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Abstract—The method for construction adaptive observ-

ers (AO) time-varying linear dynamic objects at non-

fulfillment of condition excitation constancy (EC) is pro-

posed. Synthesis of the adaptive observer is given as the 

solution of two tasks. The solution first a problem is a 

choice of the constant matrix decreasing the effect of EC 

condition. Procedures for obtaining of this matrix are 

proposed. The matrix specifies restrictions for a vector of 

parameters AO. The solution of the second problem gives 

a method of design adaptive multiplicative algorithms in 

the presence of the obtained restrictions. Procedures for 

an estimation uncertainty in an object are proposed. They 

are based on obtaining of static models giving the fore-

cast change of uncertainty. Optimum estimations of the 

uncertainty are obtained which minimize an error be-

tween outputs of the object and AO. An exponential dis-

sipativity of adaptive system is proved. The results of the 

modeling confirming the effectiveness of designed meth-

ods and procedures are presented. 

 

Index Terms—Adaptive observer, identification, uncer-

tainty, time-varying system, exponential dissipativity, 

Lyapunov vector function. 

 

I.  INTRODUCTION 

Construction of adaptive observers (AO) is one of the 

rapidly developing areas of control theory. The basis of 

theory AO for the linear class of dynamic systems has 

been obtained an the end of past century [1-6]. The class 

of adaptive systems having a special identification repre-

sentation in space "input-output" was proposed. Despite 

this, the research in this area continues. In particular, de-

sign methods of AO for time-varying objects are pro-

posed. The majority of the approaches are based on the 

generalization of the results which are obtained for linear 

time-invariant dynamic systems. 

So, problem of combined identification and control of 

the discrete dynamic system with time-varying parame-

ters is considered in [7]. It is supposed that parameters are 

piecewise constant, and the modification time is deter-

mined by means of the Markov chain. Convergence of 

adaptive algorithms is proved. The set of criteria allowing 

minimizing an error of forecasting an output system is 

applied to improve an efficiency of control. Such ap-

proach complicates identification systems. The problem 

of adaptive identification time-varying nonlinear plant is 

considered in [8]. It is supposed that the plant state vector 

is measured and description of a nonlinear part of the 

system is known. The unknown vector of system parame-

ters approximates Taylor series. The adaptive algorithm 

of identification is offered. Lüders-Narendra adaptive 

observer is applied to stabilization of time-varying non-

linear continuous system in [9]. Boundedness of trajecto-

ries in an adaptive system is proved. 

Methods of adaptive control dynamic systems with 

variable parameters are proposed in [10]. It is supposed 

that parameters have the restricted velocity of the change. 

Boundedness of trajectories in an adaptive system is 

proved. This approach improves the quality of transients 

in an adaptive system. It on nonlinear time-varying sys-

tems can be generalized. 

A multidimensional linear time-varying dynamical sys-

tem is considered in [11]. Matrixes of state and control 

are considered as the known functions of time. It is sup-

posed that the linear part of the system depends on an 

unknown parameter vector. The adaptive Kalman filter 

for a state estimation and system parameters is offered. 

Considered methods and algorithms do not allow en-

suring the unbiasedness of obtained estimations [12, 13]. 

Explain it to that the law of the change parameters is un-

known. Therefore, the majority of approaches on the qua-

si-stationary hypothesis are based. 

The solution of design problem AO can be based an 

application: (i) different methods of time-varying pa-

rameters approximation [8]; (ii) the compensating control 

influences [9, 14]. Choice of the reference model for AO 

in [14] is realized on the basis of the analysis the a priori 

information. The law of parameters objects change under 

the uncertainty is usually unknown. Therefore, the object 

as a system with parametric uncertainty is considered. 

Adaptive observer application for the control of sta-

tionary uncertain objects is given in [3, 15]. The case 

when uncertainty is a discrepancy of a model to plant 

(structural disturbances) is studied. Such disturbances are 

called non-modeling dynamics. Algorithms which ensure 

robustness to these disturbances are designed. 

So, the problem of time-varying systems identification 

is topical. The condition of the excitation constancy is the 

basis of the design effective adaptive systems. This con-

dition often is not fulfilled. Stability AO under these con-

ditions was not studied. The second important problem is 

the parametric disturbances estimation in a system. As a 

rule, parametric disturbances suppose the restricted. A 

posteriori method of the parametric uncertainty estima-

tion was not offered. 
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We propose the method of design AO for a linear time-

varying dynamic object at condition EC non-fulfillment. 

The problem of synthesis the adaptive observer is divided 

into two subtasks. The solution of the first problem gives 

a choice of the constant matrix alleviating condition EC. 

This matrix superimposes restrictions on the parameters 

vector AO. The method of the matrix construction is pro-

posed. The set (vector) of multiplicative adjusted parame-

ters (MAP) is introduced at the second stage of the prob-

lem solution. The method of the dimension choice MAP 

is proposed. Adaptive identification is reduced to the de-

sign problem of algorithms under restriction. The method 

 -algorithms [15, 16] is applied to its solution. Next, the 

problem of uncertainty estimation in the object is consid-

ered. Two approaches are offered to the solution of this 

problem. The first approach allows obtaining static model 

on the basis which the uncertainty estimation is deter-

mined. The adjusted parameter is introduced for raise of 

an exactitude of the estimation. It allows minimizing a 

total the prediction error. The second approach is based 

on the construction of a static model depending on cur-

rent values of parameters AO. We introduce the adjusted 

parameter. It raises the exactitude of the uncertainty esti-

mation. Boundedness and exponential dissipativity of 

trajectories of the adaptive system are proved. Computer 

modeling AO is fulfilled. 

The work has the following structure. Section 2 con-

tains the problem statement. The equation AO is obtained 

in section 3. The control compensating uncertainty is 

introduced. Main assumptions concerning properties of 

the system are considered. Parametrization of the control 

for increase of identification accuracy is performed. The 

parametric variable allowing adapting control to the exist-

ing uncertainty is introduced. The design of adaptive al-

gorithms at non-performance of excitation constancy 

condition is proposed in section 4. Multiplicative parame-

ters are introduced for fulfillment EC in a special para-

metrical space.  -algorithms of the parametrical variable 

tuning are designed. Variants of the accounting of a pos-

teriori information on the system are considered. Section 

5 gives the description of a matrix H  choice ensuring 

contraction of parametrical space AO for fulfillment EC. 

