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Abstract—Source code is an intellectual property and 

using it without author’s permission is a violation of 

property right. Source code authorship attribution is vital 

for dealing with software theft, copyright issues and 

piracies. Characterizing author’s signature for identifying 

their footprints is the core task of authorship attribution.  

Different aspects of source code have been considered for 

characterizing signatures including author’s coding style 

and programming structure, etc. The objective of this 

research is to explore another trait of authors’ coding 

behavior for personifying their footprints. The main 

question that we want to address is that “can code smells 

are useful for characterizing authors’ signatures? A 

machine learning based methodology is described not 

only to address the question but also for designing a 

system. Two different aspects of source code are 

considered for its representation into features: author’s 

style and code smells. The author’s style related feature 

representation is used as baseline. Results have shown 

that code smell can improves the authorship attribution. 

 

Index Terms—Authorship, Source Code, Stylistic 

Feature, Code Smell, Author style. 

 

I.  INTRODUCTION 

Source code is an intellectual property and using it 

without author’s permission is a violation of property 

right [1]. Source code authorship attribution is vital for 

dealing with software theft, copyright issues and piracies 

[2]. The broad area of study is known as software 

forensics [3]. A widely recognized way for performing 

attribution is through capturing and recognizing authors’ 

signatures [4]. The domain of computer science that 

provides structures and algorithms for storing and 

identifying authors’ footprints is known as machine 

learning. The effectiveness of this methodology is mainly 

relaying on defining signatures in terms of features. 

Different aspects of source code have been considered for 

characterizing signatures including author’s coding style. 

The objective of this research is to explore a new trait 

of authors’ coding behavior for personifying footprints. 

Some authors are stricter to follow standard software 

engineering guidelines than others. This trait can be 

characterized by using code smells. The term “bad smell” 

is coined by Kent Beck to indicate that something 

somewhere in code has gone off beam. Each code smell 

corresponds to some standard software development 

guideline and presence of the smell indicates the lack of 

corresponding practice. The values of code smells 

indicate the degree of deficiency. The detail description 

of these code smells is given in [5]. While coding style 

can characterize regularities in authors’ writing style, 

code smells can describe consistencies of authors’ 

deviation from standard software engineering practices 

[6].  

As coding style is a well-explored aspect for authors’ 

signatures, it is considered as baseline method in this 

work. The main question that we want to address is that 

“can code smells are useful for characterizing authors’ 

signatures? A machine learning based methodology is 

employed to address the question. The paper is organized 

as follows: related work is described in Section 2,the 

experimental methodology is presented in Section 3, 

results are presented in Section 4 and conclusion is 

described in Section 5. 

 

II.  RELATED WORK 

Authorship attribution of source code is different than 

attribution of text documents in different aspects; for 

instance, source code is not fully unstructured as text 

documents. The programming paradigm, language syntax, 

software engineering practices and development 

environments imposed the structure. Moreover, the 

software engineering practices force programmers to 

reuse the already developed code for common tasks. 

Furthermore, specific naming conventions for identifiers 

and functions used by development teams for consistency 

purposes brings back the impartiality of using authors’ 

manifestation. Therefore, the standard techniques for 

attribution of text document (e.g. bag-of-words based 

features) may not be effective for source code. Majority 

of research on this topic is therefore focused on analyzing 

features for personifying authors.  

In [2], nine software features from programming layout 
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& design are analyzed by using C4.5 classification 

algorithm. The features include i-as-iterator, Line Length, 

Comments, Average procedure length, Methods, Number 

of Arrays, Object Creation, Single literal variable and 

Double literal variable. In reported results the system has 

achieved an accuracy of 68.89%. In [5],the considered 

features are from three different categories including 

programming layout, programming structure and 

programming style. To analyze their effectiveness two 

classification algorithms are used including Gaussian 

classifier and MLP neural network. The achieved 

accuracy was 73% using MLP. They support the 

conclusion that for a limited set of programmer it is 

possible to identify a particular author and the probability 

to find that two programmers share exactly same 

characteristics should be very small. In another similar 

study [3], the author used stylist features including 

distribution of line size, leading spaces, underscores per 

line, semicolons, commas per line and tokens per line. 

The performance was analyzed by using naïve Bays and 

voting feature intervals. It is shown that VFI and naïve 

Bayes increase the success rate of classification.          

