupta, Artificial immune systems and their

applications. Springer Publishing Company, Incorporated,

2014.

[18] D. Dasgupta, Z. Ji, F. A. González, and others ―Artificial

immune system (AIS) research in the last five years. ‖ in

IEEE Congress on Evolutionary Computation (1), 2003,

pp. 123–130.

[19] H.-G. Beyer and H.-P. Schwefel ―Evolution strategies–A

comprehensive introduction ‖ Nat. Comput., vol. 1, no. 1,

pp. 3–52, 2002.

[20] K. M. Passino ―Biomimicry of bacterial foraging for

distributed optimization and control ‖ IEEE Control Syst.,

vol. 22, no. 3, pp. 52–67, Jun. 2002.

[21] X. Li and J. Qian ―Studies on Artificial Fish Swarm

 Investigating Performance of Various Natural Computing Algorithms 57

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 1, 46-59

Optimization Algorithm based on Decomposition and

Coordination Techniques [J] ‖ J. Circuits Syst., vol. 1, pp.

1–6, 2003.

[22] M. M. Eusuff and K. E. Lansey ―Optimization of water

distribution network design using the shuffled frog

leaping algorithm ‖ J. Water Resour. Plan. Manag., vol.

129, no. 3, pp. 210–225, 2003.

[23] M. Eusuff K. Lansey and F. Pasha ―Shuffled frog-

leaping algorithm: a memetic meta-heuristic for discrete

optimization ‖ Eng. Optim., vol. 38, no. 2, pp. 129–154,

2006.

[24] X.-F. Xie and W.-J. Zhang ―Solving engineering design

problems by social cognitive optimization ‖ in Genetic

and Evolutionary Computation–GECCO 2004, 2004, pp.

261–262.

[25] A. R. Mehrabian and C. Lucas ―A novel numerical

optimization algorithm inspired from weed colonization ‖

Ecol. Inform., vol. 1, no. 4, pp. 355–366, 2006.

[26] D. Karaboga ―An idea based on honey bee swarm for

numerical optimization ‖ Technical report-tr06, Erciyes

university, engineering faculty, computer engineering

department, 2005.

[27] D. Karaboga and B. Basturk ―A Powerful and Efficient

Algorithm for Numerical Function Optimization:

Artificial Bee Colony (ABC) Algorithm ‖ J Glob. Optim.,

vol. 39, no. 3, pp. 459–471, Nov. 2007.

[28] S. He Q. H. Wu and J. R. Saunders ―A novel group

search optimizer inspired by animal behavioural ecology ‖

in Evolutionary Computation, 2006. CEC 2006. IEEE

Congress on, 2006, pp. 1272–1278.

[29] R. A. Formato ―Central force optimization: a new

metaheuristic with applications in applied

electromagnetics ‖ Prog. Electromagn. Res., vol. 77, pp.

425–491, 2007.

[30] R. A. Formato ―Central force optimization: a new nature

inspired computational framework for multidimensional

search and optimization ‖ in Nature Inspired Cooperative

Strategies for Optimization (NICSO 2007), Springer, 2008,

pp. 221–238.

[31] P. Rabanal I. Rodríguez and F. Rubio ―Using river

formation dynamics to design heuristic algorithms ‖ in

Unconventional Computation, Springer, 2007, pp. 163–

177.

[32] P. Rabanal I. Rodríguez and F. Rubio ―Applying river

formation dynamics to solve NP-complete problems ‖ in

Nature-inspired algorithms for optimisation, Springer,

2009, pp. 333–368.

[33] H. Shah-Hosseini ―Problem solving by intelligent water

drops ‖ in IEEE Congress on Evolutionary Computation,

2007. CEC 2007, 2007, pp. 3226–3231.

[34] T. C. Havens, C. J. Spain, N. G. Salmon, and J. M. Keller,

―Roach infestation optimization ‖ in Swarm Intelligence

Symposium, 2008. SIS 2008. IEEE, 2008, pp. 1–7.

[35] R. Zhao and W. Tang ―Monkey algorithm for global

numerical optimization ‖ J. Uncertain Syst., vol. 2, no. 3,

pp. 165–176, 2008.

[36] D. Simon ―Biogeography-Based Optimization ‖ IEEE

Trans. Evol. Comput., vol. 12, no. 6, pp. 702–713, Dec.

2008.

[37] A. H. Kashan ―League championship algorithm: a new

algorithm for numerical function optimization ‖ in 2009

International Conference of Soft Computing and Pattern

Recognition, 2009, pp. 43–48.