The condition of domination is algorithm basis for the 

design of the matrix H . The problem of the uncertainty 

estimation is considered in section 6. The task solution is 

based on the introduction of a variable estimating uncer-

tainty in the system. The adjusted coefficient   before 

this variable raises the estimation accuracy. Properties of 

the adaptive system are researched in section 7. Bound-

edness of adaptive system trajectories is proved. Proper-

ties of AO with various algorithms for control and adap-

tation are researched. Obtained results are based on the 

application of Lyapunov vector functions. The proof of 

main statements is given in appendices. Results of model-

ing are presented in section 8. The conclusion contains 

the short review of obtained results. 

 

 

II.  PROBLEM STATEMENT 

Consider the object described by the equation 

 
( ) ( )

1( ) ( ) ( )m m

mx a t x a t x b t r    , y x ,      (1) 

 

where 
1 2( ) ( ) ( ) ( ) ( )

T

mt a t a t a t b t    
, r R , y R  are 

input and output, G , 1G mR

  is restricted and a pri-

ori an unknown area. 

Components of the vector ( )t  have the form 

 
0( ) ( )i i it t    , 1, 1i m  , 

 

where ( ) | const 0i it     , 0 consti  . 

The laws of change ( )i t  also are unknown. 

 

Assumption 1. The change velocity ( )i t is restricted 

and unknown. 

 

Assumption 2. The vector 0( ) ( )t t    belongs to 

set 

 

0G \ G 
 ,                       (2) 

 

where 0 0 0 0 0

1 2

T

ma a a b     . 

(2) is the condition of uncertainty. The experimental 

information on an object has the form 

 

 I ( ), ( ),o r t y t t J  , 

 

where J R is the specified interval of the time. 

The condition EC is not fulfilled for the input ( )r t . 

Problem: design for (1) adaptive observer that the con-

dition was satisfied 

 

ˆlim ( ) ( ) y
t

y t y t 


  ,                   (3) 

 

where ˆ( )y t is output AO, 0y  . 

 

III.  EQUATION OF ADAPTIVE OBSERVER 

Write the equation (1) in the form 

 

( , , )Ty P f y r    ,                   (4) 

 

where 2mP R  is the generalized input representing an 

output of the auxiliary filter 

 

1 1 1 1[ ] [ ]T T TP P I y I r   ,              (5) 
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[ ]T T T

y rP y P r P , 
1 [ ]T T T

y rP P P , 2 2

1

mP R   is the 

vector of auxiliary signals obtained on the basis of trans-

formation ( )r t  and ( )y t ;   is the sign of the direct sum 

of matrixes; 1mR   is the diagonal matrix with 0i   

 1, 1i m  ; 1

1

mI R   is unit vector; 2mR  is a vec-

tor corresponding 0 ; ( , , )f y r R   is a component 

depending on the parametric disturbance   in (1). 

 

Assumption 3. The input ( )r t  does not satisfy a condi-

tion of constant excitation. 

 

Assumption 4. ( , , )f y r    at | ( ) |r t  . 

Apply to the object described by the equation (4), 

adaptive model [17] 

 

ˆ ˆ( ) T Ty k y y N H P u     ,             (6) 

 

where 2m lH R   is a matrix with constant parameters, 
lN R  is a vector of adjusted parameters, u R  is a 

control, 2l m . 

Present ( )u t in the form 

 

( ) ( ) ( )Tu t D t P t ,                         (7) 

 

where 
2mD R  is some restricted vector. 

Write the vector D  as 

 

( ) ( )TD t t D ,                         (8) 

 

where 
2mD R , 0( )D t d , 0 0d   is some number, 

( )t R   is controlled variable. 

We suppose that 

 

 0( ) G : ( ) 1t R t t t        .            (9) 

 

The choice of the vector D  ensures fulfillment of the 

condition (9). 

 

IV.  DESIGN OF ADAPTIVE ALGORITHMS 

We propose an approach to the design of the adaptive 

observer at non-performance EC. The preliminary esti-

mate H  of parameter vector the object (4) is obtained. 

The multiplicative tuned vector ( )N t  at matrix H  has 

introduced that fulfillment of conditions EC and (3) to 

ensure. Adaptive  -algorithm for vector is obtained. It is 

based on the accounting of existing restrictions 

Go to the design of adaptive algorithms for the vector 

( )N t  and the variable ( )t . Write the equation for an 

identification error ( )e t  as 

 

( , , )T T Te ke N H P P f y u z       ,       (10) 

 

where Tz D P . 

We see from (10) that the vector ( )HN t  should ap-

proximate unknown parameters vector of the object (4). 

As parametric uncertainty exists, ( )e t  cannot be reduced 

to zero. Apply control ( )u t  to ensure fulfillment of the 

condition (3). 

Linearize function ( )f   

 

( , , , ) ( ) ( )Tf y u t t P t   ,               (11) 

 

where ( )t  is some vector. 

We assume that on the basis of the made assumptions 

 

| ( , , , ) | const 0ff y u t     .           (12) 

 

Choose dimension l  the vector ( )N t  on the basis of 

frequency properties the input ( )r t . Designate the ap-

proximation error ( )t  with the vector ( )HN t  as 

( )N t : 

 

( ) ( ) ( )N t HN t t   . 

 

( )N t  satisfies (2) and depends on the parametric un-

certainty of the object (4). Uncertainty depend from 

( )N t  and satisfies the condition (12). Therefore, the 

condition is true for ˆ ( ) ( )t t   

 

ˆ ˆˆ( ) G ( )k

At t        . 

 

Then we have 

 

( ) NHN t  , N   . 

 

We obtain from ( )N t  inequality 

 

1
ˆ( )N N Nt             .          (13) 

 

Then the vector ( )N t  at a corresponding choice of ma-

trix H belongs to set 

 

 G : ( ) 1 1,l

N iN N R n t i l     .        (14) 

 

Write (11) as 

 
T

Ne ke P z     .                 (15) 

 

Transform the equation (15) to the form 

 
T T

Ne ke P P z       , 
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where ( ) ( ) , ( )N t HN t t     . Let Th P  . 

