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Abstract—This paper proposes a novel metaheuristic 

optimization algorithm and suggests an adaptive artificial 

neural network controller that based on the proposed 

optimization algorithm. The purpose of the neural 

controller is to track desired proposed velocities and path 

trajectory with the minimum error, in the presence of 

mobile robot parameters time variation and system model 

uncertainties. The proposed controller consists of two 

sub-neural controllers; the kinematic neural feedback 

controller, and the dynamic neural feedback controller. 

The external feedback kinematic neural controller was 

responsible of generating the velocity tracking signals 

that track the mobile robot linear and angular velocities 

depending on the robot posture error, and the desired 

velocities. On the other hand, the internal dynamic neural 

controller has been used to enhance the mobile robot 

against parameters uncertainty, parameters time variation, 

and disturbance noise. However, the proposed grass root 

population-based metaheuristic optimization algorithm 

has been used to optimize the weights of the neural 

network to have the behavior of an adaptive nonlinear 

trajectory tracking controller of a differential drive 

wheeled mobile robot. The proposed controller shows a 

very good ability to prepare an appropriate dynamic 

control left and right torque signals to drive various 

mobile robot platforms using the same offline optimized 

weights. Grass root optimization algorithms have been 

used due to their unique characteristics especially, theirs 

derivative free, ability to optimize discretely and 

continuous nonlinear functions, and ability to escape of 

local minimum solutions. 

 

Index Terms—Artificial Neural Networks, Metaheuristic 

algorithms, Grass Root Algorithm, Trajectory tracking 

controller, Wheeled mobile robot. 

 

I.  INTRODUCTION 

Since the first launch of the Artificial Neural Networks 

(ANNs) and they have been used in many applications 

such as; image and signal processing [1], robotics control 

[2], classification and clustering of data pattern sets [3]. 

The ANNs have the ability to approximate any nonlinear 

model by using parallel computation techniques [4]. One 

of the major topics related to the ANNs theory is the 

training process of the network weights. Many algorithms 

have been used for the learning purpose. However, one of 

the most famous algorithms in this field is the error back 

propagation algorithm which has been extensively used 

for the NNs training. Back propagation algorithm appears 

to be suffering from several problems such as easy being 

trapped into local minimum solution, and its low 

convergence speed [5]. Many papers have been proposed 

to develop the performance of the back propagation 

algorithm while other have just left this concept and 

migrate to another type of algorithms that called 

Metaheuristic Optimization Algorithms (MOA) [6,7] 

especially, in the training phase of the NNs. 

The neural based controllers of robotic systems have 

been gained a great significance in the few recent years. 

These networks were recommended for their learning 

ability, adaptive behavior, and their high performance. 

An intelligent Mobile Robot (MR) has become an 

exciting choice for many scientific papers and industrial 

applications. Therefore, a lot of care have been spent to 

enhance controllers in the adaptive field and artificial 

intelligent. 

This paper suggests an Adaptive Neural Controller 

(ANC), that's trained offline using MOA inspired by the 

grass plants reproduction and fibrous root system called 

Grass Root Optimization algorithm (GRO). The proposed 

ANC controller tracks the desired trajectory in the 

presence of parameters time variation and uncertainties 

using an offline fixed trained weight. 

 

II.  RELATED WORKS 

Many researchers have written to solve the problem of 

nonlinear trajectory tracking of wheeled mobile robot 

controllers under the conception of non-holonomic 

constraints. In 1995 R. Fierro and F. L. Lewis [8] propose 

an expanding for Kanayama tracking rule. The expanding 
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integrates the kinematic controller with NN computed 

torque controller for the non-holonomic mobile robot. 

The proposed controller was designed to have the ability 

to deal with the basic non-holonomic MR and especially 

trajectory tracking problem, path following problem. In 

2005 X. Jiang and et. al [9] proposed a mixed predictive 

and fuzzy logic mobile robot trajectory tracking 

controller. Fuzzy logic was intended to deal with the 

system nonlinear characteristic, while the predictive 

controller minimizes the time delay due to sensors low 

response, by predicting the position and direction of the 

MR. In 2012 R. M. Soto and et. al [10] used a hybrid 

evolutionary PSO and GA population-based optimization 

algorithm to design a fuzzy controller for the trajectory 

tracking of the MR. The hybrid evolutionary algorithm 

has been used to find the fuzzy membership function 

parameters. Both  PSO and GA algorithms have to 

communicate with each other every predefined iteration 

number. In 2013 C. Raim Undez and A. Barreiro Blas [11] 

proposed an adaptive NN controller to compute the 

proportional torque besides another derivative to lead a 

non-holonomic MR through tracking problem. A 

dynamic inverse NN controller is responsible for the 

tracking trajectory, reduction of the obtained error and 

adaptation of the disturbance.  

