
I.J. Intelligent Systems and Applications, 2017, 5, 27-33
Published Online May 2017 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijisa.2017.05.04

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 5, 27-33

Source Code Author Attribution Using Author’s

Programming Style and Code Smells

Muqaddas Gull
University of Sargodha, Sargodha, 40100, Pakistan

E-mail: Muqaddasgull@yahoo.com

Tehseen Zia and Muhammad Ilyas
COMSATS Institute of Information Technology, Islamabad, 44000, Pakistan, University of Sargodha,

Sargodha, 40100, Pakistan,

E-mail: {tehseen.zia@comsats.edu.pk, m.ilyas@uos.edu.pk}

Abstract—Source code is an intellectual property and

using it without author’s permission is a violation of

property right. Source code authorship attribution is vital

for dealing with software theft, copyright issues and

piracies. Characterizing author’s signature for identifying

their footprints is the core task of authorship attribution.

Different aspects of source code have been considered for

characterizing signatures including author’s coding style

and programming structure, etc. The objective of this

research is to explore another trait of authors’ coding

behavior for personifying their footprints. The main

question that we want to address is that “can code smells

are useful for characterizing authors’ signatures? A

machine learning based methodology is described not

only to address the question but also for designing a

system. Two different aspects of source code are

considered for its representation into features: author’s

style and code smells. The author’s style related feature

representation is used as baseline. Results have shown

that code smell can improves the authorship attribution.

Index Terms—Authorship, Source Code, Stylistic

Feature, Code Smell, Author style.

I. INTRODUCTION

Source code is an intellectual property and using it

without author’s permission is a violation of property

right [1]. Source code authorship attribution is vital for

dealing with software theft, copyright issues and piracies

[2]. The broad area of study is known as software

forensics [3]. A widely recognized way for performing

attribution is through capturing and recognizing authors’

signatures [4]. The domain of computer science that

provides structures and algorithms for storing and

identifying authors’ footprints is known as machine

learning. The effectiveness of this methodology is mainly

relaying on defining signatures in terms of features.

Different aspects of source code have been considered for

characterizing signatures including author’s coding style.

The objective of this research is to explore a new trait

of authors’ coding behavior for personifying footprints.

Some authors are stricter to follow standard software

engineering guidelines than others. This trait can be

characterized by using code smells. The term “bad smell”

is coined by Kent Beck to indicate that something

somewhere in code has gone off beam. Each code smell

corresponds to some standard software development

guideline and presence of the smell indicates the lack of

corresponding practice. The values of code smells

indicate the degree of deficiency. The detail description

of these code smells is given in [5]. While coding style

can characterize regularities in authors’ writing style,

code smells can describe consistencies of authors’

deviation from standard software engineering practices

[6].

As coding style is a well-explored aspect for authors’

signatures, it is considered as baseline method in this

work. The main question that we want to address is that

“can code smells are useful for characterizing authors’

signatures? A machine learning based methodology is

employed to address the question. The paper is organized

as follows: related work is described in Section 2,the

experimental methodology is presented in Section 3,

results are presented in Section 4 and conclusion is

described in Section 5.

II. RELATED WORK

Authorship attribution of source code is different than

attribution of text documents in different aspects; for

instance, source code is not fully unstructured as text

documents. The programming paradigm, language syntax,

software engineering practices and development

environments imposed the structure. Moreover, the

software engineering practices force programmers to

reuse the already developed code for common tasks.

Furthermore, specific naming conventions for identifiers

and functions used by development teams for consistency

purposes brings back the impartiality of using authors’

manifestation. Therefore, the standard techniques for

attribution of text document (e.g. bag-of-words based

features) may not be effective for source code. Majority

of research on this topic is therefore focused on analyzing

features for personifying authors.