Apply the method  -algorithms [15, 16] to the design 

of adaptation algorithms. Consider Lyapunov function 
2( ) 0.5 ( )eV t e t . formF -  is true for the derivative 

( ) ( )et V t   

 
2 ( ) ( , , , )T T

N Nke N e N H P e P e z        ,   (16) 

 

Where 

 

  
1

T T

N NeP N I 


  I D ,  ( ) T

N N I N I  D , 

 

N  is the absolute value of the vector ( )N t ,  ND  is 

diagonal matrix from the vector N , lI R  is the unit 

vector. 

Obtain from (16)  -algorithm for adaptation the vec-

tor ( )N t  

 

( ) TN e N H P  P ,                 (17) 

 

where l lR   is a symmetrical positive-definite matrix, 

( )NP  is a belonging matrix indicator GNN  . 

Various methods of the definition ( )NP  are applicable. 

If the indicator ( )NP to present in the form 

 

, ( ) G
( )

0 , ( ) G

l N

l N

I N t
N

N t


 


P  

 

that multiplicative  -algorithm for ( )N t  has the form 

 

, ( ) G ,

0 , ( ) G ,

T

N

l N

e H P N t
N

N t

  
 


                 (18) 

 

where lI , 0l  unit and zero matrixes l l . 

Matrix H  for accuracy raise can be computed on each 

interval of a quasi-stationary object. 

Design the control law for the variable ( )t . Let con-

ditions (8), (9) are satisfied. Determine the adjustment 

law ( )t  from the condition 

 

min max ( , , )
N

e N
n

V n t


 .                     (19) 

 

max ( )V t  on ( )N t  is obtained on domain boundary (13), 

that is at such value ( )N t , when 1( )N t  . Therefore, 

transform ( , , )e t  to form 

 
2 ( , , ) ( , , ) Nke e z e z e P         ,      (20) 

 

where Te D P  , sgn( )sgn( )Te D P   . 

As G  the adaptive observer is robust to uncertain-

ty Th P  , if 

 

1( )D c  ,                       (21) 

 

where 1( ) 0c    is some number. 

Obtain the following tuning  -algorithms of the vari-

able ( )t  on the basis (20) and (19): 

 

i) static ,s sΜ -algorithm 

 

( ) sgn( ( ))sgn( ( ))T

st e t D P t   ;              (22) 

 

ii) dynamic ,d sΜ -algorithm 

 

   ,( ) ( )sgn ( ) sgn ( )T

d st e t D P t    P ;       (23) 

 

iii) dynamic dΜ - algorithm 

 

( ) ( ) ( ) ( )T

dt e t D P t    P ,                 (24) 

 

where ( )P  is the belonging indicator ( ) Gt   , 

0s  , 0d  , , 0d s  . 

Other algorithms for ( )t  can be obtained from the 

condition 0  . 

 

V.  CHOICE OF MATRIX H  

Consider the equation (4). Apply the operation of the 

differentiation to determination y .  Designate the ob-

tained variable as ( )dy t . Choose time gap dJ J  the 

change dy  so that system properties on it were homoge-

neous. It means that the trajectory ( )dy t , and, hence, 

( )y t  should not have structural modifications. 

Consider on the interval dJ  the equation 

 
T

dy H P , 

 

where 2mH R , H HI , 2mI R . 

Apply the least-squares method and obtain the vector 

H  as the problem solution 

 

 
2

min d
H

y y H  . 

 

Demands to the estimation H . 

H1. H  ensures the following condition of dominance 

 

( ) ( )dy t y t  for almost *t J J   , 

 

where *J  contains all t , since some * 0t t t  . 
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H2. Elements of vector H  ensure the performance of 

the adaptive system. 

Condition H2 is very important, as tuning of vector 

( )N t  in (6) depends on the elements of the vector H . As 

2l m  we consider only such estimations ( )N t  which 

ensure minimization of functional 

 

  
2

( ) ( )Q N H H N t  . 

 

Remark 1. The estimation H  is obtained from the quasi-

stationary condition of change system parameters. This 

estimation has the approached character, sufficient for 

implementation of the adaptive system. 

 

Remark 2. If trajectories of the adaptive system are not 

restricted the set H , fulfill one of following operations. 

1. Obtain the estimation H  for *,1t J , where 

*,1 *J J . 

2. Change dimension l  of the vector ( )N t . It will lead 

to the replacement of the vector H  by the matrix H . 

 

VI.  UNCERTAINTY ESTIMATION 

Obtaining D  in the conditions of uncertainty is the 

complicated problem. Therefore, apply the following 

approach. It is based on obtaining of a variable for the 

estimation ( )h t . 

Construct model 

 

ˆ T

d dy H P                              (25) 

 

for prediction of the variable ( )dy t , and compute values 

of the error ˆ( ) ( ) ( )d d dt y t y t   . ( )d t  is the uncertainty 

estimation in the system. 

 

Remark 3. We have introduced the vector dH  to distin-

guish it from the vector H  used for the formation of the 

matrix H  in model (6). 

Present model (6) and the equation for the identifica-

tion error (15) in the form 

 

ˆ ˆ: ( ) ,

,

,

T T

d

T

N d

d

y k y y N H P

e ke P g

e



 

 



  

    

   

 

SED

       (26) 

 

where T

d dg P    ,   is the adjusted parameter. 

  adjusted level d  that of disturbance effect to com-

pensate in the adaptive system. Disturbances are a result 

of the application the model ˆ T

dy H P  and the action 

( )h t . 

 

Remark 4. Demands to the vector H  considered in sec-

tion 5 should be considered, when the variable ( )d t  is 

determined. 

Another approach is based on obtaining of the uncer-

tainty estimations on the basis of current adaptation re-

sults use. Apply model 

 

,
ˆ T T

d Ny N H P ,                       (27) 

 

and determine the error ,
ˆ( ) ( ) ( )N d N dt y t y t   . N  is the 

current estimation of the uncertainty ( )h t . 

Use of the model (27) complicates the adaptation pro-

cess. But work quality of adaptive system under some 

conditions improves at the application of the model (27). 

Here dimension of the vector ( )N t  has the significant 

effect. Therefore, the compromise necessary to observe 

between dimension of the vector ( )N t  and properties Io . 