This work proposes a novel metaheuristic algorithm 

using it in optimization weights of ANNs that tracks the 

velocities and posture of a differential drive wheeled 

mobile robot in the presence of time variation of system 

parameters. 

 

III.  GRASS ROOT OPTIMIZATION ALGORITHM 

Grass plants have three types of roots; primary roots, 

secondary roots, and hair roots. The first root grown in 

the soil is the primary root, which supplies the required 

energy and minerals to the first few generated leafs. 

Primary root is usually stayed active for only short time, 

till the secondary roots became active, then primary root 

dies and the new generated secondary roots take its 

function. The new initiated secondary roots develop new 

tillers and shoots and compete with other neighbor plant 

roots to absorb water and other minerals. On the other 

hand, hair roots are small branches, grow out of the 

epidermis of the secondary roots, they absorb almost all 

the required water and minerals. Grass plants have two 

major asexual reproduction methods. These methods 

usually depend on the stems that grow sideways; either 

under or above the ground. The first vegetative 

reproduction method in grass plants are the stolons, 

which are stems creep along the ground, while the second 

vegetative method is the rhizomes, which are stems grow 

below ground. Grass plants use both stolons and rhizomes 

to establish new grass culms. These stolons and rhizomes 

support the newly created grass plant until it became 

strong enough to live on its own [12]. 

Grasses perform global and local search to find better 

resources by reproduction of new grass plants using 

stolons and rhizomes and by developing their own root 

system. The generated new grasses and roots are 

developed randomly, but when grass arrives at a place 

with high resources, it generates more secondary roots, 

rhizomes, and stolons. The GRO algorithm depends the 

same reproduction and development of grasses to execute 

the global and local search. The algorithm starts by 

initializing random grasses in the search space, evaluates 

their fitness, generates a new population that contains the 

best-obtained grass and modifies its secondary and hair 

roots to search for better resources. If grass plant trapped 

into local minimum position, it generates new grasses by 

stolons initiated from the best-obtained grass, and other 

survived grasses. However, new secondary roots with 

different deviation from the local minimum solution will 

be generated by rhizomes. These roots help the trapped 

plant to reach farther places and escape the local position. 

GRO algorithm begins with an initial random uniformly 

distributed population (p) in the problem search space. 

The number of the initially generated grasses equal to the 

population size (ps). When iteration (it) begins, a new 

grass population (NP) is created. NP consists of three 

elements which are; the best grass obtained so far by the 

iteration process (gb = min(F (p))  RDim) where F is the 

cost function, Dim is the problem dimension. The second 

element of NP is a number (Gr) of grasses evaluated as in 

(1) and deviated from gb by stolons (SG) as in (2). These 

stolons deviated from the original grass with step size 

usually less than maximum upper limit vector ul. The last 

element of NP was a number of grasses equal to (ps–Gr-1) 

deviated randomly from the survived grasses of the 

iteration process (SD) as shown in (3). 

 

        
2

amse ps
Gr

amse minm

  
  

                       

 (1) 

 

   

  

,1 * 2* ...

...* ,1 0.5 *

ones Gr max

rand Gr

 



SG gb ul

gb
         (2) 

 

 

  

2* *...

... 1,1 0.5 *

max

rand ps Gr

 

  

SD GS ul

ul
                (3) 

 

where amse is the average value of the mse vector shown 

in (4). msei is the MSE value of ith iteration given by (5), 

minm is the minimum of mse shown in (6). Ones(a,1) is a 

column vector operator of a rows of ones. rand(a,1) is a 

random column vector operator with a rows, its elements 

 0,1 . max(.) and min(.) represent operators that find 

the maximum and minimum element of a vector 

respectively. GS is the (ps-Gr-1) highest mse grasses 

retrieved from the last iteration process. 
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 minm min mse                           (6) 

 

1, , ,  ,  
T

i psmse mse mse   
 mse                     (7) 

 

jds ,  jy are the desired and actual values of the jth 

output. (8) shows the new population vector NP. 
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Generated (NP) will be bounded and checked to get the 

fittest obtained grass. If the fittest new generated grass is 

best than the old one then keep the fittest new grass as the 

best grass solution. Otherwise, calculate the absolute rate 

of decrease in mse between the best grass obtained so far 

bestm shown in (9) and the current iteration minimum 

mse (minm) shown in (6). If the rate is less or equal a 

tolerance value (tol) shown in condition (10) increase 

global stack (GC) counter by one till it reached its 

maximum value then move to the local search mechanism. 

