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Abstract—The Huge amount of Big Data is constantly 

arriving with the rapid development of business 

organizations and they are interested in extracting 

knowledgeable information from collected data. Frequent 

item mining of Big Data helps with business decision and 

to provide high quality service. The result of traditional 

frequent item set mining algorithm on Big Data is not an 

effective way which leads to high computation time. An 

Apache Hadoop MapReduce is the most popular data 

intensive distributed computing framework for large scale 

data applications such as data mining. In this paper, the 

author identifies the factors affecting on the performance 

of frequent item mining algorithm based on Hadoop 

MapReduce technology and proposed an approach for 

optimizing the performance of large scale frequent item 

set mining. The Experiments result shows the potential of 

the proposed approach. Performance is significantly 

optimized for large scale data mining in MapReduce 

technique. The author believes that it has a valuable 

contribution in the high performance computing of Big 

Data.  

 

Index Terms—Big Data, Hadoop, MapReduce, Hadoop 

Distributed File System (HDFS), Apriori MapReduce, 

FP-growth MapReduce. 

 

I.  INTRODUCTION 

We live in the Big Data Era. Big Data is a broad term 

that describes a massive volume of structured, semi-

structured and unstructured data. Due to the advent of 

new technologies and digital world of data is expanded to 

10 zettabytes (1021 bytes). Huge amount of data is 

generated from social networking sites, e-commerce, on-

line banking, weather stations, market transactions etc. 

Big Data is mainly characterized by 3 V’s extreme 

volumes, extreme variety and extreme velocity. Volume 

can vary beyond zettabytes. Velocity defines the speed at 

which data is generated and huge variety of data can be 

used. It is really critical to business enterprises and its 

emerging as one of the most important technologies in 

modern world. Many business enterprises accumulate 

large quantities of data from customer transactions; they 

handle more than one billion customer transaction every 

day. For example, EBay has 50 petabytes of data it 

captures 50 terabytes every day, US retailers have around 

500 petabytes of data, Amazon is  world's biggest retail 

store which  has  billions of active customer data etc. 

Huge amount of data continuously collected and stored in 

their data warehouse. Now business organizations are 

interested in extracting knowledgeable information from 

stored data. The information contained in transaction 

database is large. So it is very difficult to understand and 

also difficult to extract knowledgeable information from 

this huge dataset. To solve this problem the technique 

called frequent item mining is used. This technique finds 

the frequency of item purchased together. It is useful in 

extracting hidden predictive information from large data 

sets. And it is a powerful technology with extreme 

potential to help organizations. It focus on the most 

important information in their data warehouse. The 

frequent item mining technique predicts future trends and 

behaviors. It allows businesses to undertake proactive, 

knowledge-driven decisions. Apriori and FP-growth are 

the most famous algorithms to discover frequent patterns 

in large data sets. However, the existing data mining tools 

based on sequential Apriori and FP-growth algorithms are 

not efficient to mine a huge transaction data.  

We would require a robust distributed computing 

infrastructure that can store, manage and process huge 

amounts of data in short time. It can protect data security 
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and privacy. Doug Cutting, Mike Cafarella and their team 

took the challenge and designed new powerful distributed 

computing open source project called Hadoop. Today 

Hadoop is the most popular and powerful framework 

with the MapReduce programming model for distributed 

analysis of Big Data. The main features of Hadoop are, It 

can be easily accessible, robust in nature and scalable. It 

allows to store, manage and process Big Data in a 

distributed environment across a cluster of computers that 

works with simple parallel programming model. It is 

designed to easily scale up from single machine to 

thousands of machines. The main power of Hadoop is 

Hadoop Distributed File System (HDFS) and MapReduce 

programming model. Hadoop can be compatible with any 

of the mountable distributed file systems such as Hadoop 

Distributed File System that can operate on existing 

hardware. HDFS has a very good durability and uses 

cheap hardware. It is highly fault tolerant distributed file 

system, secures data stored on the clusters. The HDFS is 

based on the Google File System and provides a 

Distributed File System (DFS) that is designed to run on 

a large cluster (thousands of computers) which handles 

huge amount of data such as terabytes, petabytes, etc. The 

HDFS runs across the nodes in a Hadoop cluster which 

connects the file systems together with huge input and 

output data that make them into one big file system. 

