
I.J. Intelligent Systems and Applications, 2017, 5, 1-9
Published Online May 2017 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijisa.2017.05.01

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 5, 1-9

Adaptive Path Tracking Mobile Robot Controller

Based on Neural Networks and Novel Grass Root

Optimization Algorithm

Prof. Dr. Hanan A. R. Akkar
University Of Technology/ Electrical Engineering Department, Baghdad, Iraq

E-mail: dr_hananuot@yahoo.com

Firas R. Mahdi
University Of Technology/ Electrical Engineering Department, Baghdad, Iraq

E-mail: firasrasool1980@gmail.com

Abstract—This paper proposes a novel metaheuristic

optimization algorithm and suggests an adaptive artificial

neural network controller that based on the proposed

optimization algorithm. The purpose of the neural

controller is to track desired proposed velocities and path

trajectory with the minimum error, in the presence of

mobile robot parameters time variation and system model

uncertainties. The proposed controller consists of two

sub-neural controllers; the kinematic neural feedback

controller, and the dynamic neural feedback controller.

The external feedback kinematic neural controller was

responsible of generating the velocity tracking signals

that track the mobile robot linear and angular velocities

depending on the robot posture error, and the desired

velocities. On the other hand, the internal dynamic neural

controller has been used to enhance the mobile robot

against parameters uncertainty, parameters time variation,

and disturbance noise. However, the proposed grass root

population-based metaheuristic optimization algorithm

has been used to optimize the weights of the neural

network to have the behavior of an adaptive nonlinear

trajectory tracking controller of a differential drive

wheeled mobile robot. The proposed controller shows a

very good ability to prepare an appropriate dynamic

control left and right torque signals to drive various

mobile robot platforms using the same offline optimized

weights. Grass root optimization algorithms have been

used due to their unique characteristics especially, theirs

derivative free, ability to optimize discretely and

continuous nonlinear functions, and ability to escape of

local minimum solutions.

Index Terms—Artificial Neural Networks, Metaheuristic

algorithms, Grass Root Algorithm, Trajectory tracking

controller, Wheeled mobile robot.

I. INTRODUCTION

Since the first launch of the Artificial Neural Networks

(ANNs) and they have been used in many applications

such as; image and signal processing [1], robotics control

[2], classification and clustering of data pattern sets [3].

The ANNs have the ability to approximate any nonlinear

model by using parallel computation techniques [4]. One

of the major topics related to the ANNs theory is the

training process of the network weights. Many algorithms

have been used for the learning purpose. However, one of

the most famous algorithms in this field is the error back

propagation algorithm which has been extensively used

for the NNs training. Back propagation algorithm appears

to be suffering from several problems such as easy being

trapped into local minimum solution, and its low

convergence speed [5]. Many papers have been proposed

to develop the performance of the back propagation

algorithm while other have just left this concept and

migrate to another type of algorithms that called

Metaheuristic Optimization Algorithms (MOA) [6,7]

especially, in the training phase of the NNs.

The neural based controllers of robotic systems have

been gained a great significance in the few recent years.

These networks were recommended for their learning

ability, adaptive behavior, and their high performance.

An intelligent Mobile Robot (MR) has become an

exciting choice for many scientific papers and industrial

applications. Therefore, a lot of care have been spent to

enhance controllers in the adaptive field and artificial

intelligent.

This paper suggests an Adaptive Neural Controller

(ANC), that's trained offline using MOA inspired by the

grass plants reproduction and fibrous root system called

Grass Root Optimization algorithm (GRO). The proposed

ANC controller tracks the desired trajectory in the

presence of parameters time variation and uncertainties

using an offline fixed trained weight.

II. RELATED WORKS

Many researchers have written to solve the problem of

nonlinear trajectory tracking of wheeled mobile robot

controllers under the conception of non-holonomic

constraints. In 1995 R. Fierro and F. L. Lewis [8] propose

an expanding for Kanayama tracking rule. The expanding

2 Adaptive Path Tracking Mobile Robot Controller Based on Neural Networks and

Novel Grass Root Optimization Algorithm

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 5, 1-9

integrates the kinematic controller with NN computed

torque controller for the non-holonomic mobile robot.

