
I.J. Intelligent Systems and Applications, 2017, 1, 75-84
Published Online January 2017 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijisa.2017.01.08

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 1, 75-84

High Performance Computation of Big Data:

Performance Optimization Approach towards a

Parallel Frequent Item Set Mining Algorithm for

Transaction Data based on Hadoop MapReduce

Framework

Guru Prasad M S
SDMIT/CSE, Ujire, 577240, India

E-mail: guru0927@gmail.com

Nagesh H R and Swathi Prabhu
MITE/CSE, Moodbidri, 574227, India

SMVITM/CSE, Udupi, 576115, India

E-mail: nageshhrcs@reddifmail.com, prabhuswathi2@gmail.com

Abstract—The Huge amount of Big Data is constantly

arriving with the rapid development of business

organizations and they are interested in extracting

knowledgeable information from collected data. Frequent

item mining of Big Data helps with business decision and

to provide high quality service. The result of traditional

frequent item set mining algorithm on Big Data is not an

effective way which leads to high computation time. An

Apache Hadoop MapReduce is the most popular data

intensive distributed computing framework for large scale

data applications such as data mining. In this paper, the

author identifies the factors affecting on the performance

of frequent item mining algorithm based on Hadoop

MapReduce technology and proposed an approach for

optimizing the performance of large scale frequent item

set mining. The Experiments result shows the potential of

the proposed approach. Performance is significantly

optimized for large scale data mining in MapReduce

technique. The author believes that it has a valuable

contribution in the high performance computing of Big

Data.

Index Terms—Big Data, Hadoop, MapReduce, Hadoop

Distributed File System (HDFS), Apriori MapReduce,

FP-growth MapReduce.

I. INTRODUCTION

We live in the Big Data Era. Big Data is a broad term

that describes a massive volume of structured, semi-

structured and unstructured data. Due to the advent of

new technologies and digital world of data is expanded to

10 zettabytes (1021 bytes). Huge amount of data is

generated from social networking sites, e-commerce, on-

line banking, weather stations, market transactions etc.

Big Data is mainly characterized by 3 V’s extreme

volumes, extreme variety and extreme velocity. Volume

can vary beyond zettabytes. Velocity defines the speed at

which data is generated and huge variety of data can be

used. It is really critical to business enterprises and its

emerging as one of the most important technologies in

modern world. Many business enterprises accumulate

large quantities of data from customer transactions; they

handle more than one billion customer transaction every

day. For example, EBay has 50 petabytes of data it

captures 50 terabytes every day, US retailers have around

500 petabytes of data, Amazon is world's biggest retail

store which has billions of active customer data etc.

Huge amount of data continuously collected and stored in

their data warehouse. Now business organizations are

interested in extracting knowledgeable information from

stored data. The information contained in transaction

database is large. So it is very difficult to understand and

also difficult to extract knowledgeable information from

this huge dataset. To solve this problem the technique

called frequent item mining is used. This technique finds

the frequency of item purchased together. It is useful in

extracting hidden predictive information from large data

sets. And it is a powerful technology with extreme

potential to help organizations. It focus on the most

important information in their data warehouse. The

frequent item mining technique predicts future trends and

behaviors. It allows businesses to undertake proactive,

knowledge-driven decisions. Apriori and FP-growth are

the most famous algorithms to discover frequent patterns

in large data sets. However, the existing data mining tools

based on sequential Apriori and FP-growth algorithms are

not efficient to mine a huge transaction data.

We would require a robust distributed computing

infrastructure that can store, manage and process huge

amounts of data in short time. It can protect data security

mailto:prabhuswathi2@gmail.com

76 High Performance Computation of Big Data: Performance Optimization Approach towards a Parallel Frequent

Item Set Mining Algorithm for Transaction Data based on Hadoop MapReduce Framework

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 1, 75-84

and privacy. Doug Cutting, Mike Cafarella and their team

took the challenge and designed new powerful distributed

computing open source project called Hadoop. Today

Hadoop is the most popular and powerful framework

with the MapReduce programming model for distributed

analysis of Big Data. The main features of Hadoop are, It

can be easily accessible, robust in nature and scalable. It

allows to store, manage and process Big Data in a

distributed environment across a cluster of computers that

works with simple parallel programming model. It is

designed to easily scale up from single machine to

thousands of machines. The main power of Hadoop is

Hadoop Distributed File System (HDFS) and MapReduce

programming model. Hadoop can be compatible with any

of the mountable distributed file systems such as Hadoop

Distributed File System that can operate on existing

hardware. HDFS has a very good durability and uses

cheap hardware. It is highly fault tolerant distributed file

system, secures data stored on the clusters. The HDFS is

based on the Google File System and provides a

Distributed File System (DFS) that is designed to run on

a large cluster (thousands of computers) which handles

huge amount of data such as terabytes, petabytes, etc. The

HDFS runs across the nodes in a Hadoop cluster which

connects the file systems together with huge input and

output data that make them into one big file system.

Hadoop running MapReduce programs written in various

languages like Java, Python and C++. It is a

programming model for easy writing applications which

processes huge amounts of data in-parallel on a large

cluster of hardware’s in a reliable, robust, fault-tolerant

manner. Hadoop provides its own set of basic types that

are optimized for network serialization. Jobs are divided

into two tasks, such as map tasks and reduce tasks. Many

works were proposed on MapReduce based Apriori and

FP-growth algorithm to mine frequent items over large

transaction data. However, the performance of frequent

item mining algorithms on Hadoop MapReduce

framework is not optimal; it takes more HDFS disk space

and not so effective. Our Experiment results show that,

the proposed novel approach effectively reduces the

HDFS disk space utilization and minimizes the execution

time.