Hadoop running MapReduce programs written in various 

languages like Java, Python and C++. It is a 

programming model for easy writing applications which 

processes huge amounts of data in-parallel on a large 

cluster of hardware’s in a reliable, robust, fault-tolerant 

manner. Hadoop provides its own set of basic types that 

are optimized for network serialization. Jobs are divided 

into two tasks, such as map tasks and reduce tasks. Many 

works were proposed on MapReduce based Apriori and 

FP-growth algorithm to mine frequent items over large 

transaction data. However, the performance of frequent 

item mining algorithms on Hadoop MapReduce 

framework is not optimal; it takes more HDFS disk space 

and not so effective. Our Experiment results show that, 

the proposed novel approach effectively reduces the 

HDFS disk space utilization and minimizes the execution 

time.  

The major contributions of this paper are as follows: 

 

1. Minimizes the execution time of frequent item 

mining on Hadoop MapReduce framework. 

2. Effectively reduce the HDFS disk space utilization 

of the DataNode to store transaction data. 

3. Potential of the proposed method is demonstrated. 

4. Provided valuable contribution for high 

performance computation of Big Data. 

 

The rest of the paper is organized as follows. Section II 

is an illustration of related works about the proposed 

topic. Section III discus the Backgrounds of the proposed 

work. Section IV proposes the methodology of 

optimizing the performance of parallel frequent mining 

algorithm. Section V presents comprehensive experiment 

results. Section VI concludes the paper.  

II.  RELATED WORK 

Hui Chen et al [1] described about Big Data size. It has 

increased from terabytes to petabytes. Sequential data 

mining algorithm does not satisfy the needs of big data 

mining. In this paper, the author designed a novel parallel 

algorithm for mining frequent item sets information over 

big transaction data based on Hadoop MapReduce 

Framework.  The simulation result proves that, the 

proposed parallel algorithm is efficient and scalable, and 

can be used to efficiently mine frequent patterns in big 

data. 

Zahra Farzanyar et al [2] illustrates mining information 

produced in the social network environments can be 

extremely useful. But, with the rapid growth of social 

network data towards a terabyte or more. Most of the 

traditional mining algorithms become ineffective due to 

either too huge resource requirement or too much 

communication. In this paper, the author proposed an 

efficient frequent item set mining algorithm called 

IMRApriori based on a MapReduce framework which 

deals with Hadoop cloud which is a parallel store and 

computing platform. Author work demonstrates 

experimental results to corroborate the theoretical claims. 

Yanfeng Zhang et al [3] says new stream of data and 

updates are arriving every minute. The results of data 

mining applications become slow and consume more time. 

Incremental processing was a promise method to 

refreshing mining results; it uses previously saved results 

to avoid the expense of re-computation from the start. In 

this paper the author proposed i2 MapReduce, a novel 

incremental process extension to MapReduce which is a 

most widely used framework for Big Data computing. 

Experimental results, shows significant performance 

enhancement of i2 MapReduce compared to both plain 

and iterative MapReduce performing re-computation. 

LI Bing et al [4] described data mining algorithm that 

can process massive amounts of data have recently been 

referred to as big data algorithms. In this paper the author 

proposed a big data algorithm to extract knowledgeable 

information from twitter data. Furthermore the proposed 

algorithm is parallelizing based on the most promising 

MapReduce framework. By the massive experiments on 

large twitter data, the potential of the proposed big data 

algorithm was demonstrated. Computationally, the speed 

of data processing was increased significantly, despite of 

increases in data set size.  Results showed that the 

acceleration ratio increases as the data size increases and 

as the number of DataNodes increases. 

Sheela Gole et al [5] illustrates the enormous volume 

of data is getting explored through Internet of Things 

from a variety of sources such as e-commerce, mobiles , 

sensors, social media, internet applications, called as Big 

Data. Big Data cannot be handled by traditional tools and 

techniques. The Big Data mining is more necessary in 

order to extract knowledgeable value from large amounts 

of data which could give better insights using efficient 

methods. To overcome the existing data mining algorithm 

limitation, MapReduce is used for parallel processing of 

Big Data, having features such as high scalability, fault-

tolerance and robustness which help to handle the 
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problem of giant datasets. In this paper the author 

proposed novel method ClustBigFIM, extended BigFIM 

algorithm works on MapReduce framework for mining 

meaningful information from giant datasets. 