The proposed controller was designed to have the ability

to deal with the basic non-holonomic MR and especially

trajectory tracking problem, path following problem. In

2005 X. Jiang and et. al [9] proposed a mixed predictive

and fuzzy logic mobile robot trajectory tracking

controller. Fuzzy logic was intended to deal with the

system nonlinear characteristic, while the predictive

controller minimizes the time delay due to sensors low

response, by predicting the position and direction of the

MR. In 2012 R. M. Soto and et. al [10] used a hybrid

evolutionary PSO and GA population-based optimization

algorithm to design a fuzzy controller for the trajectory

tracking of the MR. The hybrid evolutionary algorithm

has been used to find the fuzzy membership function

parameters. Both PSO and GA algorithms have to

communicate with each other every predefined iteration

number. In 2013 C. Raim Undez and A. Barreiro Blas [11]

proposed an adaptive NN controller to compute the

proportional torque besides another derivative to lead a

non-holonomic MR through tracking problem. A

dynamic inverse NN controller is responsible for the

tracking trajectory, reduction of the obtained error and

adaptation of the disturbance.

This work proposes a novel metaheuristic algorithm

using it in optimization weights of ANNs that tracks the

velocities and posture of a differential drive wheeled

mobile robot in the presence of time variation of system

parameters.

III. GRASS ROOT OPTIMIZATION ALGORITHM

Grass plants have three types of roots; primary roots,

secondary roots, and hair roots. The first root grown in

the soil is the primary root, which supplies the required

energy and minerals to the first few generated leafs.

Primary root is usually stayed active for only short time,

till the secondary roots became active, then primary root

dies and the new generated secondary roots take its

function. The new initiated secondary roots develop new

tillers and shoots and compete with other neighbor plant

roots to absorb water and other minerals. On the other

hand, hair roots are small branches, grow out of the

epidermis of the secondary roots, they absorb almost all

the required water and minerals. Grass plants have two

major asexual reproduction methods. These methods

usually depend on the stems that grow sideways; either

under or above the ground. The first vegetative

reproduction method in grass plants are the stolons,

which are stems creep along the ground, while the second

vegetative method is the rhizomes, which are stems grow

below ground. Grass plants use both stolons and rhizomes

to establish new grass culms. These stolons and rhizomes

support the newly created grass plant until it became

strong enough to live on its own [12].

Grasses perform global and local search to find better

resources by reproduction of new grass plants using

stolons and rhizomes and by developing their own root

system. The generated new grasses and roots are

developed randomly, but when grass arrives at a place

with high resources, it generates more secondary roots,

rhizomes, and stolons. The GRO algorithm depends the

same reproduction and development of grasses to execute

the global and local search. The algorithm starts by

initializing random grasses in the search space, evaluates

their fitness, generates a new population that contains the

best-obtained grass and modifies its secondary and hair

roots to search for better resources. If grass plant trapped

into local minimum position, it generates new grasses by

stolons initiated from the best-obtained grass, and other

survived grasses. However, new secondary roots with

different deviation from the local minimum solution will

be generated by rhizomes. These roots help the trapped

plant to reach farther places and escape the local position.

GRO algorithm begins with an initial random uniformly

distributed population (p) in the problem search space.

The number of the initially generated grasses equal to the

population size (ps). When iteration (it) begins, a new

grass population (NP) is created. NP consists of three

elements which are; the best grass obtained so far by the

iteration process (gb = min(F (p)) RDim) where F is the

cost function, Dim is the problem dimension. The second

element of NP is a number (Gr) of grasses evaluated as in

(1) and deviated from gb by stolons (SG) as in (2). These

stolons deviated from the original grass with step size

usually less than maximum upper limit vector ul. The last

element of NP was a number of grasses equal to (ps–Gr-1)

deviated randomly from the survived grasses of the

iteration process (SD) as shown in (3).

2

amse ps
Gr

amse minm

  
  

  

 (1)

   

  

,1 * 2* ...

...* ,1 0.5 *

ones Gr max

rand Gr

 



SG gb ul

gb
 (2)

 

  

2* *...

... 1,1 0.5 *

max

rand ps Gr

 

  

SD GS ul

ul
 (3)

where amse is the average value of the mse vector shown

in (4). msei is the MSE value of ith iteration given by (5),

minm is the minimum of mse shown in (6). Ones(a,1) is a

column vector operator of a rows of ones. rand(a,1) is a

random column vector operator with a rows, its elements

 0,1 . max(.) and min(.) represent operators that find

the maximum and minimum element of a vector

respectively. GS is the (ps-Gr-1) highest mse grasses

retrieved from the last iteration process.