The major contributions of this paper are as follows:

1. Minimizes the execution time of frequent item

mining on Hadoop MapReduce framework.

2. Effectively reduce the HDFS disk space utilization

of the DataNode to store transaction data.

3. Potential of the proposed method is demonstrated.

4. Provided valuable contribution for high

performance computation of Big Data.

The rest of the paper is organized as follows. Section II

is an illustration of related works about the proposed

topic. Section III discus the Backgrounds of the proposed

work. Section IV proposes the methodology of

optimizing the performance of parallel frequent mining

algorithm. Section V presents comprehensive experiment

results. Section VI concludes the paper.

II. RELATED WORK

Hui Chen et al [1] described about Big Data size. It has

increased from terabytes to petabytes. Sequential data

mining algorithm does not satisfy the needs of big data

mining. In this paper, the author designed a novel parallel

algorithm for mining frequent item sets information over

big transaction data based on Hadoop MapReduce

Framework. The simulation result proves that, the

proposed parallel algorithm is efficient and scalable, and

can be used to efficiently mine frequent patterns in big

data.

Zahra Farzanyar et al [2] illustrates mining information

produced in the social network environments can be

extremely useful. But, with the rapid growth of social

network data towards a terabyte or more. Most of the

traditional mining algorithms become ineffective due to

either too huge resource requirement or too much

communication. In this paper, the author proposed an

efficient frequent item set mining algorithm called

IMRApriori based on a MapReduce framework which

deals with Hadoop cloud which is a parallel store and

computing platform. Author work demonstrates

experimental results to corroborate the theoretical claims.

Yanfeng Zhang et al [3] says new stream of data and

updates are arriving every minute. The results of data

mining applications become slow and consume more time.

Incremental processing was a promise method to

refreshing mining results; it uses previously saved results

to avoid the expense of re-computation from the start. In

this paper the author proposed i2 MapReduce, a novel

incremental process extension to MapReduce which is a

most widely used framework for Big Data computing.

Experimental results, shows significant performance

enhancement of i2 MapReduce compared to both plain

and iterative MapReduce performing re-computation.

LI Bing et al [4] described data mining algorithm that

can process massive amounts of data have recently been

referred to as big data algorithms. In this paper the author

proposed a big data algorithm to extract knowledgeable

information from twitter data. Furthermore the proposed

algorithm is parallelizing based on the most promising

MapReduce framework. By the massive experiments on

large twitter data, the potential of the proposed big data

algorithm was demonstrated. Computationally, the speed

of data processing was increased significantly, despite of

increases in data set size. Results showed that the

acceleration ratio increases as the data size increases and

as the number of DataNodes increases.

Sheela Gole et al [5] illustrates the enormous volume

of data is getting explored through Internet of Things

from a variety of sources such as e-commerce, mobiles ,

sensors, social media, internet applications, called as Big

Data. Big Data cannot be handled by traditional tools and

techniques. The Big Data mining is more necessary in

order to extract knowledgeable value from large amounts

of data which could give better insights using efficient

methods. To overcome the existing data mining algorithm

limitation, MapReduce is used for parallel processing of

Big Data, having features such as high scalability, fault-

tolerance and robustness which help to handle the

 High Performance Computation of Big Data: Performance Optimization Approach towards a Parallel Frequent 77

Item Set Mining Algorithm for Transaction Data based on Hadoop MapReduce Framework

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 1, 75-84

problem of giant datasets. In this paper the author

proposed novel method ClustBigFIM, extended BigFIM

algorithm works on MapReduce framework for mining

meaningful information from giant datasets.

Yen-hui Liang et al [6] described frequent item set

mining. It is a significant research topic because it is

extensively adapted in real world to find the frequent item

sets and to mine human behavior patterns. The limitation

of classical frequent item set mining process is high time

and memory consumptions. In this paper the author

proposed a novel distributed frequent item set mining

algorithm called Sequence-Growth, and implement it

based on MapReduce framework. Proposed algorithm

applies the concept of lexicographical order to create a

tree called ”lexicographical sequence tree” which allows

to find all frequent item sets without repeated search over

the transaction datasets. To test the performances of

novel method, author conducted varied aspects of

experiments on MapReduce framework with large

datasets. The experiment results showed the good

suitability of Sequence-Growth to mine frequent item set.

Zhuobo Rong et al [7] explores the problem of existing

sequential Apriori and FP-growth algorithm on the single

machine environment are high memory consumption and

low performance computing . In this paper, author

proposed parallel environment for frequent item mining

algorithm, implemented based on MapReduce framework.

The experimental results showed better efficiency and

scalability of proposed parallel Apriori and FP-growth

algorithm.

III. BACKGROUNDS

A. Hadoop

Hadoop is a powerful open-source, Java based

framework that is managed by apache software which

offers a robust platform to work with big data. It was

inspired by Google's MapReduce, a software framework

in which an input data are broken down into numerous

equal size data parts. Any of these parts can run on any

node in the cluster. It is now a top level Apache project

being built and is used by the community of contributors

from all over the world. Hadoop is not a replacement for

database, data warehouse or ETL (Extract, Transform and

Load) strategy. It supports the computation of huge data

sets in a distributed computing environment.