In [6], the author used a variety of metrics categorizing 

them into three categories including programming style, 

programming layout and programming structure. A 

subset of effective features is obtained through a 

statistical analysis. Using a statistical approach known as 

SAS, the author has shown an overall classification 

accuracy of 73%. In [7],the effectiveness of operators, 

white space, literals, keywords, functions and I/O words 

has been shown by achieving an accuracy of 76.78% with 

these features. In [1], code stylometry based authorship 

attribution is performed by using JStylo tool. It is shown 

that SVM leads to highest accuracy and obtained the 

success rate varying from 70.31% to 90.91%.In [8], the 

author employed programming layout, style and structure 

metrics and compared the performance of three 

classification algorithms including discriminant analysis, 

neural network and case base reasoning. It is found that 

other statistical methods such as Bayesian technique can 

produce good result. In [4], the author evaluates the effect 

of discretization using a genetic algorithm. The author 

used four metrics including leading space, leading tab, 

line length and line word. The performance of GA is 

comparatively analyzed with other methods of 

discretization including range based discretization, 

frequency based discretization and no discretization. In 

reported results the system has achieved an accuracy of 

60% for range based discretization, 70% for frequency 

based discretization and 65% with no discretization. In 

[9], the author used a variety of metrics including number 

of each type of data types, the cyclomatic complexity, 

quantity and quality of comments, type of variables and 

layout of code. They are also working on IDENTIFIED 

toolkit for automatic extraction of these metrics.  

In [10], the author used a variety of metrics 

categorizing them into four categories including 

comments, programming layout features, identifiers and 

programming structure features. Comparative analysis is 

performed on two programming languages including java 

and common lisp and it is found that the selected metrics 

have strong influence for java programs but not for 

common lisp. In [11], the author propose to use lexical 

features such as variable names, formatting and 

comments, and some syntactic features such as presence 

of bugs and use of keywords for source code author 

attribution, but they don’t report any result or a case study 

experiment with a formal approach. In [12], the author 

presents a technique for automatic extraction of stylistic 

features from programs’ binaries. The effectiveness of N-

grams, idioms, graphlets, supergraphlets, call graphlets 

and library calls has been shown with an accuracy of 77%. 

In [13], twenty six metrics are analyzed by using case-

based reasoning, multiple discriminant analysis and feed 

forward neural network. The features include LOC, 

portion of letters that are uppercase, variables per line, 

portion of inline comments, pure comments, mean 

number of characters per line, cyclomatic complexity,  if 

statements per NCLOC(Non comment per LOC), switch 

statements per NCLOC, while statements per NCLOC, 

decision statements per NCLOC etc. In reported results 

the system has achieved an accuracy of 88.0% in case of 

using case bases reasoning.  

In [14], the author used a variety of metrics 

categorizing them into two categories including counting 

metrics e.g. leading spaces, trailing spaces, leading tabs, 

trailing tabs, line length, LOC, brace position, comments, 

average procedure length, average indentation, number of 

methods, unary and binary operators, number of loops, 

single literal variables, double literal variables and 

Boolean metrics e.g. i-as-iterator, conditional operator, 

try statements, naïve variable names and methods 

chaining. They have used decision tree algorithm for 

classification. 

In this paper, we are presenting the analysis of an 

unexplored aspect of source code that deals with 

analyzing the code according to software development 

standards. The code smells are employed to model and 

quantify the code (and its author) according to the 

standard. Though no work is conducted for employing 

code smells for author attribution, code smells have been 

employed for other tasks such as software inspection [15] 

and improving software design [16]. 

 

III.  METHODOLOGY 

The authorship attribution of source code is posed as 

classification problem as shown in Fig. 1. Availability of 

a dataset is an essential requirement to develop and test 

the methodology. Many open source code repositories are 

available for accessing a set of source codes with 

designated authors e.g. planet-source-code 1 , Source 

Forge2, Codeplex3 and GitHub4, however most of these 

repositories contain source codes written by multiple 

authors. Since we want to analyze the efficacy of code 

smells for author attribution, we are interested in source 

                                                           
1 http://www.planet-source-code.com/ 
2 http://sourceforge.net/ 
3 https://www.codeplex.com/ 
4 https://github.com/ 

https://www.codeplex.com/
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codes written by the single authors. One such readily 

available source for collecting the codeisplanet-source-

code.com [17].The data set containing source code of 

nine different authors is collected from this source. The 

total gathered files are 153 including 42559 line of code 

(LOC).Distribution of LOC over authors is shown in Fig. 