1

1
ps

i

i

amse mse
ps



  (4)

2

1

1
()

no

i j j

j

mse ds y
no



 

 (5)

 Adaptive Path Tracking Mobile Robot Controller Based on Neural Networks and 3

Novel Grass Root Optimization Algorithm

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 5, 1-9

 minm min mse (6)

1, , , ,
T

i psmse mse mse   
 mse (7)

jds , jy are the desired and actual values of the jth

output. (8) shows the new population vector NP.

T

 
 

T T T
NP gb SG SD

 (8)

Generated (NP) will be bounded and checked to get the

fittest obtained grass. If the fittest new generated grass is

best than the old one then keep the fittest new grass as the

best grass solution. Otherwise, calculate the absolute rate

of decrease in mse between the best grass obtained so far

bestm shown in (9) and the current iteration minimum

mse (minm) shown in (6). If the rate is less or equal a

tolerance value (tol) shown in condition (10) increase

global stack (GC) counter by one till it reached its

maximum value then move to the local search mechanism.

bestm =min (minm) (9)

j m

j

minm best
tol

minm


 (10)

minm=[minm1,..,minmj,..,minmit]
T (11)

The local search mechanism consists of two individual

loops; secondary roots loop, and hair roots loop. Hair

roots are considered equal to the dimensions of the

objective function (Dim), and each secondary root

generated by the gb primary root represents a local

candidate solution. The secondary roots number is

represented by a random number usually less than Dim.

Each single hair root modifies its location as in (12) for a

repeated loops equal or less than secondary roots number

(SC).

 1 2* 0.5k K
i imgb agb gb C rand    

 (12)

k=1,2,…,SC and i=1,2,…,Dim.

1

1
Dim

i

i

agb mgb
Dim



 

 (13)

C=[0.02,0.02,0.02,0.2,0.2,2,2,2,2,15] (14)

C2=C(1+ *10rand) (15)

Where mgb is the locally modified gb, agb is the

average of the mgb vector shown in (13), SC is the

number of secondarily generated roots where (0 ≤SC≤

Dim), and C is the searching step vector shown in (14).

C2 represents the random element of C chosen according

to the percentage repetition of C elements as shown in

(15). If the evaluated fitness of mgb is less than bestm

then save gb as mgb. Otherwise, calculate the absolute

rate of decrease in mean square error. If the rate is less

than tol then increase local stack counter (CL) by one.

When CL reached its maximum predefined value, break

hair root loop and begin new secondary root loop. After

each completed iteration check if the stopping condition

(GE) is satisfied then stop the iteration. Otherwise, go to

the next iteration until reached the mit (maximum

iteration number) then stop. Table 1. illustrates the

general proposed algorithm pseudo code.

Table 1. GRO pseudo code

1: Initialize mit, ps, Dim, ll, ul, GE, tol, GC, LC, SG, C, gb,

minm, bestm, Gr, F,SD.

2: Initialize random grass population (P), p∈ RDim.

3: Bound the initial population ll  p ul , ul, ll∈ RDim.

4: For i=1:ps // check for best fitness particle in the initial

population

5: f=F (P) // F is a predefined objective function //

6: Calculate the mse(i) for f elements as in (5)

7: End For.

8: Sort the grass population (P) ascending according to step 6.

9: For it=1:mit // iteration and global search starting //

10: Evaluate C2 according to (15).

11: Generate the new population (NP) according to (8).

12: Bound NP : ll  NP ul , NP, ll,ul ∈ RDim.

13: For i=1: ps // check the NP for the best fitness particle

loop //

14: fnew= F(NP)

15: Mse(i)=fnew

16: End For

17: Minm=min(Mse) // save minimum mean square error //

18: Index the grass with the Minm //index the position of the

best

 particle in the population //

19: Evaluate Gr as in (1). // Gr represents number of stolons

or

 deviated from gb //

20: Evaluate SG as in (2).

21: Evaluate the GS from the ascending sorted p

22: Evaluate SD as in Equation (3).