Hadoop is a Master/Slave architecture cluster; consist

of one Master Node named as NameNode and n number

of Slave nodes named as DataNode. It allows to store,

secure and process Big Data in a distributed environment

across clusters of computers that works with MapReduce

parallel programming model. It is designed to scale up

from single machine to thousands of machines. It can be

compatible with any of the mountable distributed file

systems such as Hadoop Distributed File System(HDFS).

HDFS has a very good durability and can use cheap

hardware. It is highly fault tolerant distributed file system

that is responsible for storing data on the clusters. The

HDFS is based on the Google File System and provides a

distributed file system to that handle huge amount of data

such as terabytes, petabytes, etc.

B. MapReduce

MapReduce is a parallel programming model and

powerful interface first developed by Google using which

we can write applications to process a big amount of data

on large clusters of commodity hardware in a reliable

manner. A MapReduce job splits a huge data set into

equal size of independent chunks and organizes them into

key, value pairs for parallel processing. The speed and

reliability of the cluster are improved by parallel

processing and solutions obtain more quickly and with

greater reliability.

The MapReduce algorithm consists of two tasks

namely map and reduce. The map function is to process

the input file. Map function reads input data line by line

and then it will process the data and creates several

chunks of data. The reduce function takes the output of

the mapper as input and process the data. After

processing is completed it produces a new set of output,

which will be stored in HDFS. As the name indicates

MapReduce, the reduce task is always performed after the

map job. During a MapReduce job, Hadoop sends the

Map and Reduce task to the appropriate DataNodes in the

cluster. All the details of data passing such as issuing

tasks, verifying task completion, and copying data around

the cluster between the nodes are managed by

MasterNode. After completion of the given jobs the

MasterNode collects result from all DataNodes.

The MapReduce framework operates solely on <key,

value> pairs, i.e. the framework gives <key, value> pairs

as input to the job and produces the output of the job as a

set of <key, value>pairs of different types.

Input and Output types of a MapReduce job are as

follows:

(input) <k1, v1> → map ()→ list (<k2, v2>) (output)

(input) <k2, list (v2)> → reduce () → list<k3, v3>

(output)

C. Association Analysis

Association analysis is an approach for discovering

interesting relationships between items in large

transaction. It is intended to identify strong rules for

discovering interesting relationships hidden in large data

sets. Based on the idea of strong rules, Rakesh Agrawal

et.al .introduced association rules for discovering

regularities between items in large-scale grocery

transaction. For example , the rule {Bread, Eggs} →

{milk} found in the sales data of a grocery stores would

indicate that, if a customer buys Bread and Eggs together,

they are likely to buy Milk. Such information helps

retailers to identify which items are purchased together.

An association rule is an expression of the type X → Y,

where X and Y are disjoint item sets i.e., X ∩ Y = Ø. The

strength of an association rule will be measured in terms

of its support and confidence. Support determines how

typically a rule is applicable to given information set

78 High Performance Computation of Big Data: Performance Optimization Approach towards a Parallel Frequent

Item Set Mining Algorithm for Transaction Data based on Hadoop MapReduce Framework

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 1, 75-84

while confidence determines however oftentimes things

in Y seem in transactions that contain X. The formal

definitions of these metrics are

Support (X U Y)=(number of transaction containing in

both X and Y)/(total number of transaction)

Confidence (X|Y)=(number of transaction containing in

both X and Y) / (number of transactions containing X)

The association rule mining from large databases is a

two-step process.

1. Find all the frequent item set, that satisfy the

minimum support count threshold, itemset >=

minimum support count.

2. Generate strong association rules satisfying

minimum support and confidence.

Efficient algorithm to generate frequent itemsets and

association rule are Apriori and Fpgrowth.

D. Apriori

Apriori is an efficient algorithm proposed by R.

Agrawal and R. Srikant in 1994 for frequent item set

mining and association rule learning. It is designed to

operate on databases with a large number of transactions.

It applies an iterative approach to find the frequent item

set that satisfies the minimum support count threshold.

The pseudo code of apriori is shown below.

Apriori Pseudo Code

Algorithm 1: Apriori

Input:
DB, (Database of transactions),

min_sup (minimum support count threshold),

Output:

L, frequent itemsets in D.

Method:

Begin
1. F1 =find_frequent_1-itemsets(DB)

2. For (i=2;Li-1!=ф;i++) {

3. Ck=apriori_generation(Fk-1,min_sup);

4. For each transaction t ∈ DB;

5. Ct=subsets(Ck,t);

6. For each candidate C ∈ Ct

7. c.count++;

8. End For each

9. End For each

10. FK={C ∈ Ck | c.count>=min_sup }

11. End For

12. Return F U FK

End

E. FP-growth

FP-growth, proposed by Jiawei Han, Jian Pie and

Yiwen Yin [], is an efficient and scalable algorithm to

find frequent item sets. It uses novel data structure called

frequent pattern tree (FP-tree) which stores information

about frequent patterns.

Table 1. Transaction Database

TID Items

T1 {I1,I2}

T2 {I2,I3,I4}

T3 {I1,I2,I3}

T4 {I1,I3}

T5 {I1,I4}

Steps to construct FP-tree are as follows:

1. Initially create the root node of the FP-tree, label it

as null symbol.

