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Abstract—The research has implemented document 

summarizing system uses TextRank algorithms and 

Semantic Networks and Corpus Statistics. The use of 

TextRank allows extraction of the main phrases of a 

document that used as a sentence in the summary output. 

The TextRank consists of several processes, namely 

tokenization sentence, the establishment of a graph, the 

edge value calculation algorithms using Semantic 

Networks and Corpus Statistics, vertex value calculation, 

sorting vertex value, and the creation of a summary. 

Testing has done by calculating the recall, precision, and 

F-Score of the summary using methods ROUGE-N to 

measure the quality of the system output. The quality of 

the summaries influenced by the style of writing, the 

selection of words and symbols in the document, as well 

as the length of the summary output of the system. The 

largest value of the F-Score is 10% of the length ta of the 

document with the F-Score 0.1635 and 150 words with 

the F-Score 0.1623. 

  

Index Terms—TextRank, Semantic Network, Document 

Summarization, Rouge-N, F-Score. 

 

I.  INTRODUCTION 

The development of technology and the dissemination 

of information has converged into the wide variety of 

data and information [1,2,3]. The information 

dissemination is accompanied by the proliferation of 

available information, such as documents. However, 

increasing the amount of information available does not 

always make it easy for the reader. The problem occurs 

because everyone does not have enough time to read 

through all the information available. Especially after 

reading, it turns out the information available in a 

document is not following the desired information reader. 

Therefore, we need a document summarization approach 

to give the reader a general overview of a document 

before reading. To resolve this problem, do the method of 

reading the document at a glance (skimming) [4,5]. But 

sometimes they make some of the information on the 

document becomes hard to understand because the 

information may require other information previously 

unreadable due to come into skimming.  

In addition to skimming, another method that can be 

done is to read a summary of a document. Summary is a 

representation of a document containing the main focus 

of the document. A summary can improve the 

effectiveness of the reader in searching and finding the 

desired document [6]. However, a document generally do 

not have a summary for a summary of a document is time 

consuming and cost [7]. In addition, a summary 

document is not easy because a summary should be able 

to represent the whole of the contents of the document.

The research implemented document summarization 

system uses TextRank algorithms, Semantic Networks 

and Corpus Statistics. The use of TextRank allows 

extraction of the main phrases of a document that has 

used as a sentence in the summary output. Documents 

Summarization on TextRank consists of several processes, 

namely tokenization sentence, the establishment of a 

graph, the edge value calculation algorithms using 

Semantic Networks and Corpus Statistics, vertex value 

calculation, sorting vertex value, and the creation of a 

summary. 

 

II.  RELATED WORKS 
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III.  METHODS 

A general description of the system can be seen in 

Fig.1. The schematic design of the system, there are two 

main modules, namely TextRank module, and the module 

Sentence Similarity. In TextRank module, the document 

has processed into an undirected graph. Documents that 

have been processed into sentences on TextRank module 

is then delivered to module Sentence Similarity to 

quantify the similarity between the sentence that was then 

sent back to the module TextRank to be the edge. After 

all processes in TextRank completed, then the sentences 

issued on the graph in the form of plain text form of a 

summary. 

 

 

Fig.1. System Design 

TextRank module design includes several major 

processes, namely splitting the document into sentences, 

the creation of graphs, calculation of the degree of 

similarity between sentences, and counting rank within 

the graph [8,12,14,15]. Chronology of the process of this 

module begins with the receipt of the documents that has 

been extracted. Documents in the form of plain text that 

has entered into the system will be processed first by the 

type of encoding specified in the input parameters, then 

proceed with the next process, namely tokenization. In 
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the process tokenization, each sentence in the document 

is detected then split into tokens sentence. After tokens 

sentences were formed, then the next process is the 

manufacture of undirected graph with each vertex 

containing tokens sentences preconceived and Initial 

Value (IV), which is 1. Value edge of the graph is 

obtained from the process the next module Sentence 

Similarity. 

The next process is to calculate the values at each 

vertex. Vertex value at iteration n and n + 1 will be 

recorded to gain error rate (errors) by calculating the 

difference. If the value of the error is already less than the 

specified threshold, then continue the next process, if not, 

repeat the calculation of the value of the vertex. This 

vertex value calculation process can be performed in 

parallel because the value of a vertex at iteration n 

independently of each other due vertex values used for 

iteration n + 1 is the vertex at iteration n. 

The graph showing the vertex, the next process is the 

vertex sort by a value ranging from the largest 

(descending order). Sentences on vertices that has been 

ordered are then taken to be used as a summary in the 

form of plain text with a word length specified in the 

input parameters. 