In [2], nine software features from programming layout

mailto:tehseen.zia@comsats.edu.pk
mailto:m.ilyas@uos.edu.pk

28 Source Code Author Attribution Using Author’s Programming Style and Code Smells

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 5, 27-33

& design are analyzed by using C4.5 classification

algorithm. The features include i-as-iterator, Line Length,

Comments, Average procedure length, Methods, Number

of Arrays, Object Creation, Single literal variable and

Double literal variable. In reported results the system has

achieved an accuracy of 68.89%. In [5],the considered

features are from three different categories including

programming layout, programming structure and

programming style. To analyze their effectiveness two

classification algorithms are used including Gaussian

classifier and MLP neural network. The achieved

accuracy was 73% using MLP. They support the

conclusion that for a limited set of programmer it is

possible to identify a particular author and the probability

to find that two programmers share exactly same

characteristics should be very small. In another similar

study [3], the author used stylist features including

distribution of line size, leading spaces, underscores per

line, semicolons, commas per line and tokens per line.

The performance was analyzed by using naïve Bays and

voting feature intervals. It is shown that VFI and naïve

Bayes increase the success rate of classification.

In [6], the author used a variety of metrics categorizing

them into three categories including programming style,

programming layout and programming structure. A

subset of effective features is obtained through a

statistical analysis. Using a statistical approach known as

SAS, the author has shown an overall classification

accuracy of 73%. In [7],the effectiveness of operators,

white space, literals, keywords, functions and I/O words

has been shown by achieving an accuracy of 76.78% with

these features. In [1], code stylometry based authorship

attribution is performed by using JStylo tool. It is shown

that SVM leads to highest accuracy and obtained the

success rate varying from 70.31% to 90.91%.In [8], the

author employed programming layout, style and structure

metrics and compared the performance of three

classification algorithms including discriminant analysis,

neural network and case base reasoning. It is found that

other statistical methods such as Bayesian technique can

produce good result. In [4], the author evaluates the effect

of discretization using a genetic algorithm. The author

used four metrics including leading space, leading tab,

line length and line word. The performance of GA is

comparatively analyzed with other methods of

discretization including range based discretization,

frequency based discretization and no discretization. In

reported results the system has achieved an accuracy of

60% for range based discretization, 70% for frequency

based discretization and 65% with no discretization. In

[9], the author used a variety of metrics including number

of each type of data types, the cyclomatic complexity,

quantity and quality of comments, type of variables and

layout of code. They are also working on IDENTIFIED

toolkit for automatic extraction of these metrics.

In [10], the author used a variety of metrics

categorizing them into four categories including

comments, programming layout features, identifiers and

programming structure features. Comparative analysis is

performed on two programming languages including java

and common lisp and it is found that the selected metrics

have strong influence for java programs but not for

common lisp. In [11], the author propose to use lexical

features such as variable names, formatting and

comments, and some syntactic features such as presence

of bugs and use of keywords for source code author

attribution, but they don’t report any result or a case study

experiment with a formal approach. In [12], the author

presents a technique for automatic extraction of stylistic

features from programs’ binaries. The effectiveness of N-

grams, idioms, graphlets, supergraphlets, call graphlets

and library calls has been shown with an accuracy of 77%.

In [13], twenty six metrics are analyzed by using case-

based reasoning, multiple discriminant analysis and feed

forward neural network. The features include LOC,

portion of letters that are uppercase, variables per line,

portion of inline comments, pure comments, mean

number of characters per line, cyclomatic complexity, if

statements per NCLOC(Non comment per LOC), switch

statements per NCLOC, while statements per NCLOC,

decision statements per NCLOC etc. In reported results

the system has achieved an accuracy of 88.0% in case of

using case bases reasoning.

In [14], the author used a variety of metrics

categorizing them into two categories including counting

metrics e.g. leading spaces, trailing spaces, leading tabs,

trailing tabs, line length, LOC, brace position, comments,

average procedure length, average indentation, number of

methods, unary and binary operators, number of loops,

single literal variables, double literal variables and

Boolean metrics e.g. i-as-iterator, conditional operator,

try statements, naïve variable names and methods

chaining. They have used decision tree algorithm for

classification.

In this paper, we are presenting the analysis of an

unexplored aspect of source code that deals with

analyzing the code according to software development

standards. The code smells are employed to model and

quantify the code (and its author) according to the

standard. Though no work is conducted for employing

code smells for author attribution, code smells have been

employed for other tasks such as software inspection [15]

and improving software design [16].