 

bestm =min (minm)                           (9) 
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minm=[minm1,..,minmj,..,minmit]
T                  (11) 

 

The local search mechanism consists of two individual 

loops; secondary roots loop, and hair roots loop. Hair 

roots are considered equal to the dimensions of the 

objective function (Dim), and each secondary root 

generated by the gb primary root represents a local 

candidate solution. The secondary roots number is 

represented by a random number usually less than Dim. 

Each single hair root modifies its location as in (12) for a 

repeated loops equal or less than secondary roots number 

(SC). 
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k=1,2,…,SC and i=1,2,…,Dim. 
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C=[0.02,0.02,0.02,0.2,0.2,2,2,2,2,15]              (14) 

 

C2=C(1+ *10rand )                          (15) 

 

Where mgb is the locally modified gb, agb is the 

average of the mgb vector shown in (13), SC is the 

number of secondarily generated roots where (0 ≤SC≤ 

Dim), and C is the searching step vector shown in (14). 

C2 represents the random element of C chosen according 

to the percentage repetition of C elements as shown in 

(15). If the evaluated fitness of mgb is less than bestm 

then save gb as mgb. Otherwise, calculate the absolute 

rate of decrease in mean square error. If the rate is less 

than tol then increase local stack counter (CL) by one. 

When CL reached its maximum predefined value, break 

hair root loop and begin new secondary root loop. After 

each completed iteration check if the stopping condition 

(GE) is satisfied then stop the iteration. Otherwise, go to 

the next iteration until reached the mit (maximum 

iteration number) then stop. Table 1. illustrates the 

general proposed algorithm pseudo code. 

Table 1. GRO pseudo code 

1: Initialize mit, ps, Dim, ll, ul, GE, tol, GC, LC, SG, C, gb, 

minm, bestm, Gr, F,SD. 

2: Initialize random grass population (P), p∈ RDim. 

3: Bound the initial population ll  p ul , ul, ll∈ RDim. 

4: For i=1:ps // check for best fitness particle in the initial 

population  

5: f=F (P) // F is a predefined objective function // 

6: Calculate the mse(i) for f elements as in (5) 

7: End For.  

8: Sort the grass population (P) ascending according to step 6. 

9:    For it=1:mit // iteration and global search  starting // 

10:    Evaluate C2 according to (15). 

11:       Generate the new population (NP) according to (8). 

12:    Bound NP : ll  NP ul , NP, ll,ul ∈ RDim. 

13:        For i=1: ps // check the NP for the best fitness particle 

loop // 

14:         fnew= F(NP) 

15:        Mse(i)=fnew 

16:        End For 

17:        Minm=min(Mse) // save minimum mean square error // 

18:        Index the grass with the Minm //index the position of the 

best  

                particle in the population // 

19:       Evaluate Gr as in (1). // Gr represents number of stolons 

or  

      deviated from gb // 

20:      Evaluate SG  as in (2). 

21:      Evaluate the GS  from the ascending sorted p  

22:      Evaluate SD  as in Equation (3). 

23:      If  minm< bestm  then 

24:      bestm=minm 

25:      gb=best indexed grass 

26:      GC=0 

27:      Else If condition (10) is true then 

28:      increase GC by 1 

29:      If GC is at its maximum then 

30:      GC=0 // Begin the local search // 

31:         For q=1:random integer less than Dim 

32:         LC=0 

33:            For j=1:Dim // hair root loop// 

34:            mgb=gb //initial mgbest // 

35:            evaluate mgb as in (12) 

36:            lmin = mean square error(mgb) 

37:            If lmin<bestm then 

38:            bestm=lmin 

39:            gb=mgb 

40:            CL=0 

41:            Else If condition (10) with lmin instead of minm is 

true then 

42:            Increase CL by one 

43:            Else 

44:            CL=0 

45:            End If 

46:            If CL is at its maximum then 
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47:            Break For j 

48:            End If 

49:            End For (j loop) 

50:         End For (q loop) 

51:         End If 

52:         End If 

53:          If bestm ≤ GE then 

54:          break For (it loop) 

55:          End If        

56: End For (it loop) 

 

A.  GRO Optimizing NN Weights 

The role of GRO algorithm is firstly; to bound and 

check the candidate solutions in population, modifies the 

solutions in an iteration process to get the best fitness 

solution. However, for supervised training NNs, the 

objective function is the Mean Square Error (MSE) 

function. Therefore, when the weights of the network are 

fully optimized, very minimum or zero MSE is obtained. 