2. Scan the transaction databasen calculate support

count of each item and arrange items in decreasing

support count. For the transaction database shown

in Table 1, I1 is the most frequent item followed

by I2, I3 and I4.

3. Read the first transaction {I1, I2}, construct the

first branch of tree with two nodes, (I1,1) and

(I2,1). A branch is then formed from null→I1→I2.

4. Read the second transaction {I2,I3,I4}, construct

the second branch of tree with three nodes,

(I2,1) ,(I3,1) and (I4,1). A branch is then formed

from null→I2→I3→I4.

5. Repeat the process same for all transaction in

database. The resulting FP tree for Table1 is

shown in Fig 1.

Fig.1. FP-Tree

IV. METHODOLOGY

To analyse frequent items we develop a novel

methodology as shown in Fig 2.The detailed description

of the methodology is as follows:

A. Data Pre-processing

Data pre-processing is an important step in the

proposed methodology. It is a data mining technique that

involves transforming transaction raw data into an

understandable format that will be more easily and

effectively processed by the Hadoop. Data pre-processing

is categorized into data cleaning, data integration, data

transformation, data reduction and data discretization. In

https://en.wikipedia.org/wiki/Association_rule_learning

 High Performance Computation of Big Data: Performance Optimization Approach towards a Parallel Frequent 79

Item Set Mining Algorithm for Transaction Data based on Hadoop MapReduce Framework

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 1, 75-84

the proposed methodology data cleaning technique is

used to remove unwanted data from the transaction data.

B. Data Conversion

Data conversion is a proposed approach to convert the

grocery item's name into unique_ID

Pseudo code of data conversion is as follows:

step 1. Read the transaction data.

step 2. Calculate n (number of items).

step 3. for 0 to n-1

 assign unique_ID to each item.

step 4. Write item name and unique_ID into file1.

step 5. Using file1 replace each item in transaction data

by unique_ID.

step 6. Write output of step5 into file2.

Fig.2. Proposed Methodoloy

C. Hadoop Distributed File System

The Hadoop Distributed File System (HDFS) is a Java

based distributed file system designed to run on a

thousands of computer. It is efficient and reliable data

storage layer of Hadoop. It is popular because of

robustness, data organization, accessibility and data

replication. It has Master/Slave architecture, consist of

one Master node (Name node) and N number of Slave

node (Data node).

HDFS works as follows:

1. It divides large volume of transaction data into M

blocks of equal size (D1, D2, D3,…….., DM)

2. It replicates data blocks (D1, D2, D3,…….., DM)

and stores data blocks in Data nodes.

D. Frequent item mining algorithms based on

MapReduce

This section shows MapReduce based implementation

of Apriori, FP-growth and Association rule mining

algorithms.

Implementation of Apriori algorithm based on

MapReduce.

Algorithm 2: Apriori in MapReduce

Apriori_Mapper<K1,V1,K2,V2>

1. Mapper input<K1,V1>=map(longwritable key, text

value);

2. string transaction=value.toString();

3. List<string> itemsets =

getitemsets(transaction.split(","));

4. for(string itemset:itemsets)

5. itemset.set(itemset.replaceall(",");

6. Mapper output<K2,V2>=output.collect(itemset,

new intwritable(1));

Apriori_Reducer<K2,V2,K3,V3>

7.Reducer input<K2,V2>=reduce(Text key,

iterator<intwritable> values);

8. sum=0;

9. while(values.hasNext())

10. sum+=values.next().get();

11. if(sum>=minimum_support_count)

12. Reducer output<K3,V3>=output.collect(key, new

text(Integer.toString(sum)));

Implementation approach

Implementation steps of Apriori in MapReduce are as

follows:

Step 1: Input to the Mapper is <K1,V1>, where K1 is

the data blocks name and V1 is itemsets inside the file.

Step 2: Mapper scans the itemsets and generates all

subsets from the itemsets.

Step 3: Output of Mapper is <K2,V2>, where K2 is the

subsets of itemset and V2 is the value of each subset.

Step 4: Reducer reads the output of Mapper<K2,V2>

and adds all subsets of itemset.

Step 5: If sum >= minimum_support_count, then the

corresponding item subsets is considered.

Step 6: Output of Reducer is <K3,V3>, where K3 is

the itemsets and V3 is the count of itemsets.

Implementation of FP-Growth algorithm based on

MapReduce.

Algorithm 3: FP-Growth in MapReduce

FP-Growth_Mapper<K1,V1,K2,V2>

1. Mapper input<K1,V1>=map(longwritable key, text

value)

2. String[] items = splitter.split(input.toString());

3. OpenIntHashSet itemSet = new OpenIntHashSet();

4. for (String item : items) {

5. if (fMap.containsKey(item) && !item.trim().isEmpty())

80 High Performance Computation of Big Data: Performance Optimization Approach towards a Parallel Frequent

Item Set Mining Algorithm for Transaction Data based on Hadoop MapReduce Framework

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 1, 75-84

{

6. itemSet.add(fMap.get(item));}}

7. IntArrayList itemArr = new

IntArrayList(itemSet.size());

8. itemSet.keys(itemArr);

9. itemArr.sort();