III. METHODOLOGY

The authorship attribution of source code is posed as

classification problem as shown in Fig. 1. Availability of

a dataset is an essential requirement to develop and test

the methodology. Many open source code repositories are

available for accessing a set of source codes with

designated authors e.g. planet-source-code 1 , Source

Forge2, Codeplex3 and GitHub4, however most of these

repositories contain source codes written by multiple

authors. Since we want to analyze the efficacy of code

smells for author attribution, we are interested in source

1 http://www.planet-source-code.com/
2 http://sourceforge.net/
3 https://www.codeplex.com/
4 https://github.com/

https://www.codeplex.com/

 Source Code Author Attribution Using Author’s Programming Style and Code Smells 29

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 5, 27-33

codes written by the single authors. One such readily

available source for collecting the codeisplanet-source-

code.com [17].The data set containing source code of

nine different authors is collected from this source. The

total gathered files are 153 including 42559 line of code

(LOC).Distribution of LOC over authors is shown in Fig.

2. All the source code collected for our experiment was

written in Java.

Fig.1. Block diagram of source code author attribution

Fig.2. Distribution of LOC over authors

In the next phase, the code is represented in the form of

features to generate a dataset. Two different aspects of

source code are considered for the representation:

author’s coding style and code smells. The selection of

style related features is based on related work [1-4, 7-14,

18-20]. However, the analysis of code smell related

features is a novel contribution of this work. For feature

extraction, two feature extractor modules are developed

for each aspect of code as shown in Fig. 1. The style

related feature extractor module (named as stylistic

feature extractor) extracts features related with author’s

writing style. The code smell extractor module extracts

features related to code smells. The interface of this

module is shown in Fig. 3 and 4. Description of features

is given in Section 3.1.To evaluate the performance of

both feature representations, three well-known classifiers

Fig.3. A screenshot of stylistic feature extractor/visualizer module

are employed including naïve Bays, decision tree (i.e.

J48), support vector machine and k nearest neighbors

(KNN). A brief introduction of the classifiers is given in

Section 3.2.

Fig.4. A screenshot of code smell extractor/visualizer module

A. Description of Features

In this section, features are presented that are used for

representing source code. Total number of considered

features is 24 where 12 features are used to represent

author’s style and remaining 12 are used for

representation of code smells. Description of style related

features is given in Table 1.

Table 1. Features for representing author’s style.

Sr.

No
Name Description

1 i-as-iterator

The feature counts occurrences of i

as loop iterator variable in source

code file. Some authors use

variable ‘i’ as an iterator in every

loop while others intentionally

avoid it. So, it represent the number

of times the author used i as-

iterator.

2 AvgLineLength(C)

It measures average line length in

terms of characters of a source

code file. Some authors have the

habit of writing code into single

line while some others write in

multiple lines.

3 AvgLineLength(W)
It measures average line length in

terms of words in source code file.

4 EL/Non-EL

It is the ratio of empty lines with

non-empty lines. Empty lines are

those lines which contain no

character (not even a whitespace

character) and non-EL contains one

or more character other than

newline character.

5 numTabs/length

This feature is a ratio between

count of tab characters and total

characters in a source code file and

quantify the indentation of code

using tab.

6 numSpaces/length

It is a ratio between count of space

characters with total characters in a

source code file and measures

sparsityor density of code.

LOC

Authors

30 Source Code Author Attribution Using Author’s Programming Style and Code Smells

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 5, 27-33

7 EL/length

The feature is the ratio of empty

lines in a source code file with total

characters. It is another measure to

represent sparsity or density of

code.

8 Uppercase

It is a percentage of

uppercase/capital characters with

total characters. One way to

captures authors’ variable name

style.

9 Char/words

It is a ratio of total number of

characters with total words in a

source code file.

10 Spaces/SLOC-P

Spaces/SLOC-P represents ratio of

total no of spaces count with

SLOC-P in a source code file.

11 Statements/SLOC-L

It is a measure of ratio between

total statements with SLOC-L in a

source code file.

12 Words/statements

Words/statements represents ratio

of total no of words count with

total no. of statements in a source

code file.

As code smells are the indications of potential

problems in the software design, they are the symptoms

of the problem which could be cured by refactoring.