[38] K. N. Krishnanand and D. Ghose ―Glowworm swarm

optimization for simultaneous capture of multiple local

optima of multimodal functions ‖ Swarm Intell., vol. 3, no.

2, pp. 87–124, 2009.

[39] Y. Marinakis M. Marinaki and N. Matsatsinis ―A hybrid

bumble bees mating optimization-grasp algorithm for

clustering ‖ in Hybrid Artificial Intelligence Systems,

Springer, 2009, pp. 549–556.

[40] R. Oftadeh and M. J. Mahjoob ―A new meta-heuristic

optimization algorithm: Hunting Search ‖ in Soft

Computing, Computing with Words and Perceptions in

System Analysis, Decision and Control, 2009. ICSCCW

2009. Fifth International Conference on, 2009, pp. 1–5.

[41] X.-S. Yang ―Firefly algorithms for multimodal

optimization ‖ in Stochastic algorithms: foundations and

applications, Springer, 2009, pp. 169–178.

[42] X.-S. Yang ―Harmony Search as a Metaheuristic

Algorithm ‖ in Music-Inspired Harmony Search

Algorithm, Z. W. Geem, Ed. Springer Berlin Heidelberg,

2009, pp. 1–14.

[43] U. Premaratne, J. Samarabandu, and T. Sidhu ―A new

biologically inspired optimization algorithm ‖ in 2009

International Conference on Industrial and Information

Systems (ICIIS), 2009, pp. 279–284.

[44] E. Rashedi, H. Nezamabadi-Pour and S. Saryazdi ―GSA:

a gravitational search algorithm ‖ Inf. Sci., vol. 179, no.

13, pp. 2232–2248, 2009.

[45] X.-S. Yang and S. Deb ―Cuckoo search via Lévy flights ‖

in Nature & Biologically Inspired Computing, 2009.

NaBIC 2009. World Congress on, 2009, pp. 210–214.

[46] X.-S. Yang and S. Deb ―Engineering optimisation by

cuckoo search ‖ Int. J. Math. Model. Numer. Optim., vol.

1, no. 4, pp. 330–343, 2010.

[47] X.-S. Yang ―A New Metaheuristic Bat-Inspired

Algorithm ‖ in Nature Inspired Cooperative Strategies for

Optimization (NICSO 2010), J. R. González, D. A. Pelta,

C. Cruz, G. Terrazas, and N. Krasnogor, Eds. Springer

Berlin Heidelberg, 2010, pp. 65–74.

[48] Y. Tan and Y. Zhu ―Fireworks Algorithm for

Optimization ‖ in Advances in Swarm Intelligence, Y. Tan,

Y. Shi, and K. C. Tan, Eds. Springer Berlin Heidelberg,

2010, pp. 355–364.

[49] A. Salhi and E. S. Fraga ―Nature-inspired optimisation

approaches and the new plant propagation algorithm ‖

2011.

[50] E. Cuevas, M. González, D. Zaldivar, M. Pérez-Cisneros,

and G. García ―An algorithm for global optimization

inspired by collective animal behavior ‖ Discrete Dyn.

Nat. Soc., vol. 2012, 2012.

[51] H. Eskandar, A. Sadollah, A. Bahreininejad, and M.

Hamdi ―Water cycle algorithm–A novel metaheuristic

optimization method for solving constrained engineering

optimization problems ‖ Comput. Struct., vol. 110, pp.

151–166, 2012.

[52] A. H. Gandomi and A. H. Alavi ―Krill herd: A new bio-

inspired optimization algorithm ‖ Commun. Nonlinear Sci.

Numer. Simul., vol. 17, no. 12, pp. 4831–4845, Dec. 2012.

[53] B. Niu and H. Wang ―Bacterial colony optimization ‖

Discrete Dyn. Nat. Soc., vol. 2012, 2012.

[54] B. R. Rajakumar ―The Lion’s Algorithm: A New Nature-

Inspired Search Algorithm ‖ Procedia Technol., vol. 6, pp.

126–135, 2012.

[55] M. Taherdangkoo, M. Yazdi, and M. H. Bagheri ―Stem

Cells Optimization Algorithm ‖ in Bio-Inspired

Computing and Applications, D.-S. Huang, Y. Gan, P.

Premaratne, and K. Han, Eds. Springer Berlin Heidelberg,

2012, pp. 394–403.