10. OpenIntHashSet groups = new OpenIntHashSet();

11. for (int j = itemArr.size() - 1; j >= 0; j--) {

12. int item = itemArr.get(j);

13. int groupID = ARM.getGroup(item, maxPerGroup);

14. if (!groups.contains(groupID)) {

15. IntArrayList tempItems = new IntArrayList(j + 1);

16. tempItems.addAllOfFromTo(itemArr, 0, j);

17. context.setStatus("Parallel FPGrowth: Generating

Group Dependent transactions for: "+ item);

18. wGroupID.set(groupID);

19. context.write(wGroupID, new

TransactionTree(tempItems, 1L));}

20. groups.add(groupID)}}

21. protected void setup(Context context) throws

IOException,InterruptedException {

22. super.setup(context);

23. int i = 0;

24. for (Pair<String, Long> e :

ARM.readFList(context.getConfiguration())) {

25. fMap.put(e.getFirst(), i++);}

26. Parameters params=

newParameters(context.getConfiguration().get(ARM.PFP

_PARAMETERS,""));

27. splitter =

Pattern.compile(params.get(ARM.SPLIT_PATTERN,AR

M.SPLITTER.toString()));

28. maxPerGroup =

params.getInt(ARM.MAX_PER_GROUP, 0);}}

29. Mapper output<K2,V2>=output.collect(intwritable,

Transactiontree);

FP-Growth_Reducer<K2,V2,K3,V3>

30. Reducer input<K2,V2>=reduce(IntWritable key,

Iterable<TransactionTree> values);

31. TransactionTree cTree = new TransactionTree();

32. for (TransactionTree tr : values) {

33. for (Pair<IntArrayList, Long> p : tr) {

34. cTree.addPattern(p.getFirst(), p.getSecond());}}

35. List<Pair<Integer, Long>> localFList =

Lists.newArrayList();

36. for (Entry<Integer,

org.apache.commons.lang3.mutable.MutableLong>

fItem : cTree.generateFList().entrySet()) {

37. localFList.add(new Pair<Integer,

Long>(fItem.getKey(), fItem.getValue().toLong()));}

38. Collections.sort(localFList,new

CountDescendingPairComparator<Integer, Long>());

39.FPGrowth<Integer> fpGrowth = new

FPGrowth<Integer>();

40. fpGrowth.generateTopKFrequentPatterns(new

IteratorAdapter(cTree.iterator()),localFList,

minSupport,maxHeapSize,new

HashSet<Integer>(ARM.getGroupMembers(key.get(),

maxPerGroup, numFeatures).toList()),new

IntegerStringOutputConverter(

new ContextWriteOutputCollector<IntWritable,

TransactionTree, Text, TopKStringPatterns>(

context), featureReverseMap),new

ContextStatusUpdater<IntWritable, TransactionTree,

Text, TopKStringPatterns>(context));}@Override

41. protected void setup(Context context) throws

IOException,InterruptedException {

42. super.setup(context);

43.Parameters params = newParameters(

context.getConfiguration().get(ARM.PFP_PARAMETER

S, ""));

44. for (Pair<String, Long> e :

ARM.readFList(context.getConfiguration())) {

45. if (!e.equals("dataset")) {

46.featureReverseMap.add(e.getFirst());

47. freqList.add(e.getSecond());}}

48. maxHeapSize =

Integer.valueOf(params.get(ARM.MAX_HEAPSIZE,

"50"));

49. minSupport =

Integer.valueOf(params.get(ARM.MIN_SUPPORT, "5"));

50. log.info("Support count: " + minSupport);

51. maxPerGroup =

params.getInt(ARM.MAX_PER_GROUP, 0);

52. numFeatures = featureReverseMap.size();}}

53. Reducer output<K3,V3>=output.collect(key,

TopKStringPatterns);

Implementation approach

Implementation steps of FP-Growth in MapReduce are

as follows:

Step 1: Input to the Mapper is <K1,V1>, where K1 is

the data id and V1 is itemsets inside the file.

Step 2: Mapper scans the itemsets and generates FP-

tree

Step 3: Output of Mapper is <K2,V2>, where K2 is the

groupid and V2 is the transaction tree.

Step 4: Reducer reads the output of Mapper<K2,V2>

and finds the frquency of items

Step 5: If frequency>= minSupportt, then the

corresponding transaction is considered.

Step 6: Output of Reducer is <K3,V3>, where K3 is

the key and V3 is TopKStringPatterns.

Implementation of Association analysis algorithm based

on MapReduce

Algorithm 4: Association analysis in MapReduce

Association_Mapper<K1,V1,K2,V2>

1.Mapper input<K1,V1>=Map(Longwritable key, Text

value);

2.string valuesplit=value.toString().split("\t");

3.List<string>subitemsets=getitemsets(items);

4.for(string itemset:subitemsets)

5.itemset.set(itemset.replaceall(" ",""));

6.value.set(valuesplit[0]+";"+valuesplit[1]);

 High Performance Computation of Big Data: Performance Optimization Approach towards a Parallel Frequent 81

Item Set Mining Algorithm for Transaction Data based on Hadoop MapReduce Framework

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 1, 75-84

7.Mapper output<K2,V2>=output.collect(itemset,val);

Association_Reducer<K2,V2,K3,V3>

8.Reducer input<K2,V2>=Reduce(Text key,

Iterator<Text> values);

9.Hashing<string,integer> hashing=new hashing<string,

integer>();

10.while(values.hasNext())

11.string val=values.next().tostring;

12.Hashing.put(key+"->"+getseparateitem)

13.Iterator<string> iterator=hashing.keyset().iterator();

14. while(iterator.hasNext())

15. string k=iterator.next().tostring();

16. int v=hashing.get(k);

17. Reducer output<K3,V3>=output.collect(new Text(k),

new FloatWWritable(v/keycount));

E. Result Conversion

Result conversion is a proposed approach to convert

the frequent unique_ID into item's name

Pseudo code of result conversion is as follows:

Step 1. Read the result of frequent unique_ID.