Different software metrics are used to detect the code

smells [5, 6]. We transformed the metrics into features to

exploiting them for attribution of authors. Description of

the features is given in Table 2.

Table 2. Features for representing code smells.

S.No Name Description

1

Long

parameter

list

When a piece of code has a method having

a large number of parameters in its

parameter list, it is said to have long

parameter list [21]. This feature is a

representation of this metric. As, some

authors have the habit of using long

parameter list while others not, so the

feature can make a difference between such

authors.

2
Long

method

It is a measure of how much functionality

functions are performing[21]. Usually it is

determined on the basis of instance

variables and number of lines of functions.

As, some authors have the habit of writing

short methods while others write long

methods, so the feature can make a

difference between such authors.

3 Large Class

It is a quantification of how much a class is

loaded and often measures on the basis of

instance variables, methods and LOC [21].

This feature can provide a differentiation

about the authors that prefers to create small

classes with those create large class.

4 Lazy Class

The term lazy class is used for referring the

class that isn’t doing much [22]. Lazy class

is a class which is least fulfilling the

purpose of creation. This feature is a

quantification of laziness of classes and can

differentiate between authors creating lazy

classes or author that does not.

5
Feature

Envy

When a method in a class is manipulating

the data of another class rather than itself,

the characteristic is known as feature envy

code smell. The code smell is usually

measured by identifying variables and

methods of other classes accessed by that

method. Existence of feature envy can make

a difference between authors as either the

author is using such methods or not.

6 Data Class

The term data class is used for class that

only contains fields, getters and setters.

Such a classis just a dump data holder and

possesses no functionality. The code smell

is usually measured as if a class only

contains getter, setter methods, default

constructor and data members; consider it

as data class bad smell. Existence of this

code smell can make a difference between

authors i.e. some authors have the habit of

creating such classes which only contain

different getting and setting methods.

7
Switch

Statements

When a number of switch statements are

scattered throughout the source code it is

indication of switch cases code smell [6].

The smell is quantified by counting all

switch cases. If the switch cases count

exceeds conditions and threshold values

specified in our research work, consider this

switch statement as switch statement bad

smell. It can be an indication of an author

specific behavior of using switch statement.

8 Comments

Burdening the code with comments is also

considered as a code smell [21].The smell is

measured by counting comment lines if it

contains comments greater than 18%,

consider it as comment bad smell. Some

authors have the habit of writing excessive

comments. Such authors can be

differentiated based on the smell.

9
Primitive

Obsession

Primitive Obsession is using primitive data

type to represent domain ideas [6] as we use

String to represent date instead of using

Date class. The code smell is usually

measured by obtaining the number of

primitive variables of each class and

calculating their average. All the classes

having NOV (Number of variables) greater

than the counted average consider that

primitive obsession code smell exists.

Existence of this code smell can make a

difference between authors as either authors

prefer to use primitive data types or to use

user defined data types.

10
Parallel

Inheritance

In the case of this smell, every time a

subclass of a class is made, one also has to

make a subclass of another [6]. It is

measured by obtaining DIT(Depth of

Inheritance) and NOC (number of children)

at each level for all the classes. Find DIT

having depth greater than two and classes

having similar DIT and NOC values at

corresponding levels mean the code smell

exist. Existence of this code smell can make

a difference between authors either author

is creating such subclasses of a class or not.

11
Speculative

Generality

The code smell describes the existence of

unnecessary block of code [21]. For

example, sometimes classes and methods

are simply created for future enhancement.

Existence of the smell is measured by

capturing the abstract classes that have not

been implemented anywhere in the system.

We can capture the author behavior because

of this code smell either author is creating

abstract classes for future enhancement or

the author prefer to create such classes

when required.

 Source Code Author Attribution Using Author’s Programming Style and Code Smells 31

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 5, 27-33

12
Message

Chain

A situation when there is a chain of

messages passing from one object to

another gives birth to “message chain” code

smell [6]. It is quantified as capture the set

of classes and objects if we need to call

three objects to get a method so it is

cindered as message chain code smell. The

author behaviors can be captured as either

they are using multiple objects call to call a

method or they prefer to call objects closely

related to it.