Write the model (6) and the equation for identification 

error (15) for the case (27) as 

 

ˆ ˆ: ( ) ,

,

,

T T

N N

T

N N

N N N

y k y y N H P

e ke P g

e

 



  

    

   

 

SEN

          (28) 

 

where T

N N Ng P    , N  is the tuned parameter. 

 

VII.  PROPERTIES OF ADAPTIVE SYSTEMS 

Consider properties of the adaptive system ss

NAS   

which is described by equations (7), (8), (15), (17), (22). 

Boundedness of trajectories follows from the following 

assertion. 

 

Theorem 1. Let conditions are satisfied: 1) function 
2( ) 0,5 ( )eV t e t is positive definite and satisfies the con-

dition inf ( , )e
e

V e t


 ; 2) assumptions 1, 2 for the ob-

ject (1) are fulfilled; 3) the parameter ( )N t , ( )t of the 

model (6) belong to restricted areas GN , G . Then all 

trajectories of system ss

NAS   are restricted and fair esti-

mations 

 

 
0

02 ( ) 2 ( ) ( ) ( )

t

e s e

t

V V d V t V t       , 

 

22 2

2

1
( ) max ( )e P N s z

t

V t t
k

   
 

  
 

,         (29) 

 

where min T

t
D P  , 

2
max ( )P

t
P t  , max ( )z

t
z t  ,  
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0

1( ) ( ) ( ) ( ) ( )

t

T

e N N N

t

V t V t N d        .      (30) 

 

The proof of theorem 1 is given in Appendix A. 

The theorem 1 shows that all trajectories of the adap-

tive system ss

NAS   are restricted. Limiting properties 

ss

NAS  -systems depend on the work of the adaptive algo-

rithm (17) and the control law (22) variable ( )t . ,s sΜ -

algorithm ensures fulfillment of the condition (3). The 

decrease of the error ( )e t  depends on the choice of the 

parameter s  ,s sΜ -algorithm. 

Consider ds

NAS  -system described by equations (7), (8), 

(15), (17) and (23). 

 

Theorem 2. Let conditions of the theorem 1 are satisfied. 

Then all trajectories of the system ds

NAS   are restricted 

and fair estimations (29) with 2 1s  , and 

 

 
0

02 ( ) ( )

t

e

t

V d V t V t    . 

 

So, ,s sΜ , ,d sΜ -algorithms ensure fulfillment of the 

target condition (3). Specific properties of algorithms do 

not allow improving the quality of the adaptive system 

work. 

The proof of theorem 2 is given in Appendix B. 

Consider d

NAS  -system described by the equations (7), 

(8), (15), (17) and (24). 

 

Theorem 3. Let conditions of the theorem 1 are satisfied. 

Then all trajectories of the system d

NAS   are restricted 

and fair the estimation 

 

2

2
( ) max ( )P

e N
t

V t t
k


 . 

 

The proof of theorem 3 is given in Appendix C. 

We see that the condition (3) with 0y   in d

NAS  -

system can satisfy. It is possible if the vector ( )HP t  is 

constantly excited. 

Consider properties of the algorithm (18). The equa-

tion for an error writes in the form 

 
T T

Ne ke P P z       ,                 (31) 

 

where  

 

 ( ) ( ) ( ),

, ( ).

N Nt H N t N H t

HN t







 

   

   
 

 

Definition 1 [18]. The non-positive quadratic form 

( , )W Y X  has M -property or ( , )W Y X M , if it is repre-

sentable as 

 
2

( , ) ( , )y xy xyW Y X c Y c W Y X   , 

for any mY R , nX R  in limited area 

 

 2 2
, , 0 ,m n

D Y R X R Y X          

 

where Y  is Euclidean norm of a vector Y , 0yc  , 

0xyc  , ( , )xyW Y X  is some function. 

 

Definition 2 [18]. The non-positive quadratic form 

( , )W Y X  has M -property or ( , )W Y X M , if it is 

representable as 

 
2 2

( , ) y xW Y X c Y c X   , 

 

for any mY R , nX R  in the restricted area D , where 

0xc  . 

M -property is an indication of a constructive com-

pleteness of the quadratic form ( , )W Y X . It allows reduc-

ing the analysis of properties ( , )W Y X  to an estimation 

of characteristics corresponding M -matrix [19]. 

 

Definition 3. The vector ( ) ( )T

HP t H P t , l

HP R  is 

constantly excited with level   or has property PE , if 

 

PE : ( ) ( )T

H H lP t P t I  

 

for some 0   and 0t t   on some interval 0T  . 

The system (1) is stable, and the input ( )r t  is restrict-

ed. Therefore, property PE  for the matrix 

( ) ( ) ( )T

H H HB t P t P t  present as 

 

( )l H lI B t I    0t t  ,                  (32) 

 

where 0   is some number. 

Consider Lyapunov function  

 
1( ) 0.5 ( ) ( ) ( )T

N N N NV t t N t     . 

 

Let the estimation for ( )NV t  is right 

 
2 21 1

10.5 ( ) ( ) ( ) 0.5 ( ) ( )l N N Nt V t t        ,   (33) 

 

where 1( )  , ( )l   are the minimum and maximum 

eigenvalues of the matrix  , 0T    . 

 

Lemma 1. Function ( )NV t  has M -property, if 
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13 ( ) 4

4 3
N N eV V V





   , 

 

where 0   is some number. 

The proof of lemma 1 is given in Appendix D. 

Ensure the condition eV M . 

 

Lemma 2. Function ( )eV t  has M -property, if 

 

 22 ( ) 1
maxl

e e N P z
t

V kV V
k k

 
  


     ,   (34) 

 

where 
N  is the Euclidean norm of the vector N . 

The proof of lemma 2 is given in Appendix E. 

 

Remark 5. M -property functions eV  and NV are condi-

tions of the exponential dissipativity [20] the adaptive 

system. Passivity conditions of the adaptive system fol-

low from these properties. 

Show the exponential dissipativity of the adaptive sys-

tem (18), (31). Apply the method of Lyapunov vector 

functions. 