2. All the source code collected for our experiment was 

written in Java. 

 

 

Fig.1. Block diagram of source code author attribution 

 
 

Fig.2. Distribution of LOC over authors 

In the next phase, the code is represented in the form of 

features to generate a dataset. Two different aspects of 

source code are considered for the representation: 

author’s coding style and code smells. The selection of 

style related features is based on related work [1-4, 7-14, 

18-20]. However, the analysis of code smell related 

features is a novel contribution of this work. For feature 

extraction, two feature extractor modules are developed 

for each aspect of code as shown in Fig. 1. The style 

related feature extractor module (named as stylistic 

feature extractor) extracts features related with author’s 

writing style. The code smell extractor module extracts 

features related to code smells. The interface of this 

module is shown in Fig. 3 and 4. Description of features 

is given in Section 3.1.To evaluate the performance of 

both feature representations, three well-known classifiers 

 

 

Fig.3. A screenshot of stylistic feature extractor/visualizer module 

are employed including naïve Bays, decision tree (i.e. 

J48), support vector machine and k nearest neighbors 

(KNN). A brief introduction of the classifiers is given in 

Section 3.2. 

 

 

Fig.4. A screenshot of code smell extractor/visualizer module 

A.  Description of Features 

In this section, features are presented that are used for 

representing source code. Total number of considered 

features is 24 where 12 features are used to represent 

author’s style and remaining 12 are used for 

representation of code smells. Description of style related 

features is given in Table 1.   

Table 1. Features for representing author’s style. 

Sr.

No 
Name Description 

1 i-as-iterator 

The feature counts occurrences of i 

as loop iterator variable in source 

code file. Some authors use 

variable ‘i’ as an iterator in every 

loop while others intentionally 

avoid it. So, it represent the number 

of times the author used i as-

iterator. 

2 AvgLineLength(C) 

It measures average line length in 

terms of characters of a source 

code file. Some authors have the 

habit of writing code into single 

line while some others write in 

multiple lines. 

3 AvgLineLength(W) 
It measures average line length in 

terms of words in source code file. 

4 EL/Non-EL 

It is the ratio of empty lines with 

non-empty lines. Empty lines are 

those lines which contain no 

character (not even a whitespace 

character) and non-EL contains one 

or more character other than 

newline character. 

5 numTabs/length 

This feature is a ratio between 

count of tab characters and total 

characters in a source code file and 

quantify the indentation of code 

using tab. 

6 numSpaces/length 

It is a ratio between count of space 

characters with total characters in a 

source code file and measures 

sparsityor density of code. 

LOC 

Authors 
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7 EL/length 

The feature is the ratio of empty 

lines in a source code file with total 

characters. It is another measure to 

represent sparsity or density of 

code. 

8 Uppercase 

It is a percentage of 

uppercase/capital characters with 

total characters. One way to 

captures authors’ variable name 

style. 

9 Char/words 

It is a ratio of total number of 

characters with total words in a 

source code file. 

10 Spaces/SLOC-P 

Spaces/SLOC-P represents ratio of 

total no of spaces count with 

SLOC-P in a source code file. 

11 Statements/SLOC-L 

It is a measure of ratio between 

total statements with SLOC-L in a 

source code file. 

12 Words/statements 

Words/statements represents ratio 

of total no of words count with 

total no. of statements in a source 

code file. 

 

As code smells are the indications of potential 

problems in the software design, they are the symptoms 

of the problem which could be cured by refactoring. 

Different software metrics are used to detect the code 

smells [5, 6]. We transformed the metrics into features to 

exploiting them for attribution of authors. Description of 

the features is given in Table 2.  

Table 2. Features for representing code smells. 

S.No Name Description 

1 

Long 

parameter 

list 

When a piece of code has a method having 

a large number of parameters in its 

parameter list, it is said to have long 

parameter list [21]. This feature is a 

representation of this metric. As, some 

authors have the habit of using long 

parameter list while others not, so the 

feature can make a difference between such 

authors. 