23: If minm< bestm then

24: bestm=minm

25: gb=best indexed grass

26: GC=0

27: Else If condition (10) is true then

28: increase GC by 1

29: If GC is at its maximum then

30: GC=0 // Begin the local search //

31: For q=1:random integer less than Dim

32: LC=0

33: For j=1:Dim // hair root loop//

34: mgb=gb //initial mgbest //

35: evaluate mgb as in (12)

36: lmin = mean square error(mgb)

37: If lmin<bestm then

38: bestm=lmin

39: gb=mgb

40: CL=0

41: Else If condition (10) with lmin instead of minm is

true then

42: Increase CL by one

43: Else

44: CL=0

45: End If

46: If CL is at its maximum then

4 Adaptive Path Tracking Mobile Robot Controller Based on Neural Networks and

Novel Grass Root Optimization Algorithm

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 5, 1-9

47: Break For j

48: End If

49: End For (j loop)

50: End For (q loop)

51: End If

52: End If

53: If bestm ≤ GE then

54: break For (it loop)

55: End If

56: End For (it loop)

A. GRO Optimizing NN Weights

The role of GRO algorithm is firstly; to bound and

check the candidate solutions in population, modifies the

solutions in an iteration process to get the best fitness

solution. However, for supervised training NNs, the

objective function is the Mean Square Error (MSE)

function. Therefore, when the weights of the network are

fully optimized, very minimum or zero MSE is obtained.

In order to make population-based metaheuristic GRO

algorithm as a supervised training algorithm, we have

considered all layer weights of the NNs as a grass vector

in the population matrix. Each grass represents a

candidate weight solution. The purpose of this weights

vector is to minimize the objective MSE function of the

NN. A number of weights in each grass vector represents

the problem dimensions. Initial weights were created

randomly, and the search space of the problem was

limited to a minimum and maximum search space values.

Suppose the input data set represented by x(M, ni), and

𝛷(M, no) is the target teacher. Where x∈ R(M*ni) and Φ

∈R(M*no), M is the number of input patterns, ni and no are

the number of input and output neurons respectively. If

we suppose that l is the hidden neurons number, then NN

dimension with bias connections is represented by (16)

for single hidden layer.

   * *N ni l l l no no    (16)

For multiple hidden layers suppose that l is a vector

represents the layers and neurons as shown in (17). The

network total dimension is represented by (18).

0 1 k ml l l l    l , 0 , mwherel ni and l no  (17)

 
1

1

0

1

m

k k

k

N l l







  (18)

Let the total weight vector W NRt , then the layer

weight vector could be represented by (19), where i

represents the layer number and iN shown in (20)

represents each layer number of neurons.

1 11 2
i i iN N NWt Wt Wt
  

  
 iWt (19)

  11 , 0

0, 0

i i
i

l l for i
N

for i

  
  

 
 (20)

Approximately for most of the problems, a single

hidden layer is usually sufficient to get the optimum

solution. Two hidden layers are required sometimes for

processing data with discontinuities and it rarely

improves the performance of the networks. However, it

may converge to a local minima solution when a large

number of neurons is used. Therefore, there is no

theoretical reason to use more than two hidden layers [13].

Hence, the network will have only two weights layer;

input to hidden layer; and hidden to the output layer. For

this purpose (19) will be rewritten as follows:

1 2 *1 ni l lwt wt wt    W (21)

* 1 * 22 ni l l ni l l Nwt wt wt      W (22)

 * ,1bi M   Bi ones (23)

 ,1Mones =  1 21 1 1
T

M (24)

Where W1 and W2 are the input to hidden weights

layer and the hidden to output hidden layer respectively.

Reshape W1 and W2 vectors into layer matrix form, then

they will be written as follows:

 

1 2

1 2 2*

* 1 * 2 * 1

l

l l l

ni l ni l l ni

wt wt wt

wt wt wt

wt wt wt

 

  

 
 

 
  
 
 
 

Ω

 (25)

     

11 12 1

21 22 2

1 2 11 1

l

l

ni ni lni  

 
 
    
 

     
 
 

   
 

   

   

   

* 1 1 * 1

* 1 1 * 1 2

1 1 1

l ni l ni no

l ni no l ni no

l ni no l ni no no

wt wt

wt wt

wt wt

   

    

     

 
 
 

  
 
   

ψ

 (26)

     

11 12 1

21 22 2

1 1 1 2 1

no

no

l l l no

  

  

  
  

 
 

 
  
 
 
 

Where Ω
 1 *ni l

R


 , and 𝜓
 1 *

l no

R


 .