Let such functions ( ) 0s t   exist that 

 

      0 0 0&t t V t s t    , e, N  .       (35) 

 

Then we will reduce the analysis of properties the 

adaptive system to research of the following system of 

inequalities 

 

 

1

2

2 ( )

3 ( )4

3 4

1
max ( )

0

l

e
ee

NN

P z
t

k
VV k

VV

t
k

 




  

 
    

     
     

  

 
 

 
  

.           (36) 

 

Obtain for (36) the vector system of comparisons 

 

V VS A S F  ,                                (37) 

 

where 2 2

VA R   is M -matrix of the form 

 

1

2 ( )

3 ( )4

3 4

l

V

k
k

A

 




 
 

  
 


  

, 
e

N

s
S

s

 
  
 

, 

 

 21
max ( )

0

P z
t

V

t
F k

  

 
 

 
  

. 

 

Stability conditions of the matrix 
VA  have the form 

[19] 

 

1 2( ) 0, ( ) 0V Vm A m A   , 

 

where 1 2,m m  are diagonal minors of the matrix VA . 

These conditions have the form 

 

0,k   
1

2 ( )4

3 ( )

lk








. 

 

So, following statement is true. 

 

Theorem 4. Let conditions are satisfied: 1) Lyapunov 

functions 

 
1( ) 0.5 ( ) ( ) ( )T

N N N NV t t N t      2( ) 0.5 ( )eV t e t  

 

have infinitely big limit at ( )e t  , ( )N t  ; 2) 

the vector ( )HP t  is piecewise continuous restricted and 

( )HP t PE ; 3) equality  2T T N

N N N Ne P B e      

with 0   fair in area ( )O O ; 4) eV M , NV M ; 5) 

the estimation (33) is fair for the function ( )NV t ; 6) the 

upper solution for Lyapunov vector function 

( ) [ ( ) ( )] T

e NV t V t V t  satisfies the equation (37); 7) un-

certainty ( )t  in (31) is restricted: ( )t    0t t  , 

where 0  is some number. Then the system (18), (31) 

is exponentially-dissipative and estimations are fair 

 

   0

0

0( ) ( ) ( )V VA t t A t

V

t

V t e S t e F d


 


 
   , 

 

 2

1

1
( ) max ( ) ( )P z t

t
V t t t

k
      , 

 

where 1( )t  is the first column of the matrix 
 

0

V

t
A t

t

e d





 , 

if  

 

1

2 ( )4
0

3 ( )

lk





 


. 

 

The theorem 4 shows that the algorithm (18) is identi-

fying if the vector ( )HP t  satisfies the condition (32). Dis-

sipative properties of the system depend on an applied 

control algorithm of the variable ( )t . The control algo-

rithm properties of the variable ( )t  are considered 

above. 

Consider the properties of the adaptive system with the 

estimation of uncertainty ( )h t . Designate system SED  
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and (18) as 
NASED


. Boundedness of the variable ( )d t  

follows from the method of its obtaining. 

 

Theorem 5. Let conditions 1), 2) theorem 1 are satisfied. 

Then all trajectories 
NAS


- system is restricted and the 

estimation fair 

 

 2 2

2

1
( ) max ( ) max ( )e N

t t
V t t h t

k
    .         (38) 

 

The proof of theorem 5 is given in Appendix F. 

Consider 
NNASEN  -system SEN  and (18). Let such 

number *,N  exists that *,( ) ( )N Nh t t   . Designate 

*,N N N    . 

 

Theorem 6. Let conditions 1), 2) theorem 1 are satisfied 

and: (i) 2

N N Nd d  , where 0, 0N Nd d  are some 

numbers; (ii) positive definite function 

 
21( ) 0.5 ( )

N N NV t t    satisfies the condition 

|| ||
inf ( , )e
X

V e t


 . Then all trajectories of the system 

NNASEN   are restricted with the estimation 

 

0

0( ) ( ) 2 ( )

t

e

t

V t V t k V d    , 

 

Where 

 

 
22 1 2 1

( ) ( ) ( ) ( )

0.5 ( ) 0.5 ( ) 0.5 ( ) ( ).

N Ne

N N N N

V t V t V t V t

e t t t t

 

    

   

  
 

 

Let further conditions are satisfied: (iii) M - proper-

ties for eV , NV  have the form 

 

2

2

2

3

4

max

0

NN

N

ee

N N

N
t

N

N

d
k

VV k

VV
d

A

k

F







  



 
    

     
      
  

 
 

 
  

;                 (39) 

 

(iv) such functions ( ) 0s t   exist that 

 

( ) ( )V t s t         0 0 0&t t V t s t    , Ne,  ; 

 

(v) the upper solution of the system (39) satisfies to the 

vector system of comparison 

 

, ,( ) ( )
N N N Ne eS t A S t F     , 

 

where 
, N N

T

e eS s s 
    ;  

(vi) uncertainty ( ) ( ) ( )Th t t P t   in (31) is restricted. 

Then 
NNASEN  -system is exponentially-dissipative 

and estimations are fair 

 

   0

0

, 0( ) ( ) ( )N N

N N

t
A t t A t

e

t

V t e S t e F d  

   
 

   , 

 

2

1,( ) max ( )N t
t

V t t
k




   , 

 

If 

 

0k  , 2 2 8

3
N N Nk d d  , 

 

where 
1( )t  is the first column of the matrix 

 

0

V

t
A t

t

e d





 . 

The proof of theorem 6 is given in Appendix H. 

Theorem 6 shows that properties the 
NNASEN  -system 

depend on the quality of work the adaptive algorithm (18). 

Therefore, the maximum dimension chooses ( )N t  for the 

decrease of the misalignment ( )N t . Explain it to that 

quality of the tuning ( )N t  influences on the magnitude of 

the error ( )e t  and N . 

 

VIII.  RESULTS OF MODELING 

Consider object (1) second order with parameters 

 

1( ) 2 0.3sin(0.04 )a t t   , 1.5b   

 

2 ( ) 3 0.5sin(0.09 )a t t   ., ( ) 2 sin(0.3 )r t t  . 

 

The equation (1) was integrated with the step 0.2s. 

(0) 2, (0) 1x x  . The informational set Io  is obtained 

for the object (1). Parameter of the auxiliary filter (5) 

1.5   , (0) 0, (0) 0y rP P  . 1k  . 

Consider SED -system. Apply the following approach 

to the definition of the variable d . Fulfill segmentation 

of values the variable ( )y t  on set J  on the basis of ob-

servance of a condition structural homogeneity of modifi-

cation ( )y t . Apply the method described in section 5, 

and find the vector dH  on each subinterval iJ J . 