Yen-hui Liang et al [6] described frequent item set 

mining. It is a significant research topic because it is 

extensively adapted in real world to find the frequent item 

sets and to mine human behavior patterns. The limitation 

of classical frequent item set mining process is high time 

and memory consumptions.  In this paper the author 

proposed a novel distributed frequent item set mining 

algorithm called Sequence-Growth, and implement it 

based on MapReduce framework. Proposed algorithm 

applies the concept of lexicographical order to create a 

tree called ”lexicographical sequence tree” which  allows 

to find all frequent item sets without repeated search over 

the transaction datasets.  To test the performances of 

novel method, author conducted varied aspects of 

experiments on MapReduce framework with large 

datasets. The experiment results showed the good 

suitability of Sequence-Growth to mine frequent item set.  

Zhuobo Rong et al [7] explores the problem of existing 

sequential Apriori and FP-growth algorithm on the single 

machine environment are high memory consumption and 

low performance computing . In this paper, author 

proposed parallel environment for frequent item mining 

algorithm, implemented based on MapReduce framework. 

The experimental results showed better efficiency and 

scalability of proposed parallel Apriori and FP-growth 

algorithm. 

 

III.  BACKGROUNDS 

A.  Hadoop 

Hadoop is a powerful open-source, Java based 

framework that is managed by apache software which 

offers a robust platform to work with big data. It was 

inspired by Google's MapReduce, a software framework 

in which an input data are broken down into numerous 

equal size data parts. Any of these parts can run on any 

node in the cluster. It is now a top level Apache project 

being built and is used by the community of contributors 

from all over the world. Hadoop is not a replacement for 

database, data warehouse or ETL (Extract, Transform and 

Load) strategy. It supports the computation of huge data 

sets in a distributed computing environment.   

Hadoop is a Master/Slave architecture cluster; consist 

of one Master Node named as NameNode and n number 

of Slave nodes named as DataNode. It allows to store, 

secure and process Big Data in a distributed environment 

across clusters of computers that works with MapReduce 

parallel programming model. It is designed to scale up 

from single machine to thousands of machines. It can be 

compatible with any of the mountable distributed file 

systems such as Hadoop Distributed File System(HDFS). 

HDFS has a very good durability and can use cheap 

hardware. It is highly fault tolerant distributed file system 

that is responsible for storing data on the clusters. The 

HDFS is based on the Google File System and provides a 

distributed file system to that handle huge amount of data 

such as terabytes, petabytes, etc. 

B.  MapReduce 

MapReduce is a parallel programming model and 

powerful interface first developed by Google using which 

we can write applications to process a big amount of data 

on large clusters of commodity hardware in a reliable 

manner. A MapReduce job splits a huge data set into 

equal size of independent chunks and organizes them into 

key, value pairs for parallel processing. The speed and 

reliability of the cluster are improved by parallel 

processing and solutions obtain more quickly and with 

greater reliability.  

The MapReduce algorithm consists of two tasks 

namely map and reduce. The map function is to process 

the input file. Map function reads input data line by line 

and then it will process the data and creates several 

chunks of data. The reduce function takes the output of 

the mapper as input and process the data. After 

processing is completed it produces a new set of output, 

which will be stored in HDFS. As the name indicates 

MapReduce, the reduce task is always performed after the 

map job. During a MapReduce job, Hadoop sends the 

Map and Reduce task to the appropriate DataNodes in the 

cluster. All the details of data passing such as issuing 

tasks, verifying task completion, and copying data around 

the cluster between the nodes are managed by 

MasterNode. After completion of the given jobs  the 

MasterNode collects result from all DataNodes. 

The MapReduce framework operates solely on <key, 

value> pairs, i.e.  the framework gives <key, value> pairs 

as input to the job and produces the output of the job as a 

set of <key, value>pairs of different types. 

Input and Output types of a MapReduce job are as 

follows: 

 

(input) <k1, v1> → map ()→ list (<k2, v2>) (output) 

(input) <k2, list (v2)> → reduce () → list<k3, v3> 

(output) 

 

C.  Association Analysis 

Association analysis is an approach for discovering 

interesting relationships between items in large 

transaction. It is intended to identify strong rules for 

discovering interesting relationships hidden in large data 

sets. Based on the idea of strong rules, Rakesh Agrawal 

et.al .introduced association rules for discovering 

regularities between items in large-scale grocery 

transaction. For example , the rule {Bread, Eggs} → 

{milk} found in the sales data of a grocery stores would 

indicate that, if a customer buys Bread and Eggs together, 

they are likely to buy Milk. Such information helps 

retailers to identify which items are purchased together. 