Step 2. Using file1 replace each unique_ID in result

file by item's name.

Step 3. Write frequent item's name into file3.

V. RESULTS AND DISCUSSION

The Performance of the Hadoop MapReduce

framework with respect to the time taken to move files

from local file system to the Hadoop Distributed File

System, memory usage of the HDFS to store data sets and

the execution time of frequent items and association

analysis was initially benchmarked with the baseline

Hadoop (traditional) and then compared with results

obtained using the Optimize Hadoop (proposed).

A. Experimental Environment

For the performance evaluation we considered Hadoop

five nodes cluster with homogeneous hardware property,

i.e. Each node in the cluster has a 3.8 GB RAM, Intel®

Core i5 3470 CPU @3.20GHz * 4 processor. We setup

cluster on Ubuntu 15.04 with Hadoop 1.7.2 stable release

used oracle jdk 1.8 and ssh configuration to manage

Hadoop daemons. Our cluster setup is having 1

NameNode and 5 DataNodes for the purpose of an

experiment. Configuration files such as mapred-site.xml,

core-site.xml, hdfs-site.xml, yarn-site.xml are setup by

default values with replication factor 2 and data block

size 64 MB.

B. Performance Measurement Parameters

The performance of the Hadoop MapReduce

framework was measured on the following parameters.

1. Analysis of Time taken to move files from local

file system to HDFS

2. Memory usage of the DataNode to store data

blocks.

3. Time taken by the MapReduce to mine frequent

items and association analysis.

C. Experiments

1) Analysis of Time taken to move files from local file

system to HDFS

Files move operation is performed on both the

traditional method and the proposed method. We

recorded time taken to move files from local file system

to Hadoop Distributed File System. In the traditional

method where we directly moved entire input file of size

10 GB from local file system to HDFS. In the proposed

method we converted the transaction item's name into

unique ID, thereby reducing transaction data set size of

10 GB to 1.5 GB. Then data conversion file of size 1.5

GB is moved into HDFS. Table 2 shows the time taken to

move the files into HDFS in traditional method and the

proposed method. Fig 3 shows the chart of time taken by

the traditional method and the proposed method to move

files into HDFS.

Table 2. Time taken to move files from local file system into HDFS

Technique File Size in GB Time in seconds

Traditional 10 398

Proposed 1.5 23

Fig.3. Analysis of time taken by the traditional method and the proposed

method to move files into HDFS.

2) Analysis on HDFS Disk space utilization

HDFS disk space utilization analysis is made on both

the traditional and the proposed method. In the traditional

method, the HDFS disk utilization was 10 GB where we

directly moved entire input file of size 10 GB from local

file system to HDFS. But in the proposed method we

converted the transaction item's name into unique ID,

thereby reducing transaction data set size of 10 GB to 1.5

GB, so the HDFS disk utilization was 1.5 GB. Table 3

shows the HDFS disk space utilization by the traditional

method and the proposed method. Fig 4 shows the chart

of HDFS disk space utilization by the traditional method

and the proposed method.

82 High Performance Computation of Big Data: Performance Optimization Approach towards a Parallel Frequent

Item Set Mining Algorithm for Transaction Data based on Hadoop MapReduce Framework

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 1, 75-84

Table 3. HDFS disk space utilization

Technique HDFS disk space utilization in GB

Traditional 10

Proposed 1.5

Fig.4. Analysis of time taken by the traditional method and the proposed

method to move files into HDFS

3) Performance analysis of Apriori MapReduce

Apriori MapReduce applies an iterative approach to

find the frequent item set that satisfies the minimum

support count threshold. The pseudo code of Apriori

MapReduce is shown in Fig.1. HDFS divides large

volume of transaction data into data blocks of equal size

(i.e. 64 MB). Performance analysis of Apriori

MapReduce was made on both the traditional and the

proposed method. In the traditional method HDFS disk

space utilization by the transaction data set is 10 GB,

HDFS divides 10 GB data into 157 data blocks. Time

taken to process 157 data blocks from Apriori

MapReduce is 72 minutes. In the proposed method HDFS

disk space utilization by the transaction data set is 1.5

GB , HDFS divides 1.5 GB data into 24 data blocks.

Time taken to process 24 data blocks from Apriori

MapReduce is 08 minutes. The proposed method

improves the performance of frequent item mining based

on Apriori MapReduce by 88.9%.