Choose the value dH ensuring the maximum of determi-

nation coefficient for model ˆ T

d dy H P . We will obtain 

the vector  0.28; 1.19; 0.59d

T
H    on the interval 
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 39.2;  79.2 s. Fulfill the prediction of change ( )y t  by 

means of the model ˆ T

d dy H P  and determine 
d . Next, 

use the obtained variable 
d  for implementation SED -

system. Show change 
d  in Fig. 1. 

 

0,8 1,2 1,6 2,0 2,4
-0,6

-0,4

-0,2

0,0

0,2

0,4

0,6

d

ˆ
dy

y
y

y

ˆ
dy

d

 

Fig.1. Uncertainty estimation in object (1) on the basis of application 

SED -system. 

Determine the matrix H  for implementation SED -

systems. Apply the approach described in section 5. The 

vector  1.75;0.65;1.8
T

H   in (6) is obtained on the 

time gap [12.2; 19.2]s. The matrix H is obtained on the 

basis H  

 

1.75

0.65

0

0

0 1.8

H

 
 


 
 





.                      (40) 

 

The vector 2( )N t R  is tuned by means of algorithm 

(18). Matrix   in (18) has the form 

 0.005;0.05diag  . Factor   in (26) 5  . Results 

of work SED -system are shown in Fig. 2-6.  

The Fig. 2 represents the process of tuning of the vec-

tor ( )N t .  

 

0 20 40 60 80 100
-0,5

0,0

0,5

1,0

1,5

2,0

1n

2n
2n

t

1n

 

Fig.2. Tuning of the vector ( )N t  by means of the algorithm (18). 

0 20 40 60 80 100
-3

-2

-1

0

1

2

d

e

t

d

-2,0

-1,6

-1,2

-0,8

-0,4

0,0

0,4

0,8

e

dd

 

Fig.3. Change error e , d  and the uncertainty estimation d . 

Changes of the error ( )e t , d , and the calculated cur-

rent value d d    uncertainty are shown in the Fig. 3. 

Show in the Fig. 4 change of parameters 

1 2 3
ˆ ˆ ˆ( ) ( ) ( ) ( )

T

t t t HN t    
 

. Tuning of the variable   

in system (26) is presented in Fig. 5. Parameters of object 

(1) after reduction of its equation to the form (4) varied in 

ranges: 

 

 1( ) 1.95; 1.25t    ,  2 ( ) 0.4;0.95t  , 3 1.5  . 

 

0 20 40 60 80 100
-1,8

-1,6

-1,4

-1,2

t

1̂

-1

0

1

2

3

4

3̂

2̂

1̂

3̂

2̂

 

Fig.4. Parameter estimations of the object (4), obtained by means of 

system (26). 

0 20 40 60 80 100
-4

-2

0

2

4

6

8

10

t



  

Fig.5. Change of the parameter   the system (26). 
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The analysis of obtained results confirms workability 

the adaptive SED -systems. Explain such change: (i) ap-

plication of a static model (SM) for uncertainty identifi-

cation; (ii) obtaining of parameters SM on the given time 

gap. This note is true for change of elements of the vector 

( )N t . Work of the adaptive observer is stabilized at the 

increase of parameters tuning time. 

We give the comparison of results work SED -system 

with one and two adjusted parameters (Fig. 6). Designate 

relative values of errors SED -systems with N R and 
2N R as 1( )e t  and 2 ( )e t . Except the initial stage of 

tuning of the vector ( )N t  the model (26). The Fig. 6 

shows of the framework change described by the function 

2 2 1( ) : ( ) ( )f e e t e t . eS  shows the comparative position 

1( )e t  and 2 ( )e t , starting 19.2t  s. We see that an accu-

racy of the adaptive system with N R  is lower, than 

with 2N R . The framework eS  is more informative 

than change ie  on t  the plane  , it e . We have made this 

conclusion on the basis of the theorem 6 for the 

NNASEN  -system. It is also true and for 
NASED


-

system. 

 

-0,75 -0,50 -0,25 0,00 0,25 0,50 0,75
-0,6

-0,4

-0,2

0,0

0,2

0,4

0,6

e
2

e
2

e
1

e
2

e
1

 

Fig.6. Comparison of the work quality of the system (26) with one and 

two adjusted parameters 

Consider the work of 
NNASEN  -system. The matrix 

H  has the form (40), 2( )N t R . Matrix   in (18): 

 0.004;0.0007diag  . The factor N  SEN -system is 

0.0006. Show results of the work 
NNASED  -system in 

Fig. 7 - 10. The Fig. 7 represents tuning of the vector 

( )N t  the system (28). 

Compare these results with the parameters tuning of 

the system (26). We see that adaptation process in the 

NNASEN  -system has monotonic character. Explain this 

the adequate estimation of the uncertainty ( )h t . 

Present in the Fig. 8 identification results of the object 

(4), obtained by means of the system (28). The Fig. 9 

contains results of the work 
NNASED  -system. We see 

that the adaptive system is exponentially-dissipative. 

 

 

0 20 40 60 80 100
0,0

0,5

1,0

1,5

2,0

2,5

2n

2n
1n1n

t

-0,70

-0,65

-0,60

-0,55

-0,50

N

N

 

Fig.7. Tuning of model parameters, the system (28). 
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Fig.8. Estimations of parameters the object (4) obtained by means of the 

system (28). 
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ŷ
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Fig.9. Estimation of adequacy work system (28) 
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Fig.10. Identification results of the uncertainty by means of systems 

(26), (28) 

Loop estimation work results of the uncertainty object 

at different parameters of systems (26), (28) are presented 

in the Fig. 10. The designations applied in Fig. 10: 1 is 
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systems (26) with ( )N t R  and the static law 0.9d d   

of the estimation ( )h t
; 2 is systems (28) with 2( )N t R  

and the static law 
N N  ; 3 is systems (28) with 

2( )N t R  and the algorithm N N Ne    ; 4 is systems 

(26) with ( )N t R  and the algorithm de     . Re-

sults are presented in the form of the frameworks de-

scribed by functions : ( ) ( )if e t t  , ,i d N . 