An association rule is an expression of the type X → Y, 

where X and Y are disjoint item sets i.e., X ∩ Y = Ø. The 

strength of an association rule will be measured in terms 

of its support and confidence. Support determines how 

typically a rule is applicable to given information set 
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while confidence determines however oftentimes things 

in Y seem in transactions that contain X. The formal 

definitions of these metrics are 

 

Support (X U Y)=(number of transaction containing in 

both X and Y)/(total number of  transaction) 

 

Confidence (X|Y)=(number of transaction containing in 

both X and Y) / (number of transactions containing X) 

 

The association rule mining from large databases is a 

two-step process. 

 

1. Find all the frequent item set, that satisfy the 

minimum support count threshold, itemset >= 

minimum support count. 

2. Generate strong association rules satisfying 

minimum support and confidence.   

 

Efficient algorithm to generate frequent itemsets and 

association rule are Apriori and Fpgrowth. 

D.  Apriori 

Apriori is an efficient algorithm proposed by R. 

Agrawal and R. Srikant in 1994 for frequent item set 

mining and association rule learning. It is designed to 

operate on databases with a large number of transactions. 

It applies an iterative approach to find the frequent item 

set that satisfies the minimum support count threshold. 

The pseudo code of apriori is shown below.  

 

Apriori Pseudo Code 

Algorithm 1: Apriori 

Input:  
DB, (Database of transactions),  

min_sup (minimum support count threshold), 

Output:  

L, frequent itemsets in D. 

Method: 

Begin 
1. F1 =find_frequent_1-itemsets(DB)       

2. For (i=2;Li-1!=ф;i++) { 

3. Ck=apriori_generation(Fk-1,min_sup); 

4. For each transaction t ∈ DB; 

5. Ct=subsets(Ck,t); 

6. For each candidate C ∈ Ct 

7. c.count++; 

8. End For each 

9. End For each 

10. FK={C ∈ Ck | c.count>=min_sup } 

11. End For 

12. Return F U FK 

End 

 

E.  FP-growth 

FP-growth, proposed by Jiawei Han, Jian Pie and 

Yiwen Yin [ ], is an efficient and scalable algorithm to 

find frequent item sets. It uses novel data structure called 

frequent pattern tree (FP-tree) which stores information 

about frequent patterns.  

Table 1. Transaction Database 

TID Items 

T1 {I1,I2} 

T2 {I2,I3,I4} 

T3 {I1,I2,I3} 

T4 {I1,I3} 

T5 {I1,I4} 

 

Steps to construct FP-tree are as follows: 

 

1. Initially create the root node of the FP-tree, label it 

as null symbol. 

2. Scan the transaction databasen calculate support 

count of each item and arrange items in decreasing 

support count. For the transaction database shown 

in Table 1, I1 is the most frequent item followed 

by I2, I3 and I4. 

3. Read the first transaction {I1, I2}, construct the 

first branch of tree with two nodes, (I1,1) and 

(I2,1). A branch is then formed from null→I1→I2. 

4. Read the second transaction {I2,I3,I4}, construct 

the second branch of tree with three nodes, 

(I2,1) ,(I3,1) and (I4,1). A branch is then formed 

from null→I2→I3→I4. 

5. Repeat the process same for all transaction in 

database. The resulting FP tree for Table1 is 

shown in Fig 1. 

 

 

Fig.1. FP-Tree 

 

IV.  METHODOLOGY 

To analyse frequent items we develop a novel 

methodology as shown in Fig 2.The detailed description 

of the methodology is as follows: 

A.  Data Pre-processing 

Data pre-processing is an important step in the 

proposed methodology. It is a data mining technique that 

involves transforming transaction raw data into an 

understandable format that will be more easily and 

effectively processed by the Hadoop. Data pre-processing 

is categorized into data cleaning, data integration, data 

transformation, data reduction and data discretization. In 

https://en.wikipedia.org/wiki/Association_rule_learning
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the proposed methodology data cleaning technique is 

used to remove unwanted data from the transaction data. 