B. Classifier

Third phase of methodology is to train classifiers for

categorizing authors. Four well-known classifiers are

used including naïve Bayes, decision tree (J48), support

vector machine (SVM) and k nearest neighbors (kNN).

SVM is a popular classification algorithm and known

for its robustness and efficiency [24]. The major causes

of its success include sound theoretical basis, reliance

only on few training instances and insensitivity against

outliers. While learning to classify source codes into

authors, each code can be represented as a vector in

feature space. Then decision hyper-planes can be learned

between different authors with the support of closest

instances/vectors (known as support vectors)of authors.

SVM also warranties to deliver maximum margin hyper-

plane. The term margin is defined as a distance of

supporting vectors from hyper-plane.

In naive Bayes classifier, Bayesian theorem is

employed to find posterior probability of authors given

source code [25]. The computational efficiency of

classifier is relied on an assumption known as class

conditionally independence which states that features are

independent with each other, given the class. Though the

assumption may not be realistic in most of settings (e.g.

words in text) yet the classifier has shown its

effectiveness in various applications.

The decision tree (DT) classifier learns a hypothesis in

the form of tree. Each node of the tree relates to a feature

and each edge of the node represents a test on feature

value. Leafs of the tree correspond to classes (i.e.

authors). Once the DT is learned, the classification

decision is made by passed source code through different

tests on the features starting from the root node until the

leaf node is reached where label of the node (i.e. an

author) is assigned to the document [25].

Unlike previously described algorithms, k nearest

neighbor (KNN) algorithm don’t learn an explicit

hypothesis rather the training dataset is kept in memory.

The classification decision is made on the basis of

majority voting of nearest neighbors of given instance.

Since there is no generalization beyond the training

instances in such methods, they are known as lazy

learners. As the dataset is revisited each time a

classification decision is performed, the method is

computationally expensive. Despite that, the method is

widely studied and quite effective for text categorization

[26]. This is the reason; we have chosen it to study its

performance with other classifiers.

IV. EXPERIMENTATION AND RESULTS

To gauge the performance of a classifier, a standard f-

measure is used as defined below.

2 pr
F measure

p r



 (1)

Where p is precision and r is recall. Moreover, k-fold

cross-validation test is applied to validate the results.

Experimentations are performed in WEKA (an open

source machine learning toolkit) [27]. For SVM classifier,

we used a wrapper of standard LIBSVM 3.17 [28] toolkit

for WEKA.

To access the efficacy of author’s style and code smells,

three test cases are analyzed. Results of all the test cases

are collectively shown in Fig. 5. First test case is to

access proficiency of author’s style related features.

Second test case is to measure the effectiveness of code

smells. Third test case is to evaluate the performance of

style related features and code smells collectively. Since

each classifier makes some assumptions about dataset,

comparatively analysis of classifiers is also an objective.

It can be seen from results that the performance of

classifiers is increased when both stylistic features and

code smells are collectively used. Moreover, naïve Bays

classifier has shown an advantage though conditional

independence assumption may seems unrealistic in this

setting.

It may be because of two reasons: firstly, naive Bays

converge quicker than discriminative models and

secondly as we have a moderate size dataset, being high

bias/low variance classifiers, naive Bays has an

advantage over low bias/high variance classifiers (such as

kNN) [29]. These results lead us to conclude that code

smells can provide an additive advantage when

considered as complementary with stylistic features.

These results show that in these approaches, as only using

stylistic features, only using code smells and using both

stylistic features and code smell the naïve Bayes classifier

performs really well, having the highest accuracy when it

is compared with J48 , support vector machines and KNN.

Fig.5. Performance of style based, code smells and combined feature

representations of source code attribution across classifiers.