The analysis of the Fig. 10 shows that best perfor-

mances have the adaptive SEN -system. Remaining vari-

ants of the considered systems have the large time tuning 

and a low accuracy of the uncertainty estimation. 

 

IX.  CONCLUSION 

The method of construction adaptive observers for 

time-varying linear dynamic objects is proposed at non-

fulfillment of the condition excitation constancy. The 

problem of synthesis AO is divided into two subtasks. 

The first problem proposes the procedure to the choice of 

the constant matrix, allowing decreasing effect the excita-

tion constancy condition. This matrix superimposes re-

strictions on parameters AO. The solution of the second 

task gives to the choice of adaptive algorithms on the 

basis of the obtained matrix. We introduce the set of mul-

tiplicative adaptive parameters, allowing identification 

problem under restrictions to solve. Adaptive algorithms 

of multiplicative identification are designed. 

Two methods of an estimation uncertainty are pro-

posed for improvement performance of the adaptive ob-

server. The first method is based on a design of a static 

model for the uncertainty estimation. We introduce the 

parameter improving the accuracy of the uncertainty es-

timation. The second method gives the uncertainty esti-

mation on the basis of parameter current values the adap-

tive observer. The exponential dissipativity of the adap-

tive observer is proved. We present the results of the 

modeling confirming effectiveness of designed methods 

and procedures. 

APPENDIX A. PROOF OF THEOREM 1 

Consider Lyapunov function ( )V t  (30). The choice of 

the second component in the right part (30) is substantiat-

ed in [15]. Find the derivative ( )V t  on motions ss

NAS  - 

system. Obtain after simple transformations for ( )V t  the 

inequality 

 

2 2e s eV V V    ,                   (A.1) 

 

where min T

t
D P  . 

Apply the condition 1) of theorem 1. Then we obtain 

from (A.1), what ( ) 0V t  and the system ss

NAS   is stable. 

Integrate (A.1) on the time and obtain 

 
0

0( ) 2 ( ) 2 ( ) ( )

t

e s e

t

V t V V d V t       . 

 

As  , ,NV e    satisfies the condition 1) theorem 1 

then all trajectories of the system ss

NAS   belong the area 

    0G , , : ( )t e N V t V t  . Then we have the esti-

mation for ss

NAS  -system 

 

 
0

02 ( ) 2 ( ) ( ) ( )

t

e s e

t

V V d V t V t       . 

 

Obtain the inequality (29). Consider ( )eV t  

 

 

2

2 .

T

e N s

N s

V ke e P e z

ke e P e z

 

 

    

  
 

(A.2) 

Use the inequality [21] 

 
2 2

2 , 0, 0, 0
2 2

az b
az bz a b z

a


         

 

and transform (A.2) to the form 

 

 
22 1

2 2
e N s

k
V e P z

k
     .           (A.3) 

 

Present (A.3) after simple transformations as 

 

2 2 21
max ( )e e P N s z
t

V kV t
k
   
 

    
 

,        (A.4) 

 

where 
2

max ( )P
t

P t  , max ( )z
t

z t  . 

From (A.4) we obtain the estimation (29) for ( )eV t . 

APPENDIX B. PROOF OF THEOREM 2 

Consider Lyapunov function 

 

0

0

1

1

,

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

t

T

e N N N

t

t

d s

t

V t V t N d

d

    

      





   

 





. 

 

Transform ( )V t  on motions of the system ds

NAS   to the 

form 

 

2 eV V  .                          (B.1) 

 

eV  satisfies to the condition 1) theorem 1. Obtain from 
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(B.1) the inequality ( ) 0V t  . ds

NAS  -system is stable. 

Integrate (B.1) 

 

0

02 ( ) ( ) ( )

t

e

t

V d V t V t    .                 (B.2) 

 

Obtain from (B.2) the boundedness of trajectories 
ds

NAS  -system. 

The estimation for eV  has the form 

 

 
22 1

2 2
e N

k
V e P z

k
    . 

 

Obtain from (A.2) the estimation (29) with 2 1s  . 

APPENDIX C. PROOF OF THEOREM 3 

Consider Lyapunov function 

 

0

1( ) ( ) ( ) ( ) ( ) ( ) ( )

t

e e d e

t

V t V t d V t V t             . 

 

Present 
eV   as 

 

22 2 max ( )
2 2

T P

e N N
t

k
V V ke e P e t

k



        . 

 

Then 

 

0

2

2
( ) max ( ) ( )

t

P

e N
t

t

V t t V d
k




     . 

 

Let ( ) 1   . Then have 

 

    
0

2 2

0

1
( ) 0

2

t

dt

V d t t    


   . 

 

So 

 

2

2
( ) max ( )P

e N
t

V t t
k


 . 

APPENDIX D. PROOF OF LEMMA 1 

Consider ( )NV t  

 

( ) T

N N HV t e P   .                      (D.1) 

 

To ensure property ( )NV t M  apply the approach [15, 

18]. Let for     *

0 & , ( ))Nt t t e O O       the 

condition is satisfied 

 2T T

N H N H Ne P B e     , 

 

  0,0, 0 m

mO R R J     , 

 

where 
0,{0, 0 }l lO R R J      is the equilibrium posi-

tion of the system, ( )O O  is some neighborhood of the 

point O , 0l lR  is the zero vector, 0,[0, ]t J    , 

0   is some number. 

Transform (D.1) to the form [15] 

 

 2( ) T

N N H NV t B e     . 

 

Next use (32) and the approach described in [18]. Let 

( ) ( )N lN N I  P . Then obtain 

 

2 1

3

8

3 ( )2 4

3 4 3

T

N N N

N e

V a

e V V V




  

    


    M

. 

 

APPENDIX E. PROOF OF LEMMA 2 

Apply (31) and present eV  as 

 
2 T T

e N HV ke e P P z       .               (E.1) 

 

We obtain from (E.1) eV M . Ensure the condition 

eV M . Apply the proof of the theorem 1 and obtain 

 

 

 

2
2

2

1

2 2

1
2 ( ) max ( ) .

T T

e N H

e l N P z
t

k
V e P P z

k

kV V t
k

 

    





      

    

 

 

So, property eV M  for eV  has the form 

 

 22 ( ) 1
max ( ) .l

e e N P z
t

V kV V t
k k

 
  


      

 

APPENDIX F. PROOF OF THEOREM 5 

Consider Lyapunov function 

 
1 2( ) ( ) 0.5 ( ) ( ) ( )e eV t V t t V t V t      . 