[56] M. T. M. H. Shirzadi and M. H. Bagheri ―A novel meta-

heuristic algorithm for numerical function optimization:

blind, naked mole-rats (BNMR) algorithm ‖ Sci. Res.

Essays, vol. 7, no. 41, pp. 3566–3583, 2012.

58 Investigating Performance of Various Natural Computing Algorithms

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 1, 46-59

[57] X.-S. Yang ―Flower pollination algorithm for global

optimization ‖ in Unconventional computation and

natural computation, Springer, 2012, pp. 240–249.

[58] X.-S. Yang M. Karamanoglu and X. He ―Flower

pollination algorithm: a novel approach for multiobjective

optimization ‖ Eng. Optim., vol. 46, no. 9, pp. 1222–1237,

2014.

[59] T. Gerstner M. Holtz and R. Korn ―Valuation of

performance-dependent options in a Black Scholes

framework.‖

[60] A. S. Eesa A. M. Abdulazeez and Z. Orman ―Cuttlefish

algorithm–a novel bio-inspired optimization algorithm ‖

Int. J. Sci. Eng. Res., vol. 4, no. 9, pp. 1978–1986, 2013.

[61] A. Sadollah, A. Bahreininejad, H. Eskandar, and M.

Hamdi ―Mine blast algorithm: A new population based

algorithm for solving constrained engineering

optimization problems ‖ Appl. Soft Comput., vol. 13, no. 5,

pp. 2592–2612, May 2013.

[62] E. Cuevas, M. Cienfuegos, D. Zaldívar, and M. Pérez-

Cisneros ―A swarm optimization algorithm inspired in

the behavior of the social-spider ‖ Expert Syst. Appl., vol.

40, no. 16, pp. 6374–6384, 2013.

[63] J. C. Bansal, H. Sharma, S. S. Jadon, and M. Clerc,

―Spider monkey optimization algorithm for numerical

optimization ‖ Memetic Comput., vol. 6, no. 1, pp. 31–47,

2014.

[64] X. Li J. Zhang and M. Yin ―Animal migration

optimization: an optimization algorithm inspired by

animal migration behavior ‖ Neural Comput. Appl., vol.

24, no. 7–8, pp. 1867–1877, 2014.

[65] A. Askarzadeh ―Bird mating optimizer: An optimization

algorithm inspired by bird mating strategies ‖ Commun.

Nonlinear Sci. Numer. Simul., vol. 19, no. 4, pp. 1213–

1228, Apr. 2014.

[66] M. Ghaemi and M.-R. Feizi-Derakhshi ―Forest

optimization algorithm ‖ Expert Syst. Appl., vol. 41, no.

15, pp. 6676–6687, 2014.

[67] B. Doğan and T. Ölmez ―A new metaheuristic for

numerical function optimization: Vortex Search

algorithm ‖ Inf. Sci., vol. 293, pp. 125–145, 2015.

[68] Y.-J. Zheng ―Water wave optimization: A new nature-

inspired metaheuristic ‖ Comput. Oper. Res., vol. 55, pp.

1–11, Mar. 2015.

[69] S. D. Gai-Ge Wang ―Elephant Herding Optimization ‖

2015.

[70] A. Brabazon W. Cui and M. O’Neill ―The raven

roosting optimisation algorithm ‖ Soft Comput., vol. 20,

no. 2, pp. 525–545, Jan. 2015.

[71] ―Optimization problem ‖ Wikipedia, the free encyclopedia.

16-Apr-2016.

[72] ―Types of Optimization Problems | NEOS.‖ [Online].

Available: http://neos-guide.org/optimization-tree.

[Accessed: 15-May-2016].

[73] M. M. Flood ―The traveling-salesman problem ‖ Oper.

Res., vol. 4, no. 1, pp. 61–75, 1956.

[74] G. Gutin and A. P. Punnen, Eds., The Traveling Salesman

Problem and Its Variations, vol. 12. Boston, MA:

Springer US, 2007.

[75] R. Matai S. Singh and M. Lal ―Traveling Salesman

Problem: an Overview of Applications, Formulations, and

Solution Approaches ‖ in Traveling Salesman Problem,

Theory and Applications, D. Davendra, Ed. InTech, 2010.

[76] K. Sastry D. E. Goldberg and G. Kendall ―Genetic

algorithms ‖ in Search methodologies, Springer, 2014, pp.

93–117.

[77] N. Sureja and B. Chawda ―Random Traveling Salesman

problem using Genetic Algorithms ‖ IFRSA’s Int. J.

Comput., vol. 2, no. 2, 2012.