Table 4 shows Comparison of Apriori MapReduce

time taken for analysis by the traditional method and the

processed method. Fig 5 shows the time taken by Apriori

MapReduce technique in traditional method and the

proposed method

Table 4. Comparison of Apriori MapReduce time taken for analysis by

the traditional method and the proposed method

Technique

HDFS disk space

utilization

in GB

Time taken for analysis

in Minutes

Traditional 10 72

Proposed 1.5 8

Fig.5. Analysis of Apriori MapReduce by the traditional method and the

proposed method

4) Performance analysis of FP-growth MapReduce

FP-growth uses novel data structure called frequent

pattern tree (FP-tree) to mine frequent pattern. The

pseudo code of FP-growth is shown in Fig.1. HDFS

divides large volume of transaction data into data blocks

of equal size (i.e. 64 MB). Performance analysis of FP-

growth MapReduce was made on both the traditional and

the proposed method. In the traditional method HDFS

disk space utilization by the transaction data set is 10 GB,

HDFS divides 10 GB data into 157 data blocks. Time

taken to process 157 data blocks from Apriori

MapReduce is 59 minutes. In the proposed method HDFS

disk space utilization by the transaction data set is 1.5 GB,

HDFS divides 1.5 GB data into 24 data blocks. Time

taken to process 24 data blocks from Apriori MapReduce

is 06 minutes. The proposed method improves the

performance of frequent item mining based on FP-growth

MapReduce by 89.94%.

Table 5. Comparison of FP-growth MapReduce time taken for analysis

by the traditional method and the proposed method

Technique

HDFS disk space

utilization

in GB

Time taken for analysis

in Minutes

Traditional 10 59

Proposed 1.5 06

Fig.6. Analysis of FP-growth MapReduce by the traditional method and

the proposed method

 High Performance Computation of Big Data: Performance Optimization Approach towards a Parallel Frequent 83

Item Set Mining Algorithm for Transaction Data based on Hadoop MapReduce Framework

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 1, 75-84

Table 5 shows comparison of FP-growth MapReduce

time taken for analysis by the traditional method and the

proposed method. Fig 6 shows the time taken by FP-

growth MapReduce technique in traditional method and

the proposed method.

VI. CONCLUSIONS

Mining frequent item sets in the transaction data can be

extremely useful. With exponential growth of data most

of the traditional frequent pattern mining algorithms

become ineffective to process large data in short time.

Hadoop MapReduce framework, a robust distributed

computing infrastructure can store, manage and process

huge amounts of data in short time. With a

comprehensive set of experiments we identified that the

parallel implementation of frequent pattern mining

algorithm on MapReduce is not optimal in terms of

execution time and disk space utilization. In this paper,

we proposed a novel approach on Hadoop MapReduce

framework to identify frequent item sets. The

experimental results shows that the proposed approach on

Hadoop MapReduce framework gets better performance

in terms of execution time and disk space utilization

compared with the baseline Hadoop MapReduce

framework.

ACKNOWLEDGMENT

We would like to thank every member of the faculty at

SDMIT, MITE and SMVITM for their guidance and

support, which has helped us, complete this research

project successfully.

REFERENCE

[1] Hui Chen , Tsau Young Lin, Zhibing Zhang and Jie

Zhong (2013) “Parallel Mining Frequent Patterns over Big

Transactional Data in Extended MapReduce ”, 2013 IEEE

International Conference on Granular Computing (GrC),

pp.43-48.

[2] Zahra Farzanyar, Nick Cercone(2013) “ Efficient Mining

of Frequent itemsets in Social Network Data based on

MapReduce Framework”, 2013 IEEE/ACM International

Conference on Advances in Social Networks Analysis and

Mining,pp.1183-1188.

[3] Yanfeng Zhang, Shimin Chen, Qiang Wang, and Ge Yu

(2015) “i2 MapReduce: Incremental MapReduce for

Mining Evolving Big Data”, IEEE TRANSACTIONS ON

KNOWLEDGE AND DATA ENGINEERING, VOL.

27,NO. 7,pp.1906-1919.

[4] LI Bing and LI Bing (2014) “A Paralleled Big Data

Algorithm with MapReduce Framework for Mining

Twitter Data”, 2014 IEEE Fourth International

Conference on Big Data and Cloud Computing,pp.121-

128.

[5] Sheela Gole and Bharat Tidke (2015) “Frequent Itemset

Mining for Big Data in social media using ClustBigFIM

algorithm”, 2015 IEEEInternational Conference on

Pervasive Computing (ICPC), pp.1-6.

[6] Yen-hui Liang and Shiow-yang Wu (2015) “ Sequence-

Growth : A Scalable and Effective Frequent Itemset

Mining Algorithm for Big Data Based on MapReduce

Framework”, 2015 IEEE International Congress on Big

Data, pp.393-400.

[7] Zhuobo Rong, DawenXia and Zili Zhang (2013)

“Complex Statistical Analysis of Big Data:

Implementation and Application of Apriori and FP

Growth Algorithm Based on MapReduce”. 2013 IEEE

conference, pp.968-972.

[8] Pekka Paakkonen and Daniel Pakkala (2015) “Reference

Architecture and Classification of Technologies, Products

and Services for Big Data Systems”, Elsevier Big Data

Research, pp.166-186.

[9] Arantxa Duque Barrachina and Aisling O’Driscoll (2014)

“A big data methodology for categorizing technical

support requests using Hadoop and Mahout”, Journal of

Big Data, pp. 1-11.

[10] Matthew Herland, Taghi M Khoshgoftaar and Randall

Wald (2014) “A review of data mining using big data in

health informatics”, Journal of Big Data, pp. 1-35.