In order to make population-based metaheuristic GRO 

algorithm as a supervised training algorithm, we have 

considered all layer weights of the NNs as a grass vector 

in the population matrix. Each grass represents a 

candidate weight solution. The purpose of this weights 

vector is to minimize the objective MSE function of the 

NN. A number of weights in each grass vector represents 

the problem dimensions. Initial weights were created 

randomly, and the search space of the problem was 

limited to a minimum and maximum search space values.  

Suppose the input data set represented by x(M, ni), and 

𝛷(M, no) is the target teacher. Where x∈ R(M*ni) and Φ 

∈R(M*no), M is the number of input patterns, ni and no are 

the number of input and output neurons respectively. If 

we suppose that l is the hidden neurons number, then NN 

dimension with bias connections is represented by (16) 

for single hidden layer. 

 

   * *N ni l l l no no                     (16) 

 

For multiple hidden layers suppose that l is a vector 

represents the layers and neurons as shown in (17). The 

network total dimension is represented by (18). 
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Let the total weight vector W   NRt , then the layer 

weight vector could be represented by (19), where i 

represents the layer number and iN  shown in (20) 

represents each layer number of neurons. 
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Approximately for most of the problems, a single 

hidden layer is usually sufficient to get the optimum 

solution. Two hidden layers are required sometimes for 

processing data with discontinuities and it rarely 

improves the performance of the networks. However, it 

may converge to a local minima solution when a large 

number of neurons is used. Therefore, there is no 

theoretical reason to use more than two hidden layers [13]. 

Hence, the network will have only two weights layer; 

input to hidden layer; and hidden to the output layer. For 

this purpose (19) will be rewritten as follows: 
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Where W1 and W2  are the input to hidden weights 

layer and the hidden to output hidden layer respectively. 

Reshape W1 and W2 vectors into layer matrix form, then 

they will be written as follows: 
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[Xb Bi   x]                            (27) 

 

X
 * 1

 
Dim ni

R


b is the input pattern data set with input 

bias. The hidden layer output is shown in (28) for linear 

activation function. 

 

h = Xb*Ω                               (28) 

 

Where h * Dim lR  . Adding bias to (28), another 

vector is constructed as in (29). The output of the network 

is shown in (30) for linear identity function. 

 

H = [ Bi  h]                             (29) 
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IV.  DIFFERENTIAL DRIVE WHEELED MOBILE ROBOT 

For the kinematic and dynamic MR modeling, suppose 

the model proposed by [14]. Fig. 1 shows a general 

differential drive wheeled MR geometrical structure, in 

which the point B represents the central point between the 

driver wheels, b is the straight distance between the 

center of gravity A and the wheel axis. The MR position 

is described by ρ = [X, Y, 𝜗]T, where X, and Y are the axis 

of point A. 𝜗 is the mobile robot steering rotation angle. 

The MR kinematic model is given by (31-33). 

 

 ρ Q ρ Φ                              (31) 

 

Where 𝛷=[𝛷r, 𝛷l]
T, are the right and left wheels 

angular velocities. 
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𝛬 = [ v, w]T represents the linear and angular velocities 

of the wheeled MR. Substituting (32) and (33) in (31) 

obtains the kinematic system model of the differential 

drive robot in terms of linear and angular velocities as 

shown in (34).  
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For non-slipping and pure rolling condition, the non-

holonomic constraint is shown in (35) [8]. 

 

   Xsin Y cos  = 0                        (35) 

 

Let m be the mass of the robot platform, mm the mass 

of the wheel and motor, I is the moment of inertia of the 

robot platform about the perpendicular axis over B, Im is 

the wheel and motor moment of inertia around the wheel 

axis, and Ii is the wheel and motor moment of inertia 

around the wheel diameter. The dynamic robot model is 

represented by equations (36-41) as follows: 
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Where τ =[ r , l] stand for the right and left torques 

applied on the wheels, while M, N, B are represented by: 
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Where It,and mt  represent the total moment of inertia 

and the total mobile robot mass as in (40-41). 