32 Source Code Author Attribution Using Author’s Programming Style and Code Smells

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 5, 27-33

V. CONCLUSION

The problem of authorship attribution using stylistic

features and code smells is considered. Author attribution

is to identify the author of a code and this can be done by

the process of feature extraction. Two different aspects of

source code are considered for its representation into

feature, one is stylistic features which are regarding the

author style and the other is code smells which is the

novel contribution of this work to use code smells along

with stylistic features. To access the efficacy of author’s

style and code smells, two test cases are analyzed: First

test case is to access proficiency of author’s style related

features. Second test case is to evaluate the performance

of style related features and code smells collectively. It

has been shown that the extracted features were

contributive for authorship attribution, with the

classification accuracy of 75% by augmenting code

smells along with stylistic features. Comparative analysis

of well-known classifiers: Naive bayes, SVM, J48 and

KNN is also performed and the result shows that in both

test cases, Naïve Bayes classifier performs really well,

having the highest accuracy when it is compared with

other classifiers. In future, multi-author attribution of

source code will be performed based on the analysis of

this paper.

REFERENCES

[1] A. C. Islam, " Poster: source code authorship attribution,"

Comput. Cardiol IEEE Press, 1997.

[2] R. R. Joshi, R. V. Argiddi, "Author identification: an

approach based on style feature metrics of software source

codes," International Journal of Computer Science and

Information Technologies, vol. 4, no. 4, 2013.

[3] A. Gray, P. Sallis and S. MacDonell, “Software forensics:

extending authorship analysis techniques to computer

programs”, in Proceedings of the 3rd Biannual Conference

of the International Association of Forensic Linguists

(IAFL), 1997.

[4] J. Kothari, M. Shevertalov, E. Stehle, and S. Mancoridis,

“A probabilistic approach to source code authorship

identification,” In 4th International Conference on

Information technology, IEEE, 2007, pp. 243–248.

[5] M. Mantyla, J. Vanhanen and C. Lassenius, “A taxonomy

and initial empirical study of bad smells in code”, in

Proceedings of the IEEE International Conference on

Software Maintenance, pp. 381-384, 2003.

[6] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D.

Roberts,” Refactoring: improving the design of existing

code,” New Jersey: Addison-Wesley, 2000.

[7] S. Burrows, A. L. Uitdenbogerd, and A. Turpin,

“Application of information retrieval techniques for source

code authorship attribution,” Fourteenth International

Conference on Database Systems for Advanced

Applications, April 2009, pp. 699-713.

[8] G. Frantzeskou, S. Gritzalis and S. G. MacDonell, ”Source

code authorship analysis for supporting the cybercrime

investigation process,” in 1st International Conference on

E-Business and Telecommunication networks, 2004, pp.

85-92.

[9] M. Shevertalov, J. Kothari, E. Stehle, and S. Mancoridis,

“On the use of discretized source code metrics for author

identification,” in 1st International Symposium on Search

Based Software Engineering, 2009, pp. 69-78.

[10] G. Frantzeskou, S. MacDonell ,E. Stamatatos and S.

Gritzalis, “Examining the significance of high-level

programming features in source code author

classification,” in Journal of System and Software, vol.

81,no. 3, pp. 447-460, 2008

[11] E. H. Spafford and S. A. Weeber, “Software forensics: can

we track code to its authors?,” Computers & Security, vol.

12, no. 6, 1993 pp. 585-595.

[12] N. Rosenblum, X. Zhu, and B. P. Miller, “Who wrote this

code? Identifying the authors of program binaries,”

Computer Security–ESORICS 2011, 2011, pp. 172–189.

[13] N. Rosenblum, X. Zhu, and B. P. Miller, “Software

forensics applied to the task of Discriminating between

Program Authors,” in Journal of System Research and

Information Systems 10, 2001, pp. 113-127.

[14] R. R. Joshi, R. V. Argiddi and S. Sulabha, “Author

identification: an approach based on code feature metrics

using decision trees,” in International Journal of Computer

Applications (0975-8887), vol. 66, no.4, March 2013.

[15] F. A. Fontana, P. Braione and M. Zanoni, “Automatic

detection of bad smells in code: An experimental assess,”

in Journal of Object Technology, vol.11, no.2, 2012.

[16] I. Krsul and E. H. Spafford, “Authorship analysis:

identifying the author of a program,” in proceeding of the

8th national Information System Security Conference,

National Institute of Standard and Technology, 1995, pp.

514-524.

[17] [Online]. Available:

https://sourcemaking.com/refactoring/lazy-class

[18] I. Krsul and E. H. Spafford, Authorship analysis:

identifying the author of a program, Technical Report TR-

96-052, September 1996.