B.  Data Conversion 

Data conversion is a proposed approach to convert the 

grocery item's name into unique_ID 

Pseudo code of data conversion is as follows: 

step 1. Read the transaction data. 

step 2. Calculate n (number of items). 

step 3. for 0 to n-1 

        assign unique_ID to each item. 

step 4. Write item name and unique_ID into file1. 

step 5. Using file1 replace each item in transaction data 

by unique_ID. 

step 6. Write output of step5 into file2. 

 

 

Fig.2. Proposed Methodoloy 

C.  Hadoop Distributed File System  

The Hadoop Distributed File System (HDFS) is a Java 

based distributed file system designed to run on a 

thousands of computer. It is efficient and reliable data 

storage layer of Hadoop. It is popular because of 

robustness, data organization, accessibility and data 

replication. It has Master/Slave architecture, consist of 

one Master node (Name node) and N number of Slave 

node (Data node). 

HDFS works as follows: 

 

1. It divides large volume of transaction data into M 

blocks of equal size (D1, D2, D3,…….., DM)  

2. It replicates data blocks (D1, D2, D3,…….., DM) 

and stores data blocks in Data nodes. 

D.  Frequent item mining algorithms based on 

MapReduce 

This section shows MapReduce based implementation 

of Apriori, FP-growth and Association rule mining 

algorithms. 

Implementation of Apriori algorithm based on 

MapReduce. 

Algorithm 2: Apriori in MapReduce 

Apriori_Mapper<K1,V1,K2,V2> 

1. Mapper input<K1,V1>=map(longwritable key, text 

value); 

2. string transaction=value.toString(); 

3. List<string> itemsets = 

getitemsets(transaction.split(",")); 

4. for(string itemset:itemsets) 

5. itemset.set(itemset.replaceall(","); 

6. Mapper output<K2,V2>=output.collect(itemset, 

new intwritable(1)); 

 

Apriori_Reducer<K2,V2,K3,V3> 

7.Reducer input<K2,V2>=reduce(Text key, 

iterator<intwritable> values); 

8. sum=0; 

9. while(values.hasNext()) 

10. sum+=values.next().get(); 

11. if(sum>=minimum_support_count) 

12. Reducer output<K3,V3>=output.collect(key, new 

text(Integer.toString(sum))); 

Implementation approach 

Implementation steps of Apriori in MapReduce are as 

follows: 

 

Step 1: Input to the Mapper is <K1,V1>, where K1 is 

the data blocks name and V1 is  itemsets inside the file. 

Step 2: Mapper scans the itemsets and generates all 

subsets from the itemsets. 

Step 3: Output of Mapper is <K2,V2>, where K2 is the 

subsets of itemset and V2 is the value of each subset. 

Step 4: Reducer reads the output of Mapper<K2,V2> 

and adds all  subsets of itemset. 

Step 5: If sum >= minimum_support_count, then the 

corresponding item subsets is considered. 

Step 6: Output of Reducer is <K3,V3>, where K3 is 

the itemsets and V3 is the count of itemsets. 

 

Implementation of FP-Growth algorithm based on 

MapReduce. 

 

Algorithm 3: FP-Growth in MapReduce 

FP-Growth_Mapper<K1,V1,K2,V2> 

1. Mapper input<K1,V1>=map(longwritable key, text 

value) 

2. String[] items = splitter.split(input.toString()); 

3. OpenIntHashSet itemSet = new OpenIntHashSet(); 

4. for (String item : items) { 

5. if (fMap.containsKey(item) && !item.trim().isEmpty()) 
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{ 

6. itemSet.add(fMap.get(item));}} 

7. IntArrayList itemArr = new 

IntArrayList(itemSet.size()); 

8. itemSet.keys(itemArr); 

9. itemArr.sort(); 

10. OpenIntHashSet groups = new OpenIntHashSet(); 

11. for (int j = itemArr.size() - 1; j >= 0; j--) { 

12. int item = itemArr.get(j); 

13. int groupID = ARM.getGroup(item, maxPerGroup); 

14. if (!groups.contains(groupID)) { 

15. IntArrayList tempItems = new IntArrayList(j + 1); 

16. tempItems.addAllOfFromTo(itemArr, 0, j); 

17. context.setStatus("Parallel FPGrowth: Generating 

Group Dependent transactions for: "+ item); 

18. wGroupID.set(groupID); 