 
2 22 2t m iI mb I m d I                     (40) 

 

tm m +2 mm                            (41) 

 

V.  THE PROPOSED ANC 

This paper develops a trajectory tracking controller 

based on NNs that has been optimized using GRO 

algorithm for the differential drive MR of the Fig. 1. We 

have assumed that there is uncertainty in the dynamic 

system model. Furthermore, distance b, platform mass m, 

wheel radius r, and the platform width cl are varying with 

time. After the NN training phase finished, the controller 

considered to be tough against parameters variation and 
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tracks the proposed trajectory at the dynamical and 

kinematic controller levels.  

 

 

Fig.1. Differential Drive wheeled MR geometrical structure. 

If supposed that there is a predefined desired trajectory 

given by (42). 

 

 
 

˙
0

0

0 1

d

d

cos

sin





 
 

  
 
 

d dρ Λ                      (42) 

 

Where , ,
T

d d dX Y    dρ , ,?d dv w   dΛ . The 

error between the desired and actual pose in the local 

robot frame are given by: 

 

   
   
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 

 

       
      

         
            

T  (43) 

 

The control inputs V and W which make E1, E2, E3 

converge to zero are given by (44) [15]. 

 

 
 

13

32

cos 0

sin1

xd

y d

k EE vV

k Ek E wW 

     
      
       

        (44) 

 

Where kx, ky, k𝜗 > 0, represent the positive constants. 

 

 

Fig.2. The NDC training phase 

The DNC is designed to learn the collected 

input/output data from the dynamic model system (36-41) 

and learns the torque signals which transfers the MR from 

velocity at time (t) to upcoming (t+1) velocity. The DNC 

offers, after good training, an adaptive performance with 

fixed trained weights. However, the DNC has to be well 

trained for all possible parameters variation of the 

dynamical model especially, the values b, m, cl , and r. 

Fig. 2 shows the DNC training phase block. 

 

Fig.3. The KNC training phase. 

The robot nominal values are proposed as follows; r = 

0.033 m, m = 0.575 Kg, cl  = 0.15m, b = 0.04 m. While 

for the training of the DNC purpose, we assumed that m 

varied between the values [0.45, 1.2] Kg, distance b is 

varied in the interval of [0.03, 0.1] m, cl varied in 

between [0.12, 0.2]m, r varies between [0.03, 0.07] m. 

The training torques input data are proposed randomly 

uniformly distributed in between [-0.01,0.01] N.m. On 

the other hand, the KNC is proposed to learn the behavior 

of the backstepping feedback controller system (44) and 

to raise its robustness against disturbance data. For the 

purpose of training the KNC, A random trajectory ρr was 
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created, and a noisy data having zero mean and 0.1 

variation level Gaussian distributed was added to the 

training data. The training input data of the KNC were the 

randomly created trajectory reference velocities and the 

error between the random trajectory and the kinematic 

model trajectory output plus noisy Gaussian distributed 

data. Fig. 3 shows the KNC training phase block. 

10,000 samples data sets have been generated. These 

patterns data sets were divided into two sub-data; 5000 

sets for training purpose, and 5000 sets for testing of the 

trained network. The used NNs architecture of both DNC 

and KNC consisted of single hidden layer with 4 hidden 

processing neurons and 2 output neurons. The DNC has 4 

input neurons for the desired and real velocities, while 

KNC has 5 input neurons for the random reference 

velocities and the error posture with disturbance. The 

synaptic weights connections were randomly initialized 

between [−1,+1]. Linear identity activation function has 

been used for both input and hidden layers. 10 training 

cycles have been executed for both DNC and KNC. Each 

training cycle has 1000 maximum iterations (mit). 30 

grass population (ps) were used. GRO algorithm stops 

iterations according to three proposed stopping conditions 

which are: 

 

 If any grass converged to the predefined global 

error value, which is zero MSE in our case. 

  When the testing MSE exceeds the training MSE 

by10% of its value. 

 When the algorithm completes the whole iteration 

cycles.  

 

If GRO finished a training cycle without overfitting, 

the next cycle continues from the last reached point of the 

last valid cycle. The network weights will be the last 

known valid weights. The overall ANC structure is 

shown in Fig. 4. It consists of two feedback control loops; 

external feedback KNC controller that generates the 

control velocity signals that tracks the desired trajectories, 

and DNC internal control loop which is designed to 

improve the controller robustness against parameters 

uncertainty and time variations. 