 Adaptive Path Tracking Mobile Robot Controller Based on Neural Networks and 5

Novel Grass Root Optimization Algorithm

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 5, 1-9

[Xb Bi x] (27)

X
 * 1

Dim ni

R


b is the input pattern data set with input

bias. The hidden layer output is shown in (28) for linear

activation function.

h = Xb*Ω (28)

Where h * Dim lR . Adding bias to (28), another

vector is constructed as in (29). The output of the network

is shown in (30) for linear identity function.

H = [Bi h] (29)

*y H ψ

 (30)

Where H
 * 1Dim l

R


 ,
*? Dim noy R

IV. DIFFERENTIAL DRIVE WHEELED MOBILE ROBOT

For the kinematic and dynamic MR modeling, suppose

the model proposed by [14]. Fig. 1 shows a general

differential drive wheeled MR geometrical structure, in

which the point B represents the central point between the

driver wheels, b is the straight distance between the

center of gravity A and the wheel axis. The MR position

is described by ρ = [X, Y, 𝜗]T, where X, and Y are the axis

of point A. 𝜗 is the mobile robot steering rotation angle.

The MR kinematic model is given by (31-33).

 ρ Q ρ Φ (31)

Where 𝛷=[𝛷r, 𝛷l]
T, are the right and left wheels

angular velocities.

(Q ρ)=

   

   

cos cos
2 2

2 2

2 2

r r

r a
sin sin

r r
d d

 

 

 
 
 
 
 
 
 
  

 (32)

1

1

b

r r

b

r r

 
 

  
 
  

Φ Λ (33)

𝛬 = [v, w]T represents the linear and angular velocities

of the wheeled MR. Substituting (32) and (33) in (31)

obtains the kinematic system model of the differential

drive robot in terms of linear and angular velocities as

shown in (34).

 
 

0

0

0 1

cos

sin





 
 

  
 
 

ρ Λ (34)

For non-slipping and pure rolling condition, the non-

holonomic constraint is shown in (35) [8].

   Xsin Y cos  = 0 (35)

Let m be the mass of the robot platform, mm the mass

of the wheel and motor, I is the moment of inertia of the

robot platform about the perpendicular axis over B, Im is

the wheel and motor moment of inertia around the wheel

axis, and Ii is the wheel and motor moment of inertia

around the wheel diameter. The dynamic robot model is

represented by equations (36-41) as follows:

   
˙

,
 

  
 

M ρ Λ N ρ ρ Λ B ρ τ (36)

Where τ =[ r , l] stand for the right and left torques

applied on the wheels, while M, N, B are represented by:

 
   

   

2 2
2 2

2 2

2 2
2 2

2 2

4 4

)
4 4

t t m t t

t t t t m

r r
m b I I m b I

d d

r r
m b I m b I I

d d

 
   

 
 
   
 

M ρ (37)

 

 

2

˙

2

0
2

,

0
2

r
mbw

d

r
mbw

d

 
 

    
  
 
 

N γ γ (38)

1 0

0 1

 
  
 

B (39)

Where It,and mt represent the total moment of inertia

and the total mobile robot mass as in (40-41).

2 22 2t m iI mb I m d I    (40)

tm m +2 mm (41)

V. THE PROPOSED ANC

This paper develops a trajectory tracking controller

based on NNs that has been optimized using GRO

algorithm for the differential drive MR of the Fig. 1. We

have assumed that there is uncertainty in the dynamic

system model. Furthermore, distance b, platform mass m,

wheel radius r, and the platform width cl are varying with

time. After the NN training phase finished, the controller

considered to be tough against parameters variation and

6 Adaptive Path Tracking Mobile Robot Controller Based on Neural Networks and

Novel Grass Root Optimization Algorithm

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 5, 1-9

tracks the proposed trajectory at the dynamical and

kinematic controller levels.

Fig.1. Differential Drive wheeled MR geometrical structure.

If supposed that there is a predefined desired trajectory

given by (42).