[78] M. Dorigo and T. Stützle ―Ant colony optimization:

overview and recent advances ‖ Techreport IRIDIA Univ.

Libre Brux., 2009.

[79] M. Dorigo and L. M. Gambardella ―Ant colonies for the

travelling salesman problem ‖ BioSystems, vol. 43, no. 2,

pp. 73–81, 1997.

[80] B. V. Chawda and N. M. Sureja ―An ACO Approach to

Solve a Variant of TSP ‖ Int. J. Adv. Res. Comput. Eng.

Technol. IJARCET, vol. 1, no. 5, p. pp–222, 2012.

[81] P. Rabanal I. Rodríguez and F. Rubio ―Solving dynamic

TSP by using river formation dynamics ‖ in Natural

Computation, 2008. ICNC’08. Fourth International

Conference on, 2008, vol. 1, pp. 246–250.

[82] S. S. Shah, P. B. Swadas and B. V. Chawda ―Travelling

Salesman Problem Solutions using Various Heuristic

Algorithms ‖ in International Conference on Information,

Knowledge & Research in Engineering, Technology &

Sciences - 2012, Rajkot, Gujarat, India, 2012, pp. 1142–

1145.

[83] X.-S. Yang and X. He ―Firefly algorithm: recent

advances and applications ‖ Int. J. Swarm Intell., vol. 1,

no. 1, pp. 36–50, 2013.

[84] G. K. Jati and others, Evolutionary discrete firefly

algorithm for travelling salesman problem. Springer,

2011.

[85] S. N. Kumbharana and G. M. Pandey ―Solving travelling

salesman problem using firefly algorithm ‖ Int. J. Res. Sci.

Adv. Technol., vol. 2, no. 2, pp. 53–57, 2013.

[86] X. Ouyang Y. Zhou Q. Luo and H. Chen ―A novel

discrete cuckoo search algorithm for spherical traveling

salesman problem ‖ Appl. Math. Inf. Sci., vol. 7, no. 2, p.

777, 2013.

[87] W. C. E. Lim, G. Kanagaraj, and S. G. Ponnambalam,

―Cuckoo search algorithm for optimization of sequence in

pcb holes drilling process ‖ in Emerging trends in science,

engineering and technology, Springer, 2012, pp. 207–216.

[88] ―Index of /software/TSPLIB95/tsp.‖ [Online]. Available:

http://comopt.ifi.uni-

heidelberg.de/software/TSPLIB95/tsp/. [Accessed: 20-

May-2016].

Authors’ Profiles

Bharat V. Chawda is a B.E. and M.E. in

Computer Engineering. He is a Gold-

Medalist in M.E. from Sardar Patel

University, Vallabh Vidyanagar, Gujarat,

India. He is currently pursuing his Ph.D. from

Gujarat Technological University,

Ahmedabad, Gujarat, India. His current

profile comprises of Lecturer in Department

of Computer Engineering, B. & B. Institute of Technology,

Vallabh Vidyanagar. He has published books with titles

Operating Systems, Database Management System, Relational

Database Management System and Advanced Database

Management System. He has published 8 International Journal

papers and 2 Conference papers. He is a life member of The

Indian Society for Technical Education and The Institutions of

Engineers (India).

 Investigating Performance of Various Natural Computing Algorithms 59

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 1, 46-59

Dr. Jayesh Patel, having rich experience of

13 Years in Academics (MCA, M.Phil, Ph.D.

Programme), Industry, Research, and

International exposure, is holding Doctorate in

ERP (Computer Science) from North Gujarat

University. Rewarding his research work, he

has been awarded ―Career Award for Young

Teachers‖ from AICTE New Delhi. He is

working as a recognized Ph.D. Guide at Gujarat Technological

University, North Gujarat University, Ganpat University and

also with many other reputed universities. He has good number

of research under his name and presented more than 57 research

papers in International and National Journals and Conferences.

He has delivered number of expert talk in SANDHAN

Programme and UGC Sponsored Orientation Programme. He is

also the member of the board of studies and selection

committees of different universities. He is also nominated by

Department of Education, Govt. of Gujarat as a Coordinator at

SANDHAN Program for Computer Science Subject.

How to cite this paper: Bharat V. Chawda, Jayeshkumar

Madhubhai Patel,"Investigating Performance of Various Natural

Computing Algorithms", International Journal of Intelligent

Systems and Applications(IJISA), Vol.9, No.1, pp.46-59, 2017.

DOI: 10.5815/ijisa.2017.01.05