[19] A. Gray, and S. MacDonell, “Identified: A dictionary-

based system for extracting source code metrics for

software forensics,” in Proceeding of Third Software

Engineering: Education and Practice International

Conference, IEEE, pp. 252-259, 1998.

[20] M. A., Cusumano & R. W. Shelby, “Microsoft secrets,”

New York: NY, 1995.

[21] M. Fowler, K. Beck, J. Brant, W. Opdyke,D. Roberts.

Refactoring Improving the Design of Existing Code,

Addison-Wesley Longman Publishing Co., Inc. Boston,

MA, USA 1999 ISBN:0-201-48567-2

[22] T. W. Kim, T. G. Kim and J. H. Seu, “Specification and

automated detection of code smells using OCL,” in

International Journal of Software Engineering and Its

Applications, vol. 7, no. 4, July 2013.

[23] A. Chatzigeorgiou and A. Manakos,” Investigating the

evolution of bad smells in object-oriented code,” in

International conference on the Quality of Information

and Communications Technology (QUATIC), IEEE, pp.

106–115, 2010.

[24] Y. Lin, “Support vector machines and the bayes rule in

classification, Data Mining and Knowledge Discovery, vol.

6, no. 3, pp. 259–275, 2002.

[25] G. Dimitoglou, J. A. Adams and C. M. Jim, “Comparison

of the C4.5 and a Naïve Bayes Classifier for the Prediction

of Lung Cancer Survivability,” Journal of Computing ,vol.

4, Issue 8, August 2012

[26] M.L Zhang, “A k-nearest neighbor based algorithm for

multi-label classification” IEEE International Conference

on Granular Computing, 2005, pp: 718-721.

[27] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P.

Reutemann, I. H. Witten, “The WEKA data mining

software: an update”, ACM SIGKDD Explorations

Newslette, vol. 11, pp: 10-18, 2009.

https://sourcemaking.com/refactoring/lazy-class
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10381
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10381
http://dl.acm.org/author_page.cfm?id=81100151066&coll=DL&dl=ACM&trk=0&cfid=652345290&cftoken=63464319
http://dl.acm.org/author_page.cfm?id=81447603807&coll=DL&dl=ACM&trk=0&cfid=652345290&cftoken=63464319
http://dl.acm.org/author_page.cfm?id=81447603807&coll=DL&dl=ACM&trk=0&cfid=652345290&cftoken=63464319
http://dl.acm.org/author_page.cfm?id=81100252005&coll=DL&dl=ACM&trk=0&cfid=652345290&cftoken=63464319

 Source Code Author Attribution Using Author’s Programming Style and Code Smells 33

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 5, 27-33

[28] C. C. Chang and C. J. Lin, “LIBSVM: A Library for

support vector machines,” in ACM Transactions on

Intelligent Systems and Technology ,vol. 2, no. 3, 2011.

[29] H. Zhang, “The Optimality of Naive Bayes”, American

association for artificial intelligence, 2004.

Authors’ Profiles

Tehseen Zia received the Ph.D degrees in

Computer Science from Vienna University

of Technology, Austria. He is currently

working as Assistant Professor in

COMSATS Institute of Information

Technology, Islamabad. His research

interests include machine learning and data

mining.

Muhammad Ilyas received the Ph.D in

Software Engineering from Johannes

Kepler University Linz. He is currently

working as Assistant Professor in

Department of Computer Science,

University of Sargodha. His research

interests include Software Engineering,

Human Computer Interaction and Artificial Intelligence.

Muqaddas Gull received her B.S degree in

Software Engineering from University of

Sargodha in 2013. She has received her

M.S degree in Computer Science from

University of Sargodha in 2015.

Her research interests include machine

learning, data mining and software

requirement engineering.

How to cite this paper: Muqaddas Gull, Tehseen Zia,

Muhammad Ilyas,"Source Code Author Attribution Using

Author's Programming Style and Code Smells", International

Journal of Intelligent Systems and Applications(IJISA), Vol.9,

No.5, pp.27-33, 2017. DOI: 10.5815/ijisa.2017.05.04