This similarity accepts input values in the form of a 

couple of sentences from TextRank module. Every 

sentence received tokenization process has been 

conducted so that it will be a collection (set) words. The 

next process is the calculation of semantic similarity and 

word order similarity. The output of the counting process 

semantic similarity is the similarity values between 0 and 

1, as well as the word order similarity. After the value of 

the two processes previously obtained, then the two 

values will be combined to obtain the overall similarity 

value which would then be sent to the module to be used 

as a value TextRank edge on graph. 

 

IV.  IMPLEMENTATION 

Implementation of this system is divided into two large 

modules as described in the previous section, the module 

TextRank and Sentence Similarity. TextRank module is 

responsible for handling and document summarization 

process. Sentence Similarity module tasked with finding 

a similarity between the sentence that was subsequently 

used on the module TextRank. However, this 

implementation is not limited to these two major modules, 

are also add-on modules such as modules that handle 

input, output, and the parameters of the program, as well 

as modules that handle Corpus used in module Sentence 

Similarity. 

A.  Implementation of TextRank Module 

In the implementation of this TextRank module, used 

Python library named NetworkX used to handle the graph 

creation process. This NetworkX using Python 

dictionary-based data types to accommodate the data 

vertex, edge, and graphs so that the data can be accessed 

quickly. Besides NetworkX, one NLTK module is also 

used in this module to handle tokenization sentence, 

namely Punct. 

This function was originally named create_graph call a 

function that will produce a non-directional graph 

includes a token sentence and edge that contains the 

similarity between sentences. The resulting graph will 

then be calculated vertex value by calling a function 

named calculate_rank which will produce a list 

containing the value of the vertex, with the index of the 

list is the same as the index of vertices in a graph. After 

the vertex values obtained the list, then the list will be 

further sorted in descending order based on the contents 

of later retrieved index. List index gained will be used in 

the next process for the preparation of the summary by 

taking the sentence on the vertex with the corresponding 

index in the list of indexes that had previously has 

sequenced. The length of the word also needs to be 

calculated so as not to vary much with word length 

specified in the input parameter (sum_length). This 

function will then produce the output of string which will 

then sent to the module that handles input and output to 

issued in the form of a file. 

 

 

Fig.2. Create_graph Function 

Later in create_graph function as shown in Fig.2, 

initially to initialize the object of Sentence Similarity 

modules in a variable named _simobj that has used to 

compute the similarity between sentences. NetworkX 

used to create graphs that contain total_words property 

used to accommodate the total words in the input 

document to be used in determining the length of the 

summary output. To process tokenization in the 

document into sentences, use one of the modules NLTK, 

Punct which was previously train to detect the 

expressions on the input document. Furthermore, punct 

variable that contains the list of punctuation symbols used 
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as a basis to remove symbols of punctuation in the 

sentence. The next step is to fill the vertices in a graph 

with a token sentences and words from the sentences that 

will be the token is used to calculate the similarity 

between sentences in Sentence Similarity module. 

After all and vertex filled, then all the vertices in a graph 

will be connected with each other with the edge whose 

value is calculated based on the similarity of the sentence 

on the vertex-related uses on _simobj functions that have 

previously has initialized. Edge that contains the value 0 

will be removed as vertex-vertex connected has no 

similarity at all. This function will then produce the 

output of which is an object graph of NetworkX. 

The next function is a function calculate_rank tasked to 

calculate the value of the input vertex of the. This 

function will perform as many repetitions max_iter times 

to calculate the vertex value. Maximum iterations given 

that the function does not perform repetition does not end 

because the threshold has not met. Furthermore, the 

values of vertices in a graph represented with a list of 

named val and new_val with the same index of the list 

with an index of vertices in a graph. If the sum of the 

difference in the overall vertex at iteration n (val) and n + 

1 (new_val) -in this case is a delta-less than the specified 

error threshold, then the iteration will be terminated and 

the function will return the list new_val iteration where 

these conditions occur , If the function already reached 

the limit of maximum iterations, the function will be 

stopped and return the list new_val. 

B.  Implementation of Similarity Module 

Sentence Similarity on the implementation of this 

module, WordNet which is one of the modules of NLTK 

used as a database to search for related words. This 

module has implemented as an object for easy storing and 

accessing results similarity in function words in it. 

Suppose that in a document the word 'eat' and 'rice' 

appear 10 times, if the results of the calculation of 

similarity between the word 'eat' and 'rice' has not saved, 

then the system will search for the similarity between the 

words as much as 10 times. It has caused the program 

runtime is significantly slower due to the process of 

finding similarity between the words is an expensive 

process regarding of computing and runtime. In addition 

to computing and runtime issues, easy access to various 

global variables in the object is also a consideration in the 

implementation of this module because this global 

variable will be accessed and used on many of the 

functions in this module. 

Sim_sets variable is a variable of type Python 

dictionary that can store data in the form of key-value. 