19. context.write(wGroupID, new 

TransactionTree(tempItems, 1L));} 

20. groups.add(groupID)}} 

21. protected void setup(Context context) throws 

IOException,InterruptedException { 

22. super.setup(context); 

23. int i = 0; 

24. for (Pair<String, Long> e : 

ARM.readFList(context.getConfiguration())) { 

25. fMap.put(e.getFirst(), i++);} 

26. Parameters params= 

newParameters(context.getConfiguration().get(ARM.PFP

_PARAMETERS,"")); 

27. splitter = 

Pattern.compile(params.get(ARM.SPLIT_PATTERN,AR

M.SPLITTER.toString())); 

28. maxPerGroup = 

params.getInt(ARM.MAX_PER_GROUP, 0);}} 

29. Mapper output<K2,V2>=output.collect(intwritable, 

Transactiontree); 

 

FP-Growth_Reducer<K2,V2,K3,V3> 

30. Reducer input<K2,V2>=reduce(IntWritable key, 

Iterable<TransactionTree> values); 

31. TransactionTree cTree = new TransactionTree(); 

32. for (TransactionTree tr : values) { 

33. for (Pair<IntArrayList, Long> p : tr) { 

34. cTree.addPattern(p.getFirst(), p.getSecond());}} 

35. List<Pair<Integer, Long>> localFList = 

Lists.newArrayList(); 

36. for (Entry<Integer, 

org.apache.commons.lang3.mutable.MutableLong> 

fItem : cTree.generateFList().entrySet()) { 

37. localFList.add(new Pair<Integer, 

Long>(fItem.getKey(), fItem.getValue().toLong()));} 

38. Collections.sort(localFList,new 

CountDescendingPairComparator<Integer, Long>()); 

39.FPGrowth<Integer> fpGrowth = new 

FPGrowth<Integer>(); 

40. fpGrowth.generateTopKFrequentPatterns(new 

IteratorAdapter(cTree.iterator()),localFList, 

minSupport,maxHeapSize,new 

HashSet<Integer>(ARM.getGroupMembers(key.get(), 

maxPerGroup, numFeatures).toList()),new 

IntegerStringOutputConverter(             

new  ContextWriteOutputCollector<IntWritable, 

TransactionTree, Text, TopKStringPatterns>( 

context), featureReverseMap),new 

ContextStatusUpdater<IntWritable, TransactionTree, 

Text, TopKStringPatterns>(context));}@Override 

41. protected void setup(Context context) throws 

IOException,InterruptedException { 

42. super.setup(context); 

43.Parameters params = newParameters( 

context.getConfiguration().get(ARM.PFP_PARAMETER

S, "")); 

44. for (Pair<String, Long> e : 

ARM.readFList(context.getConfiguration())) { 

45. if (!e.equals("dataset")) { 

46.featureReverseMap.add(e.getFirst()); 

47. freqList.add(e.getSecond());}} 

48. maxHeapSize = 

Integer.valueOf(params.get(ARM.MAX_HEAPSIZE, 

"50")); 

49. minSupport = 

Integer.valueOf(params.get(ARM.MIN_SUPPORT, "5")); 

50. log.info("Support count: " + minSupport); 

51. maxPerGroup = 

params.getInt(ARM.MAX_PER_GROUP, 0); 

52. numFeatures = featureReverseMap.size();}} 

53. Reducer output<K3,V3>=output.collect(key, 

TopKStringPatterns); 

 

Implementation approach 

Implementation steps of FP-Growth in MapReduce are 

as follows: 

 

Step 1: Input to the Mapper is <K1,V1>, where K1 is 

the data id and V1 is  itemsets inside the file. 

Step 2: Mapper scans the itemsets and generates FP-

tree 

Step 3: Output of Mapper is <K2,V2>, where K2 is the 

groupid and V2 is the transaction tree. 

Step 4: Reducer reads the output of Mapper<K2,V2> 

and finds the frquency of items 

Step 5: If frequency>= minSupportt, then the 

corresponding transaction  is considered. 

Step 6: Output of Reducer is <K3,V3>, where K3 is 

the key and V3 is TopKStringPatterns. 