 
 

˙
0

0

0 1

d

d

cos

sin





 
 

  
 
 

d dρ Λ (42)

Where , ,
T

d d dX Y    dρ , ,?d dv w   dΛ . The

error between the desired and actual pose in the local

robot frame are given by:

   
   

1 1

2 2

3 3

cos sin 0

sin cos 0

0 0 1

d

d

d

E e X X

E e Y Y

E e

 

 

 

       
      

         
            

T (43)

The control inputs V and W which make E1, E2, E3

converge to zero are given by (44) [15].

 
 

13

32

cos 0

sin1

xd

y d

k EE vV

k Ek E wW 

     
      
       

 (44)

Where kx, ky, k𝜗 > 0, represent the positive constants.

Fig.2. The NDC training phase

The DNC is designed to learn the collected

input/output data from the dynamic model system (36-41)

and learns the torque signals which transfers the MR from

velocity at time (t) to upcoming (t+1) velocity. The DNC

offers, after good training, an adaptive performance with

fixed trained weights. However, the DNC has to be well

trained for all possible parameters variation of the

dynamical model especially, the values b, m, cl , and r.

Fig. 2 shows the DNC training phase block.

Fig.3. The KNC training phase.

The robot nominal values are proposed as follows; r =

0.033 m, m = 0.575 Kg, cl = 0.15m, b = 0.04 m. While

for the training of the DNC purpose, we assumed that m

varied between the values [0.45, 1.2] Kg, distance b is

varied in the interval of [0.03, 0.1] m, cl varied in

between [0.12, 0.2]m, r varies between [0.03, 0.07] m.

The training torques input data are proposed randomly

uniformly distributed in between [-0.01,0.01] N.m. On

the other hand, the KNC is proposed to learn the behavior

of the backstepping feedback controller system (44) and

to raise its robustness against disturbance data. For the

purpose of training the KNC, A random trajectory ρr was

 Adaptive Path Tracking Mobile Robot Controller Based on Neural Networks and 7

Novel Grass Root Optimization Algorithm

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 5, 1-9

created, and a noisy data having zero mean and 0.1

variation level Gaussian distributed was added to the

training data. The training input data of the KNC were the

randomly created trajectory reference velocities and the

error between the random trajectory and the kinematic

model trajectory output plus noisy Gaussian distributed

data. Fig. 3 shows the KNC training phase block.

10,000 samples data sets have been generated. These

patterns data sets were divided into two sub-data; 5000

sets for training purpose, and 5000 sets for testing of the

trained network. The used NNs architecture of both DNC

and KNC consisted of single hidden layer with 4 hidden

processing neurons and 2 output neurons. The DNC has 4

input neurons for the desired and real velocities, while

KNC has 5 input neurons for the random reference

velocities and the error posture with disturbance. The

synaptic weights connections were randomly initialized

between [−1,+1]. Linear identity activation function has

been used for both input and hidden layers. 10 training

cycles have been executed for both DNC and KNC. Each

training cycle has 1000 maximum iterations (mit). 30

grass population (ps) were used. GRO algorithm stops

iterations according to three proposed stopping conditions

which are:

 If any grass converged to the predefined global

error value, which is zero MSE in our case.

 When the testing MSE exceeds the training MSE

by10% of its value.

 When the algorithm completes the whole iteration

cycles.

If GRO finished a training cycle without overfitting,

the next cycle continues from the last reached point of the

last valid cycle. The network weights will be the last

known valid weights. The overall ANC structure is

shown in Fig. 4. It consists of two feedback control loops;

external feedback KNC controller that generates the

control velocity signals that tracks the desired trajectories,

and DNC internal control loop which is designed to

improve the controller robustness against parameters

uncertainty and time variations.

Fig.4. Overall ANC block diagram

Table 2. Dynamic parameters time variations.

Parameters
nominal

values

Maximum

values

Minimum

values

b (m) 0.04 m 0.14 m 0 m

cl(m) 0.15 m 0.5 m 0.1 m

r (m) 0.033 m 0.093 m 0.023 m

m (Kg) 0.575Kg 3 Kg 0.25 Kg

For the purpose of testing the wheeled MR tracking

performance, the mobile robot parameters have been

assumed varying randomly as illustrated in Table 2. The

MSE of the MR position and velocities are evaluated by

(45) and (46).

2 2 2
1 2 3

1

3

Errp E E E  

(45)

   
2 21

2
d dErrv v v w w    (46)

The desired velocities generated for the path tracking

are illustrated in Table 3. The desired posture is found by

integrating (34).