This variable is used to store a collection of similarity 

between the words that has previously calculated. Key 

stored here is a list containing pairs (kata1, kata2) and 

value here shows similarity between kata1 and kata2. 

Besides sim_sets, stored too many variables that were 

used in other functions such as language, corpus, alpha, 

beta, threshold, and used in calculating the similarity 

measure. 

Sentence_similarity who receive such couples enter a 

sentence that has become tokens previously stored in the 

vertex of the graph. This function will call three other 

functions, namely comb_similarity which will produce 

sim_sets calculated using the function word_similarity 

with the input of all possible unique combinations of 

words in a sentence input, then semantic_similarity used 

to calculate the value of semantic similarity of the 

sentence, and word_order_similarity that will count value 

based on sequence similarity sentence. In the end, this 

function will provide a combined output of semantic 

similarity between the value and the value of word order 

similarity in the form of overall similarity. 

Word_similarity which has the task to calculate the 

degree of similarity between the two words of input by 

considering the path length and depth along the nearest 

parent (lowest common subsume) between two words in 

WordNet. First, the function will search synset in 

WordNet two input words which, if not found, then the 

value 0 will be returned. Furthermore, the results of the 

search will produce two previous synset, synset list of 

two words given that then searched all the possible 

combinations and calculated the length of the path 

between synset. The length of the path of synset has the 

possibility of providing value None, which means two 

synset were located in a different tree. Suppose the word 

'street' is a verb and the word 'road' which is a noun. Both 

words are equally the word 'road', but has different 

properties so that the two has not compared, therefore the 

length of the path between the two synset None, or no 

path connecting the two. If the path length of the entire 

combination synset is None, then the function will return 

a value of 0. Otherwise, it would have taken a couple of 

synset that has the shortest path length. 

C.  Implementation of Corpus Statistic 

The Corpus object initialization, the function will read 

the file corpus that has been provided by the corpus of 

research results Dinakaramani et al. [3], which contains 

10,000 sentences tokenized result are 262,330 tokens. 

Another module is a module that regulates the input, 

output, and display program. This module uses Python 

library named Click to set the input parameters in the CLI. 

Partially parameters set by the Book, input parameter to 

accept the document input, output summary and length 

summaries. Click can set the parameter name, parameter 

description, the default value of the parameter and others. 

D.  Testing 

Tests on this system using Java implementation of such 

a program named ROUGE 2.0. The program will accept 

input in the form of a summary document as plain text. 

The summary input document has separated into two 

folders named reference to hold summaries or summaries 

ideal man, and a folder has named system to 

accommodate a summary of artificial systems. 

Once the summary document has loaded, the next is 

the configuration settings ROUGE 2.0 which has located 

in a file with the name rouge.properties. The thing to note 

in this study is the parameter project.dir, ngram, output, 

and outputfile. Project.dir parameter is the name of the 



30 Document Summarization using TextRank and Semantic Network  

Copyright © 2017 MECS                                                           I.J. Intelligent Systems and Applications, 2017, 11, 26-33 

folder that holds folders and system reference, ngram is 

the number of pairs of word n-gram that will be used in 

ROUGE-N, the output is output from ROUGE type 2.0, 

and output file is the output file of ROUGE 2.0 if the 

previous output parameters filled with files. After 

configuration is complete, run the program named 

rouge2.0.jar with the command java -jar rouge2.0.jar, 

then the program will automatically calculate the value of 

the F-Score, re-call and precision. 

 

V.  RESULT AND DISCUSSION 

The testing is done in two stages, the first stage is to 

test the summary document by the length parameter 

summary in the form of a percentage of the document, 

and the second stage is to examines the summary 

document by the length parameter summary form of the 

number of words. 

Tests using percentages do as much as 6 times the 

length of the percentage of a summary document has 

tested is 5%, 10%, 15%, 20%, 25% and 30%. The test 

results ROUGE-N will generate recall, precision and F-

Score which will then be averaged by columns based on 

the length of the summary. The test results shows in 

Table 1. 

Table 1. Summarization (Percentage) 

Average 
Summarization (%) 

5% 10% 15% 20% 25% 30% 

Recall 0,1530 0,2404 0,2811 0,3225 0,3576 0,3930 

Precision 0,1655 0,1289 0,1005 0,0868 0,0778 0,0706 

F-Score 0,1540 0,1635 0,1448 0,1340 0,1257 0,1178 

 

Tests using the word count done as much as 6 times the 

length of each summary is 50, 100, 150, 200, 250, and 

300 words. Just as before, the test results ROUGE-N 

generate recall, precision and F-Score which will then be 

averaged by columns based on the length of the summary. 

The test results shows  in Table 2. 