 

Implementation of Association analysis algorithm based 

on MapReduce 

Algorithm 4: Association analysis in MapReduce 

Association_Mapper<K1,V1,K2,V2> 

 

1.Mapper input<K1,V1>=Map(Longwritable key, Text 

value); 

2.string valuesplit=value.toString().split("\t"); 

3.List<string>subitemsets=getitemsets(items); 

4.for(string itemset:subitemsets) 

5.itemset.set(itemset.replaceall(" ","")); 

6.value.set(valuesplit[0]+";"+valuesplit[1]);
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7.Mapper output<K2,V2>=output.collect(itemset,val); 

 

Association_Reducer<K2,V2,K3,V3> 

8.Reducer input<K2,V2>=Reduce(Text key, 

Iterator<Text> values); 

9.Hashing<string,integer> hashing=new hashing<string, 

integer>(); 

10.while(values.hasNext()) 

11.string val=values.next().tostring; 

12.Hashing.put(key+"->"+getseparateitem) 

13.Iterator<string> iterator=hashing.keyset().iterator(); 

14. while(iterator.hasNext()) 

15. string k=iterator.next().tostring(); 

16. int v=hashing.get(k); 

17. Reducer output<K3,V3>=output.collect(new Text(k), 

new FloatWWritable(v/keycount)); 

 

E.  Result Conversion 

Result conversion is a proposed approach to convert 

the frequent unique_ID into item's name 

Pseudo code of result conversion is as follows: 

Step 1. Read the result of frequent unique_ID. 

Step 2. Using file1 replace each unique_ID in result 

file by item's name. 

Step 3. Write frequent item's name into file3. 

 

V.  RESULTS AND DISCUSSION  

The Performance of the Hadoop MapReduce 

framework with respect to the time taken to move files 

from local file system to the Hadoop Distributed File 

System, memory usage of the HDFS to store data sets and 

the execution time of frequent items and association 

analysis was initially benchmarked with the baseline 

Hadoop (traditional) and then compared with results 

obtained using the Optimize Hadoop (proposed). 

A.  Experimental Environment 

For the performance evaluation we considered Hadoop 

five nodes cluster with homogeneous hardware property, 

i.e. Each node in the cluster has a 3.8 GB RAM, Intel® 

Core i5 3470 CPU @3.20GHz * 4 processor. We setup 

cluster on Ubuntu 15.04 with Hadoop 1.7.2 stable release 

used oracle jdk 1.8 and ssh configuration to manage 

Hadoop daemons. Our cluster setup is having 1 

NameNode and 5 DataNodes for the purpose of an 

experiment. Configuration files such as mapred-site.xml, 

core-site.xml, hdfs-site.xml, yarn-site.xml are setup by 

default values with replication factor 2 and data block 

size 64 MB. 

B.  Performance Measurement Parameters 

The performance of the Hadoop MapReduce 

framework was measured on the following parameters. 

 

1. Analysis of Time taken to move files from local 

file system to HDFS 

 

2. Memory usage of the DataNode to store data 

blocks. 

3. Time taken by the MapReduce to mine frequent 

items and association analysis. 

C.  Experiments 

1)  Analysis of Time taken to move files from local file 

system to HDFS 

Files move operation is performed on both the 

traditional method and the proposed method. We 

recorded time taken to move files from local file system 

to Hadoop Distributed File System. In the traditional 

method where we directly moved entire input file of size 

10 GB from local file system to HDFS. In the proposed 

method we converted the transaction item's name into 

unique ID, thereby reducing transaction data set size of 

10 GB to 1.5 GB. Then data conversion file of size 1.5 

GB is moved into HDFS. Table 2 shows the time taken to 

move the files into HDFS in traditional method and the 

proposed method. Fig 3 shows the chart of time taken by 

the traditional method and the proposed method to move 

files into HDFS. 

Table 2. Time taken to move files from local file system  into HDFS 

Technique File Size in GB Time  in seconds 

Traditional 10 398 

Proposed 1.5 23 

 

 

Fig.3. Analysis of time taken by the traditional method and the proposed 

method to move files into HDFS. 