[11] Dilpreet Singh and Chandan K Reddy (2014) “A survey

on platforms for big data analytics”, Journal of Big Data,

pp. 1-20.

[12] J. Dean and S. Ghemawat, (2004) “Mapreduce:

Simplified data processing on large clusters,” in Proc. 6th

Conf. Symp. Opear. Syst. Des.Implementation, p. 10-18.

[13] A. Labrinidis and H. V. Jagadish (2012) “Challenges and

opportunities with big data,” in Proceedings of the VLDB

Endowment. VLDB, pp. 2032–2033.

[14] J. Han, J. Pei, and Y. Yin (2007) “Mining frequent

patterns without candidate generation,” in Proceedings of

the 9th international conference on Parallel Computing

Technologies, pp. 623–631.

[15] R. Agrawal and R. Srikant (1994) “Fast algorithms for

mining association rules in large databases,” in

Proceedings of 20th International Conference on Very

Large Data Bases, pp. 487–499.

[16] J. H. Chang and W. S. Lee (2003) “Finding recent

frequent itemsets adaptively over online data streams,” in

Proceedings of the Ninth ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining,

pp. 487–492.

[17] Le Zhou; Zhiyong Zhong; Jin Chang; Junjie Li; Huang,

J.Z,Shengzhong Feng, "Balanced parallel FP-Growth with

MapReduce," Information Computing and

Telecommunications (YC-ICT), 2010 IEEE Youth

Conference on , pp.28-30

[18] Li N., Zeng L., He Q. & Shi Z. (2012). Parallel

Implementation of Apriori Algorithm Based on

MapReduce. Proc. of the 13 ACIS International

Conference on Software Engineering, Artificial

Intelligence, Networking and Parallel & Distributed

Computing (SNPD’12). Kyoto, IEEE: 236 – 241.

[19] Ming-Yen Lin, Pei-Yu Lee, and Sue-Chen Hsueh (2012)

“Apriori-based frequent itemset mining algorithms on

MapReduce”. In Proceedings of the 6th International

Conference on Ubiquitous Information Management and

Communication (ICUIMC '12). ACM, New York, pp 86-

93

84 High Performance Computation of Big Data: Performance Optimization Approach towards a Parallel Frequent

Item Set Mining Algorithm for Transaction Data based on Hadoop MapReduce Framework

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 1, 75-84

Authors’ Profiles

Dr. Nagesh H.R, Dean(Academic),

Professor & Head, Department of

Computer Science & Engineering,

Mangalore Institute of Technology &

Engineering, Moodbidri, has got his

M.Tech and Ph.D(Computer Engineering)

from NITK Surathkal. He has published

more than 50 research papers in National

and International Conferences and

journals. He has delivered more than 20 invited talks in topics

like 'Component Based Software Development', 'Internet

Security', 'Web Security', 'Web Engineering', 'Information

Security' ,'Network Management', 'Promoting Global Cyber

Security' ,'Security issues in Distributed Systems', 'Digital

library and Information Search', 'Information Security

Management' ,'Recent Trends in Information Technology' and

'Security issues in Cloud Computing'. He has also chaired many

sessions in International and National level technical paper

presentations. He has also published one chapter titled

'Proactive models for Mitigating Internet DoS/DDoS Attacks',

in 'Selected Topics in Communication Networks and

Distributed Systems', World Scientific, London, April 2010. He

had also worked as Visiting faculty to NITK Surathkal and

NITK-Science and Technology Entrepreneurs Park, Karnataka,

Surathkal. Published two books titled 'Fundamentals of CMOS

VLSI Design' for V semester Electronics & Communication

Engineering students of VTU : Pearson Education & 'VLSI

Design' for V semester Electronics & Communication

Engineering students of JNTU : Pearson Education. Member of

BOS for PG studies in Computer Science at Mangalore

University and Manipal Institute of Technology for PG studies

in Computer Science & Engineering. Worked as member of

BOE and Exam coordinator in VTU Belgaum. Member of BOS

in Computer Science & Engineering of VTU Belgaum for year

2013 to 2016.

Mr. Guru Prasad M S, Asst .professor,

Dept of Computer Science & Engineering.

Shri Dharmasthala Manjunatheshwara

Institute of Technology, Ujire, Dakshinna

Kannada. He got his M.Tech (Computer

Engineering) from NMAMIT Nitte. He

has published 6 research papers in

International Conferences and Journals.

He has delivered 09 invited talks on “Big

Data Analytics”.

Ms. Swathi Prabhu, Asst. Professor, Dept.

of Computer Science & Engineering, Shri

Madhwa Vadiraja Institute of Technology

& Management, Bantakal, Udupi. She got

her M.Tech (Computer Engineering) from

NMAMIT Nitte. She has published few

research papers in National and

International Conferences and journals.

Her interested area is BigData Analysis using Hadoop,

Distributed computing, parallel computing.

How to cite this paper: Guru Prasad M S, Nagesh H R, Swathi

Prabhu,"High Performance Computation of Big Data:

Performance Optimization Approach towards a Parallel

Frequent Item Set Mining Algorithm for Transaction Data based

on Hadoop MapReduce Framework", International Journal of

Intelligent Systems and Applications(IJISA), Vol.9, No.1,

pp.75-84, 2017. DOI: 10.5815/ijisa.2017.01.08