 

 

Fig.4. Overall ANC block diagram 

Table 2. Dynamic parameters time variations. 

Parameters 
nominal 

values 

Maximum 

values 

Minimum 

values 

b (m) 0.04 m 0.14 m 0 m 

cl(m) 0.15 m 0.5 m 0.1 m 

r (m) 0.033 m 0.093 m 0.023 m 

m (Kg) 0.575Kg 3 Kg 0.25 Kg 

 

For the purpose of testing the wheeled MR tracking 

performance, the mobile robot parameters have been 

assumed varying randomly as illustrated in Table 2. The 

MSE of the MR position and velocities are evaluated by 

(45) and (46). 

 

2 2 2
1 2 3

1
 
3

Errp E E E  
                     

(45) 

 

   
2 21

2
d dErrv v v w w                  (46) 

 

 

The desired velocities generated for the path tracking 

are illustrated in Table 3. The desired posture is found by 

integrating (34).  

Table 3. velocities trajectories. 

t vd wd 

0 157t   
2

0.05 1 cos
10

t  
   

  
 

2
0.05 1 cos

10

t  
    

  

 

157.1 300t   
2

0.05 1 cos
10

t  
   

  
 

2
0.05 1 cos

10

t  
    

  
 

 

VI.  SIMULATION RESULTS 

The GRO algorithm first training cycle for KNC and 

DNC are shown in Fig. 5 and Fig. 6 respectively. After 

10 training cycles without overfitting of the KNC. The 

recorded maximum MSE was 0.0002 for the linear 

velocity and 0.4221 for the angular velocity. The average 

angular and linear velocities MSE was 0.2112 which is 

relatively high MSE, due to the large set of training input 

sets. The average testing MSE was 0.2042.  
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Fig.5. First epoch GRO training algorithm MSE for the KNC. 

 

Fig.6. First epoch GRO training algorithm MSE for the DNC. 

 

Fig.7. Mobile robot Errp MSE. 

For the second DNC network, the recorded MSE was 

2.33e-10 for the left torque signal and 2.07e-10 for the 

right torque signal. The average MSE of both torques was 

equal 2.199e-10 with testing average MSE of 2.124e-10. 

This very minimum value actually is due to the tiny 

torque signals that have a maximum value of 0.0001 N.m. 

The mobile robot position MSE (Errp) and velocities 

MSE (Errv) were shown in Fig. 7 and Fig. 8. The 

velocity and position MSE of the MR with nominal 

parameters and time-varying parameters are less than 

3.5e-03. Finally, Fig. 9 shows the real and desired x-y 

trajectories tracking. 

 

Fig.8. MOBILE ROBOT ERRV MSE. 

 

Fig.9. X-Y trajectory tracking. 

 

VII.  CONCLUSIONS 

This paper proposes novel GRO algorithm optimizing 

an inverse ANC trajectory tracking wheeled MR. ANC 

consists of two subs NNs; KNC and DNC using internal 

and external feedback loops. The internal DNC feedback 

loop makes the robot more robust against parameters 

uncertainty and parameter time variations, while the 

external KNC responsible for tracking the desired angular 

and linear velocities of the MR and the posture x, y, and 

𝜗.     

Both NNs trained using GRO algorithm. Applying 10 

iteration cycles each with 1000 maximum iterations for 

both of networks. Fig.7 and Fig. 8 have shown the 

position and velocity MSE, from these figures we notice 

that the controller succeeds in tracking the MR under 

fixed nominal and time varying parameters. The ANC 

performance generally didn't effect by the parameters 



 Adaptive Path Tracking Mobile Robot Controller Based on Neural Networks and  9 

Novel Grass Root Optimization Algorithm 

Copyright © 2017 MECS                                                                 I.J. Intelligent Systems and Applications, 2017, 5, 1-9 

variation even when some parameters increased by more 

than 300%. Therefore, this controller has shown a great 

performance against parameters variation with only 8 

hidden neurons for both KNC and DNC without any 

overfitting during data training process using the GRO 

algorithm. Although we have used large training and 

testing datasets, there was no data overfitting, this is due 

to the used techniques of observing the training and 

testing data at the same time. Since the training was 

offline and have been carried only once (10 cycles) GRO 

processing time has not been taken into consideration. 
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