Table 3. velocities trajectories.

t vd wd

0 157t 
2

0.05 1 cos
10

t  
   

  

2
0.05 1 cos

10

t  
    

  

157.1 300t 
2

0.05 1 cos
10

t  
   

  

2
0.05 1 cos

10

t  
    

  

VI. SIMULATION RESULTS

The GRO algorithm first training cycle for KNC and

DNC are shown in Fig. 5 and Fig. 6 respectively. After

10 training cycles without overfitting of the KNC. The

recorded maximum MSE was 0.0002 for the linear

velocity and 0.4221 for the angular velocity. The average

angular and linear velocities MSE was 0.2112 which is

relatively high MSE, due to the large set of training input

sets. The average testing MSE was 0.2042.

8 Adaptive Path Tracking Mobile Robot Controller Based on Neural Networks and

Novel Grass Root Optimization Algorithm

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 5, 1-9

Fig.5. First epoch GRO training algorithm MSE for the KNC.

Fig.6. First epoch GRO training algorithm MSE for the DNC.

Fig.7. Mobile robot Errp MSE.

For the second DNC network, the recorded MSE was

2.33e-10 for the left torque signal and 2.07e-10 for the

right torque signal. The average MSE of both torques was

equal 2.199e-10 with testing average MSE of 2.124e-10.

This very minimum value actually is due to the tiny

torque signals that have a maximum value of 0.0001 N.m.

The mobile robot position MSE (Errp) and velocities

MSE (Errv) were shown in Fig. 7 and Fig. 8. The

velocity and position MSE of the MR with nominal

parameters and time-varying parameters are less than

3.5e-03. Finally, Fig. 9 shows the real and desired x-y

trajectories tracking.

Fig.8. MOBILE ROBOT ERRV MSE.

Fig.9. X-Y trajectory tracking.

VII. CONCLUSIONS

This paper proposes novel GRO algorithm optimizing

an inverse ANC trajectory tracking wheeled MR. ANC

consists of two subs NNs; KNC and DNC using internal

and external feedback loops. The internal DNC feedback

loop makes the robot more robust against parameters

uncertainty and parameter time variations, while the

external KNC responsible for tracking the desired angular

and linear velocities of the MR and the posture x, y, and

𝜗.

Both NNs trained using GRO algorithm. Applying 10

iteration cycles each with 1000 maximum iterations for

both of networks. Fig.7 and Fig. 8 have shown the

position and velocity MSE, from these figures we notice

that the controller succeeds in tracking the MR under

fixed nominal and time varying parameters. The ANC

performance generally didn't effect by the parameters

 Adaptive Path Tracking Mobile Robot Controller Based on Neural Networks and 9

Novel Grass Root Optimization Algorithm

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 5, 1-9

variation even when some parameters increased by more

than 300%. Therefore, this controller has shown a great

performance against parameters variation with only 8

hidden neurons for both KNC and DNC without any

overfitting during data training process using the GRO

algorithm. Although we have used large training and

testing datasets, there was no data overfitting, this is due

to the used techniques of observing the training and

testing data at the same time. Since the training was

offline and have been carried only once (10 cycles) GRO

processing time has not been taken into consideration.

REFERENCES

[1] K. H. Teng, T. Wu, Z. Yang, C. H. Heng and X. Liu, "A

400-MHz wireless neural signal processing IC with 625

on-chip data reduction and reconfigurable BFSK/QPSK

transmitter based on sequential injection locking," 2015

IEEE Asian Solid-State Circuits Conference (A-SSCC),

Xiamen, pp. 1-4, 2015.

[2] Neha Kapoor, Jyoti Ohri,"Evolutionary Optimized Neural

Network (EONN) Based Motion Control of Manipulator",

International Journal of Intelligent Systems and

Applications IJISA, vol.6, no.12, pp.10-16, 2014.

[3] Yevgeniy Bodyanskiy, Olena Vynokurova, Volodymyr

Savvo, Tatiana Tverdokhlib, Pavlo Mulesa,"Hybrid

Clustering-Classification Neural Network in the Medical

Diagnostics of the Reactive Arthritis", International

Journal of Intelligent Systems and Applications (IJISA),

Vol.8, No.8, pp.1-9, 2016.