2 
Long 

method 

It is a measure of how much functionality 

functions are performing[21]. Usually it is 

determined on the basis of instance 

variables and number of lines of functions. 

As, some authors have the habit of writing 

short methods while others write long 

methods, so the feature can make a 

difference between such authors. 

3 Large Class 

It is a quantification of how much a class is 

loaded and often measures on the basis of 

instance variables, methods and LOC [21]. 

This feature can provide a differentiation 

about the authors that prefers to create small 

classes with those create large class. 

4 Lazy Class 

The term lazy class is used for referring the 

class that isn’t doing much [22]. Lazy class 

is a class which is least fulfilling the 

purpose of creation. This feature is a 

quantification of laziness of classes and can 

differentiate between authors creating lazy 

classes or author that does not. 

5 
Feature 

Envy 

When a method in a class is manipulating 

the data of another class rather than itself, 

the characteristic is known as feature envy 

code smell. The code smell is usually 

measured by identifying variables and 

methods of other classes accessed by that 

method. Existence of feature envy can make 

a difference between authors as either the 

author is using such methods or not. 

6 Data Class 

The term data class is used for class that 

only contains fields, getters and setters. 

Such a classis just a dump data holder and 

possesses no functionality. The code smell 

is usually measured as if a class only 

contains getter, setter methods, default 

constructor and data members; consider it 

as data class bad smell. Existence of this 

code smell can make a difference between 

authors i.e. some authors have the habit of 

creating such classes which only contain 

different getting and setting methods. 

7 
Switch 

Statements 

When a number of switch statements are 

scattered throughout the source code it is 

indication of switch cases code smell [6]. 

The smell is quantified by counting all 

switch cases. If the switch cases count 

exceeds conditions and threshold values 

specified in our research work, consider this 

switch statement as switch statement bad 

smell. It can be an indication of an author 

specific behavior of using switch statement. 

8 Comments 

Burdening the code with comments is also 

considered as a code smell [21].The smell is 

measured by counting comment lines if it 

contains comments greater than 18%, 

consider it as comment bad smell. Some 

authors have the habit of writing excessive 

comments. Such authors can be 

differentiated based on the smell. 

9 
Primitive 

Obsession 

Primitive Obsession is using primitive data 

type to represent domain ideas [6] as we use 

String to represent date instead of using 

Date class. The code smell is usually 

measured by obtaining the number of 

primitive variables of each class and 

calculating their average. All the classes 

having NOV (Number of variables) greater 

than the counted average consider that 

primitive obsession code smell exists. 

Existence of this code smell can make a 

difference between authors as either authors 

prefer to use primitive data types or to use 

user defined data types. 

10 
Parallel 

Inheritance 

In the case of this smell, every time a 

subclass of a class is made, one also has to 

make a subclass of another [6]. It is 

measured by obtaining DIT(Depth of 

Inheritance)  and NOC (number of children) 

at each level for all the classes. Find DIT 

having depth greater than two and  classes 

having similar DIT and NOC values at 

corresponding levels mean the code smell 

exist. Existence of this code smell can make 

a difference between authors either author 

is creating such subclasses of a class or not. 

11 
Speculative 

Generality 

The code smell describes the existence of 

unnecessary block of code [21]. For 

example, sometimes classes and methods 

are simply created for future enhancement. 

Existence of the smell is measured by 

capturing the abstract classes that have not 

been implemented anywhere in the system. 

We can capture the author behavior because 

of this code smell either author is creating 

abstract classes for future enhancement or 

the author prefer to create such classes 

when required. 
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12 
Message 

Chain 

A situation when there is a chain of 

messages passing from one object to 

another gives birth to “message chain” code 

smell [6]. It is quantified as capture the set 

of classes and objects if we need to call 

three objects to get a method so it is 

cindered as message chain code smell. The 

author behaviors can be captured as either 

they are using multiple objects call to call a 

method or they prefer to call objects closely 

related to it. 

B.  Classifier 

Third phase of methodology is to train classifiers for 

categorizing authors. Four well-known classifiers are 

used including naïve Bayes, decision tree (J48), support 

vector machine (SVM) and k nearest neighbors (kNN). 