Table 2. Summarization (Length) 

Average 
Summarization (%) 

50 100 150 200 250 300 

Recall 0,0668 0,1188 0,1698 0,1924 0,2129 0,2315 

Precision 0,1925 0,1828 0,1634 0,1400 0,1229 0,1136 

F-Score 0,0964 0,1404 0,1623 0,1588 0,1522 0,1491 

 

From the second testing that has been done, the recall 

value in the second test will increase along with 

increasing the length of the summary. This is due to the 

longer summary of the output system, the more the words 

in the summary output system that are relevant to the 

words in the summary of the man-made causes the 

expanding recall value obtained. But the great recall 

value which does not guarantee the accuracy of the 

summary produced by the system with a summary of 

man-made, because the recall value simply counting how 

many relevant value received by the system. Suppose the 

1000 data received by the system, already covers 50 of 

the 50 relevant data, the recall value of the system is 1 

(100%) due to the received data already covers all 

relevant data, although the value obtained is also entering 

950 incorrect data. 

Fig.3 and Fig.4, the value of precision that results from 

both tests tend to decrease with increasing the amount of 

long summary. This is because the longer the output 

summary of the system, the more the words in the 

summary output system that are not relevant to a 

summary of man-made cause a decline in the value of 

precision given the precision value has obtained by 

calculating whether all the accepted values is the value of 

the relevant system. Suppose the data received from the 

1000 system, obtained 50 of the 50 relevant data, then the 

value of precision of the system is simply 50/1000 (5%) 

although data received already covers all relevant data. 

This is because the 1000 data received, precision or 

accuracy of the system are just 50 of the 1000 Data. 

 

 

Fig.3. Recall Average Percentage 

From the above test results, it can be seen that the 

precision and recall value inversely with the amount of 

data in this study the long-summary-received. To 

overcome this, use the F-Score is the average harmonic of 

recall and precision. Value F-Score has used to measure 

the degree of similarity of the summary output with a 

summary of man-made systems. As for the average chart 

F-Score of the test shows in Fig.5 for testing with the 
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length of the sentence in the form of percentages, and 

Fig.6 for testing with the length of the sentence in the 

form of the word count. 

 

 

Fig.4. Recall Average Length 

 

Fig.5. Average Precision (Percentage) 

 

Fig.6. Average Precision (Words) 

Fig.7 and Fig.8, shows the average value of the F-

Score achieved when the maximum length of the 

summary is set at 10% of the total words on the document 

or set at 150 words. This shows that on average the 

highest proximity to the system summary manmade ideal 

is achieved when the length of the summary is set at 10% 

of the total words on the document or set at 150 words. In 

addition to a long summary, F-Score of the summary is 

also influenced by the content of the document to be 

summarized. 

 

 

Fig.7. Average F-Score (percentage) 

 

Fig.8. Average F-Score (Words) 

 

VI.  CONCLUSION 

Research has been successfully implemented in a 

system using TextRank algorithm, Semantic Network and 

Corpus Statistics. The results showed that the value of F-

Score Low summary influenced by the style of writing 

the source document that gives many examples of cases 

so as to provide a significant impact on the value of the 

F-Score summary as previously discussed. The result 

applies to all documents that use this style of writing such 

works by looking at remembering TextRank majority 

voting so that the topic with major supporters sentence 

that will go into a sentence in the summary. Thus, the 

style of writing is one of the factors that affect the quality 

of the output summary. The use of symbols and choice of 

words that are not standard will also affect the results of 

the summary given on Sentence Similarity module as 

described earlier, words or symbols that are not on 

WordNet will be assigned a value of 0 for the sentence. 

The results also showed that the value of F-Score on 

summary influenced by the length of the summary. This 

is because with the increased length of the summary, 

increased many words that are not relevant to the 

summary should ideally lead to the falling value of 

precision. The fall in the value of precision will 

significantly impact the value of the F-Score although 
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recall value will continue to increase, given the value of 

the F-Score has obtained by calculating the average 

harmonic of recall and precision so that these values must 

be in the balance to achieve the F-Score high. 

Based on test results, obtained the optimal length of the 

output summary which has an average value of the 

highest F-Score system that is 10% with a value of 

0.1635 if the F-Score lengthy summaries using 

percentages, and 150 words with a value of 0.1623 if the 

F-Score long summary uses the word count. The F-Score 

value generated by the system is still limited to be used as 

a summary of the document. This is because the summary 

of the results of the document summarize system can only 

extract from the sentence contained in the document, 

unlike the man-made abstract whose contents may have 

the same meaning but use different words (paraphrasing) 

so that the ROUGE test can not detect this . 

The future work of the reseaech, It should be further 

investigated the use of other algorithm models or the 

incorporation of several other algorithm models to 

calculate the degree of similarity between words. 

It should be further investigated how the influence and 

use of other ontology models in addition to WordNet in 

finding relations between words. Implemented word 

matching based on HAS-A relation on WordNet and 

combine it with search based on IS-A relation. 
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