2)  Analysis on HDFS Disk space utilization 

HDFS disk space utilization analysis is made on both 

the traditional and the proposed method. In the traditional 

method, the HDFS disk utilization was 10 GB where we 

directly moved entire input file of size 10 GB from local 

file system to HDFS. But in the proposed method we 

converted the transaction item's name into unique ID, 

thereby reducing transaction data set size of 10 GB to 1.5 

GB, so the HDFS disk utilization was 1.5 GB. Table 3 

shows the HDFS disk space utilization by the traditional 

method and the proposed method. Fig 4 shows the chart 

of HDFS disk space utilization by the traditional method 

and the proposed method. 
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Table 3. HDFS disk space utilization 

Technique HDFS disk space utilization in GB 

Traditional 10 

Proposed 1.5 

 

 

Fig.4. Analysis of time taken by the traditional method and the proposed 

method to move files into HDFS 

3)  Performance analysis of Apriori MapReduce 

Apriori MapReduce applies an iterative approach to 

find the frequent item set that satisfies the minimum 

support count threshold. The pseudo code of Apriori 

MapReduce is shown in Fig.1. HDFS divides large 

volume of transaction data into data blocks of equal size 

(i.e. 64 MB). Performance analysis of Apriori 

MapReduce was made on both the traditional and the 

proposed method. In the traditional method HDFS disk 

space utilization by the transaction data set is 10 GB, 

HDFS divides 10 GB data into 157 data blocks. Time 

taken to process 157 data blocks from Apriori 

MapReduce is 72 minutes. In the proposed method HDFS 

disk space utilization by the transaction data set is 1.5 

GB , HDFS divides 1.5 GB data into 24 data blocks. 

Time taken to process 24 data blocks from Apriori 

MapReduce is 08 minutes. The proposed method 

improves the performance of frequent item mining based 

on Apriori MapReduce by 88.9%. 

Table 4 shows Comparison of Apriori MapReduce 

time taken for analysis by the traditional method and the 

processed method. Fig 5 shows the time taken by Apriori 

MapReduce technique in traditional method and the 

proposed method 

Table 4. Comparison of Apriori MapReduce time taken for analysis by 

the traditional method and the proposed method 

Technique 

HDFS disk space 

utilization 

in GB 

Time taken for analysis 

in Minutes 

Traditional 10 72 

Proposed 1.5 8 

 

 

Fig.5. Analysis of Apriori MapReduce by the traditional method and the 

proposed method 

4)  Performance analysis of FP-growth MapReduce 

FP-growth uses novel data structure called frequent 

pattern tree (FP-tree) to mine frequent pattern. The 

pseudo code of FP-growth is shown in Fig.1. HDFS 

divides large volume of transaction data into data blocks 

of equal size (i.e. 64 MB). Performance analysis of FP-

growth MapReduce was made on both the traditional and 

the proposed method. In the traditional method HDFS 

disk space utilization by the transaction data set is 10 GB, 

HDFS divides 10 GB data into 157 data blocks. Time 

taken to process 157 data blocks from Apriori 

MapReduce is 59 minutes. In the proposed method HDFS 

disk space utilization by the transaction data set is 1.5 GB, 

HDFS divides 1.5 GB data into 24 data blocks. Time 

taken to process 24 data blocks from Apriori MapReduce 

is 06 minutes. The proposed method improves the 

performance of frequent item mining based on FP-growth 

MapReduce by 89.94%. 

Table 5. Comparison of FP-growth MapReduce time taken for analysis 

by the traditional method and the proposed method 

Technique 

HDFS disk space 

utilization 

in GB 

Time taken for analysis 

in Minutes 

Traditional 10 59 

Proposed 1.5 06 

 

 
Fig.6. Analysis of FP-growth MapReduce by the traditional method and 

the proposed method 
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Table 5 shows comparison of FP-growth MapReduce 

time taken for analysis by the traditional method and the 

proposed method. Fig 6 shows the time taken by FP-

growth MapReduce technique in traditional method and 

the proposed method. 

 

VI.  CONCLUSIONS 

Mining frequent item sets in the transaction data can be 

extremely useful. With exponential growth of data most 

of the traditional frequent pattern mining algorithms 

become ineffective to process large data in short time. 

Hadoop MapReduce framework, a robust distributed 

computing infrastructure can store, manage and process 

huge amounts of data in short time. With a 

comprehensive set of experiments we identified that the 

parallel implementation of frequent pattern mining 

algorithm on MapReduce is not optimal in terms of 

execution time and disk space utilization. In this paper, 

we proposed a novel approach on Hadoop MapReduce 

framework to identify frequent item sets. The 

experimental results shows that the proposed approach on 

Hadoop MapReduce framework gets better performance 

in terms of execution time and disk space utilization 

compared with the baseline Hadoop MapReduce 

framework.  
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