SVM is a popular classification algorithm and known 

for its robustness and efficiency [24]. The major causes 

of its success include sound theoretical basis, reliance 

only on few training instances and insensitivity against 

outliers. While learning to classify source codes into 

authors, each code can be represented as a vector in 

feature space. Then decision hyper-planes can be learned 

between different authors with the support of closest 

instances/vectors (known as support vectors)of authors. 

SVM also warranties to deliver maximum margin hyper-

plane. The term margin is defined as a distance of 

supporting vectors from hyper-plane.  

In naive Bayes classifier, Bayesian theorem is 

employed to find posterior probability of authors given 

source code [25]. The computational efficiency of 

classifier is relied on an assumption known as class 

conditionally independence which states that features are 

independent with each other, given the class. Though the 

assumption may not be realistic in most of settings (e.g. 

words in text) yet the classifier has shown its 

effectiveness in various applications. 

The decision tree (DT) classifier learns a hypothesis in 

the form of tree. Each node of the tree relates to a feature 

and each edge of the node represents a test on feature 

value. Leafs of the tree correspond to classes (i.e. 

authors). Once the DT is learned, the classification 

decision is made by passed source code through different 

tests on the features starting from the root node until the 

leaf node is reached where label of the node (i.e. an 

author) is assigned to the document [25]. 

Unlike previously described algorithms, k nearest 

neighbor (KNN) algorithm don’t learn an explicit 

hypothesis rather the training dataset is kept in memory. 

The classification decision is made on the basis of 

majority voting of nearest neighbors of given instance. 

Since there is no generalization beyond the training 

instances in such methods, they are known as lazy 

learners. As the dataset is revisited each time a 

classification decision is performed, the method is 

computationally expensive. Despite that, the method is 

widely studied and quite effective for text categorization 

[26]. This is the reason; we have chosen it to study its 

performance with other classifiers. 

 

IV.  EXPERIMENTATION AND RESULTS 

To gauge the performance of a classifier, a standard f-

measure is used as defined below. 

 

2 pr
F measure

p r



                           (1) 

 

Where p is precision and r is recall. Moreover, k-fold 

cross-validation test is applied to validate the results. 

Experimentations are performed in WEKA (an open 

source machine learning toolkit) [27]. For SVM classifier, 

we used a wrapper of standard LIBSVM 3.17 [28] toolkit 

for WEKA. 

To access the efficacy of author’s style and code smells, 

three test cases are analyzed. Results of all the test cases 

are collectively shown in Fig. 5. First test case is to 

access proficiency of author’s style related features. 

Second test case is to measure the effectiveness of code 

smells. Third test case is to evaluate the performance of 

style related features and code smells collectively. Since 

each classifier makes some assumptions about dataset, 

comparatively analysis of classifiers is also an objective. 

It can be seen from results that the performance of 

classifiers is increased when both stylistic features and 

code smells are collectively used. Moreover, naïve Bays 

classifier has shown an advantage though conditional 

independence assumption may seems unrealistic in this 

setting.     

It may be because of two reasons: firstly, naive Bays 

converge quicker than discriminative models and 

secondly as we have a moderate size dataset, being high 

bias/low variance classifiers, naive Bays has an 

advantage over low bias/high variance classifiers (such as 

kNN) [29]. These results lead us to conclude that code 

smells can provide an additive advantage when 

considered as complementary with stylistic features. 

These results show that in these approaches, as only using 

stylistic features, only using code smells and using both 

stylistic features and code smell the naïve Bayes classifier 

performs really well, having the highest accuracy when it 

is compared with J48 , support vector machines and KNN. 

 

 

Fig.5. Performance of style based, code smells and combined feature 

representations of source code attribution across classifiers. 
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V.  CONCLUSION 

The problem of authorship attribution using stylistic 

features and code smells is considered. Author attribution 

is to identify the author of a code and this can be done by 

the process of feature extraction. Two different aspects of 

source code are considered for its representation into 

feature, one is stylistic features which are regarding the 

author style and the other is code smells which is the 

novel contribution of this work to use code smells along 

with stylistic features. To access the efficacy of author’s 

style and code smells, two test cases are analyzed: First 

test case is to access proficiency of author’s style related 

features. Second test case is to evaluate the performance 

of style related features and code smells collectively. It 

has been shown that the extracted features were 

contributive for authorship attribution, with the 

classification accuracy of 75% by augmenting code 

smells along with stylistic features. Comparative analysis 

of well-known classifiers: Naive bayes, SVM, J48 and 

KNN is also performed and the result shows that in both 

test cases, Naïve Bayes classifier performs really well, 

having the highest accuracy when it is compared with 

other classifiers. In future, multi-author attribution of 

source code will be performed based on the analysis of 

this paper. 