[4] R. Murugadoss and M. Ramakrishnan, "Universal

approximation of nonlinear system predictions in sigmoid

activation functions using artificial neural

networks," 2014 IEEE International Conference on

Computational Intelligence and Computing Research,

Coimbatore, pp. 1-6, 2014.

[5] S. Chai and Y. Zhou, "A Study on How to Help Back-

propagation Escape Local Minimum," Third International

Conference on Natural Computation (ICNC 2007),

Haikou, pp. 64-68, 2007.

[6] Koffka Khan,Ashok Sahai,"A Comparison of BA, GA,

PSO, BP and LM for Training Feed forward Neural

Networks in e-Learning Context", International Journal

of Intelligent Systems and Applications IJISA, vol.4, no.7,

pp.23-29, 2012.

[7] Hanan A. R. Akkar, Firas R. Mahdi, “Training

ArtificialNeural Networks by PSO to Perform Digital

Circuits Using Xilinx FPGA,” Eng. & Tech. Journal, Vol.

29, No. 7 pp. 1329-1344, 2011.

[8] R. Fierro and F. Lewis, “Control of a Nonholonomic

Mobile Robot Using Neural Networks,” IEEE

Transactions on neural networks, vol. 9, pp. 589–600,

1998.

[9] X. Jiang, Y. Motai and X. Zhu, "Predictive Fuzzy Logic

Controller for Trajectory Tracking of a Mobile

Robot," Proceedings of the IEEE Midnight-Summer

Workshop on Soft Computing in Industrial Applications.

SMCia/05., pp. 29-32, 2005.

[10] R. Martinez-Soto, O. Castillo, L. T. Aguilar and I. S.

Baruch, "Bio-Inspired Optimization of Fuzzy Logic

Controllers for Autonomous Mobile Robots," Fuzzy

Information Processing Society (NAFIPS), Annual

Meeting of the North American, Berkeley, CA, pp. 1-6,

2012.

[11] Raimúndez and A. B. Blas, "Adaptive Tracking in Mobile

Robots with Input-Output Linearization," Industrial

Electronics Society, IECON 39th Annual Conference of the

IEEE, Vienna, pp. 3299-3304, 2013.

[12] Stickler. Grass Growth and Development. Texas

Cooperative Extension, Texas A&M University.

[13] Gaurang Panchal, Amit Ganatra, Y P Kosta and Devyani

Panchal, "Behaviour Analysis of Multilayer Perceptrons

with Multiple Hidden Neurons and Hidden Layers,"

International Journal of Computer Theory and

Engineering, Vol. 3, No. 2, April 2011.

[14] T. Fukao, H. Nakagawa, “Adaptive Tracking Control of a

Nonholonomic Mobile Robot,” IEEE transactions on

Robotics and Automation, vol. 16, pp. 609–615, 2000.

[15] Kolmanovsky and N. H. McClamroch, "Developments in

nonholonomic control problems," in IEEE Control

Systems, vol. 15, no. 6, pp. 20-36, Dec 1995.

Authors’ Profiles

Hanan A. R. Akkar received her

Bachelor’s Degree from the Electrical and

Electronics Engineering Department at the

University of Technology in 1988. She

received her Master’s degree and Ph.D.

degree from the Electrical and Electronics

Engineering Department at the University

of Technology in 1994 and 1998,

respectively. She has been Professor in the Department of

Electrical Engineering at the University of Technology in the

filled of ANN, FL, GA and swarm intelligent based on FPGA

and electronic circuits. Currently she is Head of scientific

committee in the Electrical Engineering Department at

University of Technology.

Firas R. Mahdi received his Bachelor’s

Degree from the Electrical and Electronics

Engineering Department at the University

of Technology in 2004 Iraq, Baghdad. He

received his Master’s degree and Ph.D.

degree from the same university, at the

Electrical and Electronics Engineering

Department in 2008 and 2017, respectively.

His major field of study was in the artificial intelligence,

evolutionary algorithms, and robotics controllers.

How to site this paper: Hanan A. R. Akkar, Firas R. Mahdi,

"Adaptive Path Tracking Mobile Robot Controller Based on

Neural Networks and Novel Grass Root Optimization

Algorithm", International Journal of Intelligent Systems and

Applications(IJISA), Vol.9, No.5, pp.1-9, 2017. DOI:

10.5815/ijisa.2017.05.01