REFERENCES 

[1] A. C. Islam, " Poster: source code authorship attribution," 

Comput.  Cardiol IEEE Press, 1997. 

[2] R. R. Joshi, R. V. Argiddi, "Author identification: an 

approach based on style feature metrics of software source 

codes," International Journal of Computer Science and 

Information Technologies, vol. 4, no. 4, 2013. 

[3] A. Gray, P. Sallis and S. MacDonell, “Software forensics: 

extending authorship analysis techniques to computer 

programs”, in Proceedings of the 3rd Biannual Conference 

of the International Association of Forensic Linguists 

(IAFL), 1997. 

[4] J. Kothari, M. Shevertalov, E. Stehle, and S. Mancoridis, 

“A probabilistic approach to source code authorship 

identification,” In 4th International Conference on 

Information technology, IEEE, 2007, pp. 243–248. 

[5] M. Mantyla,  J. Vanhanen and  C. Lassenius, “A taxonomy 

and initial empirical study of bad smells in code”, in 

Proceedings of the IEEE International Conference on 

Software Maintenance, pp. 381-384, 2003. 

[6] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. 

Roberts,” Refactoring: improving the design of existing 

code,” New Jersey: Addison-Wesley, 2000. 

[7] S. Burrows, A. L. Uitdenbogerd, and A. Turpin, 

“Application of information retrieval techniques for source 

code authorship attribution,” Fourteenth International 

Conference on Database Systems for Advanced 

Applications, April 2009, pp. 699-713. 

[8] G. Frantzeskou, S. Gritzalis and S. G. MacDonell, ”Source 

code authorship analysis for supporting the cybercrime 

investigation process,” in 1st International Conference on 

E-Business and Telecommunication networks, 2004,  pp. 

85-92. 

[9] M. Shevertalov, J. Kothari, E. Stehle, and S. Mancoridis, 

“On the use of discretized source code metrics for author 

identification,” in 1st International Symposium on Search 

Based Software Engineering, 2009, pp. 69-78. 

[10] G. Frantzeskou, S. MacDonell ,E. Stamatatos and S. 

Gritzalis,  “Examining the significance of high-level 

programming features in source code author 

classification,” in Journal of System and Software, vol. 

81,no. 3, pp. 447-460,  2008 

[11] E. H. Spafford and S. A. Weeber, “Software forensics: can 

we track code to its authors?,” Computers & Security, vol. 

12, no. 6, 1993 pp. 585-595. 

[12] N. Rosenblum, X. Zhu, and B. P. Miller, “Who wrote this 

code? Identifying the authors of program binaries,” 

Computer Security–ESORICS 2011, 2011, pp. 172–189.  

[13] N. Rosenblum, X. Zhu, and B. P. Miller, “Software 

forensics applied to the task of Discriminating between 

Program Authors,” in Journal of System Research and 

Information Systems 10,  2001, pp. 113-127. 

[14] R. R. Joshi, R. V. Argiddi and S. Sulabha, “Author 

identification: an approach based on code feature metrics 

using decision trees,” in International Journal of Computer 

Applications (0975-8887), vol. 66, no.4, March 2013. 

[15] F. A. Fontana, P. Braione and M. Zanoni, “Automatic 

detection of bad smells in code: An experimental assess,” 

in Journal of Object Technology, vol.11, no.2, 2012. 

[16] I. Krsul and E. H. Spafford, “Authorship analysis: 

identifying the author of a program,” in proceeding of the 

8th national Information System Security Conference, 

National Institute of Standard and Technology, 1995, pp. 

514-524. 

[17] [Online]. Available: 

https://sourcemaking.com/refactoring/lazy-class 

[18] I. Krsul and E. H. Spafford, Authorship analysis: 

identifying the author of a program, Technical Report TR-

96-052, September 1996. 

[19] A. Gray, and S. MacDonell, “Identified: A dictionary-

based system for extracting source code metrics for 

software forensics,” in Proceeding of Third Software 

Engineering: Education and Practice International 

Conference, IEEE, pp. 252-259, 1998. 

[20] M. A., Cusumano & R. W. Shelby, “Microsoft secrets,” 

New York: NY, 1995. 

[21] M. Fowler, K. Beck, J. Brant, W. Opdyke,D. Roberts. 

Refactoring Improving the Design of Existing Code, 

Addison-Wesley Longman Publishing Co., Inc. Boston, 

MA, USA 1999 ISBN:0-201-48567-2 

[22] T. W. Kim, T. G. Kim and J. H. Seu, “Specification and 

automated detection of code smells using OCL,” in 

International Journal of Software Engineering and Its 

Applications, vol. 7, no. 4, July 2013. 

[23] A. Chatzigeorgiou and A. Manakos,” Investigating the 

evolution of bad smells in object-oriented code,” in 

International conference on  the Quality of Information 

and Communications Technology (QUATIC), IEEE, pp. 

106–115, 2010. 

[24] Y. Lin, “Support vector machines and the bayes rule in 

classification, Data Mining and Knowledge Discovery, vol. 

6, no. 3, pp. 259–275, 2002. 

[25] G. Dimitoglou, J. A. Adams and C. M. Jim, “Comparison 

of the C4.5 and a Naïve Bayes Classifier for the Prediction 

of Lung Cancer Survivability,” Journal of Computing ,vol. 

4, Issue 8, August 2012  

[26] M.L Zhang, “A k-nearest neighbor based algorithm for 

multi-label classification” IEEE International Conference 

on Granular Computing, 2005, pp: 718-721.  

[27] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. 

Reutemann, I. H. Witten, “The WEKA data mining 

software: an update”, ACM SIGKDD Explorations 

Newslette, vol. 11, pp: 10-18, 2009.  

https://sourcemaking.com/refactoring/lazy-class
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10381
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10381
http://dl.acm.org/author_page.cfm?id=81100151066&coll=DL&dl=ACM&trk=0&cfid=652345290&cftoken=63464319
http://dl.acm.org/author_page.cfm?id=81447603807&coll=DL&dl=ACM&trk=0&cfid=652345290&cftoken=63464319
http://dl.acm.org/author_page.cfm?id=81447603807&coll=DL&dl=ACM&trk=0&cfid=652345290&cftoken=63464319
http://dl.acm.org/author_page.cfm?id=81100252005&coll=DL&dl=ACM&trk=0&cfid=652345290&cftoken=63464319


 Source Code Author Attribution Using Author’s Programming Style and Code Smells 33 

Copyright © 2017 MECS                                                             I.J. Intelligent Systems and Applications, 2017, 5, 27-33 

[28] C. C. Chang and C. J. Lin, “LIBSVM: A Library for 

support vector machines,” in ACM Transactions on 

Intelligent Systems and Technology  ,vol.  2, no. 3, 2011. 

[29] H. Zhang, “The Optimality of Naive Bayes”, American 

association for artificial intelligence, 2004. 

 

 

 

Authors’ Profiles 

 
Tehseen Zia received the Ph.D degrees in 

Computer Science from Vienna University 

of Technology, Austria. He is currently 

working as Assistant Professor in 

COMSATS Institute of Information 

Technology, Islamabad. His research 

interests include machine learning and data 

mining.  

 

 

Muhammad Ilyas received the Ph.D in 

Software Engineering from Johannes 

Kepler University Linz. He is currently 

working as Assistant Professor in 

Department of Computer Science, 

University of Sargodha. His research 

interests include Software Engineering, 

Human Computer Interaction and Artificial Intelligence. 

 

 

Muqaddas Gull received her B.S degree in 

Software Engineering from University of 

Sargodha in 2013. She has received her 

M.S degree in Computer Science from 

University of Sargodha in 2015.  

Her research interests include machine 

learning, data mining and software 

requirement engineering. 

 

 

 

How to cite this paper: Muqaddas Gull, Tehseen Zia, 

Muhammad Ilyas,"Source Code Author Attribution Using 

Author's Programming Style and Code Smells", International 

Journal of Intelligent Systems and Applications(IJISA), Vol.9, 

No.5, pp.27-33, 2017. DOI: 10.5815/ijisa.2017.05.04 