 

Write V  as 

 

 2 T

N H d dV ke e P e h e           . 

 

Apply the proof scheme of theorems 1, 2 and obtain 
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21
max ( )e N

t
V kV t

k
      
 

,            (F.1) 

 

where 2max ( )
t

h t   , 0   is some number. The ine-

quality (38) follows from (F.1). 

APPENDIX H. PROOF OF THEOREM 6 

Show boundedness of system 
NNASED   trajectories. 

Let such number *,N  exists that the equality 

*,( ) ( )N Nh t t    is true. 

Consider Lyapunov function 

 

 
22 1 2 1

( ) ( ) ( ) ( )

0.5 ( ) 0.5 ( ) 0.5 ( ) ( )

N Ne

N N N N

V t V t V t V t

e t t t t

 

    

   

  
, 

 

where *,N N N    . 

Write V  as 

 
2 T T

N H N N N N N HV ke e P e e e P           .   (H.1) 

 

Therefore, we have 2 eV kV  . Integrate this inequali-

ty and obtain 

 

0

0( ) ( ) 2 ( )

t

e

t

V t V t k V d    .                (H.2) 

 

Hence, all trajectories of the system 
NNASED   belong 

area     0, , : ( )N Ne V t V t    . 

Consider Lyapunov functions ( )eV t  and 

 
2

( ) 0.5 ( )
N NV t t  . Transform eV  to the form 

 
2 T

e N H N NV ke e P e      .             (H.3) 

 

The vector HP  has property PE . Apply the proof 

scheme of lemma 1 and ensure for eV  property eV M  

in the form 

 

 

2

2

2 2 22 2

2

1

2
max ,

N

T

e N H N N

T

N H N N

N H N N

N

e N
t

V ke e P e

ke e P

ke P
k

d
kV V

k k


 

 

 



     

    

     
 

   

      (H.4) 

 

where 2

N Nd  , 0Nd   is some number. 

Ensure the condition 
N

V

M . By analogy with (H.4) 

obtain 

 2 2 2 2

2

2 2 2 2 2 2

2 2 2

2

1

2

4

3

4

3
.

4

N

N

N N N N N N

N N N N N N

N N N N N N

N N N N N N

N N e

V e e

e e e

e

d V V





      

      


     

     

  

     

 
   

 

  

   

 

    (H.5) 

 

As   does not influence on properties of the system 

assume 1  . So, we have for eV  and 
N

V  following 

inequalities 

 

2

2

2

3

4

max

0

NN

N

ee

N N

N
t

d
k

VV k

VV
d

k

   



 
    

     
      
  

 
 

 
  

.         (H.6) 

 

Let 
, N N

T

e eS s s 
    , 

 

2

2

3

4

N

N

N N

d
k

k
A

d



  

 
 

  
 
  

, 

2
max

0
N

N
tF k

 
 

 
  

. 

 

Let such functions ( ) 0s t   exist that 

 

( ) ( )V t s t         0 0 0&t t V t s t    , Ne,  . 

 

We obtain the vector system of comparison for (H.6) 

 

, ,( ) ( )
N N N Ne eS t A S t F     .              (H.7) 

 

Stability conditions of the system (H.7) have the form 

 

0k  , 2 2 8

3
N N Nk d d  . 

 

Hence 

 

   0

0

, 0( ) ( ) ( )N N

N N

t
A t t A t

e

t

V t e S t e F d  

   
 

   . 

 

Limiting properties the
NNASED  -system estimate as 
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2

1,( ) max ( )N t
t

V t t
k




   , 

 

where 
1( )t  is the first column of the matrix 

 

0

V

t
A t

t

e d





 . 

REFERENCES 

[1] R. L. Carrol, D. P. Lindorff, "An adaptive observer for 

single-input single-output linear systems," IEEE Trans. 

Automat. Control, 1973, vol. AC-18, no. 5, pp. 428–435. 

[2] R. L. Carrol, R. V. Monopoli, "Model reference adaptive 

control estimation and identification using only and output 

signals," In Processings of IFAC 6th Word congress. Bos-

ton, Cembridge, 1975, part 1, pp. 58.3/1-58.3/10. 

[3] G. Kreisselmeier, "A robust indirect adaptive control ap-

proach," Int. J. Control, 1986, vol. 43, no. 1, pp. 161–175. 

[4] P. Kudva,  K. S.Narendra, "Synthesis of a adaptive ob-

server using Lyapunov direct method," Jnt. J. Control, 

1973, vol. 18, no. 4, pp. 1201–1216. 

[5] K. S. Narendra, P. Kudva, "Stable adaptive schemes for 

system: identification and control," IEEE Trans. on Syst., 

Man and Cybern, 1974, vol. SMC-4, no. 6, pp. 542–560. 

[6] S. Nuyan, R. L. Carrol, "Minimal order arbitrarily fast 

adaptive observer and identifies," IEEE Trans. Automat. 

Control, 1979, vol. AC-24, no. 2, pp. 496–499. 

[7] M. J. Feiler, K. S. Narendra, "Simultaneous identification 

and control of time–varying systems," In Proceedings of 

the 45th IEEE Conference on Decision and Control, San 

Diego CA, U.S.A., 2006, pp. 1-7. 

[8] N. Jing, Y. Juan, R. Xuemei and Gu. Yu, "Robust adap-

tive estimation of nonlinear system with time-varying pa-

rameters," International journal of adaptive control and 

signal processing, 2014, vol. 29, no. 8, pp. 1055–1072. 

[9] G. Bastin, and M. R. Gevers, "Stable adaptive observers 

for nonlinear time-varying systems. IEEE Trans. Automat. 

Control, vol. AC-33, no. 7, 1988, pp. 650-658. 

[10] Y. Zhang, B. Fidan, and P.A. Ioannou, "Backstepping 

control of linear time-varying systems with known and 

unknown parameters," IEEE Trans. Automat. Contr., 

2003, vol. AC-38, no. 11, pp. 1908–1925. 

[11] Q. Zhang, and A. Clavel, "Adaptive observer with expo-

nential forgetting factor for linear time varying systems," 

In Proceedings of the 40th IEEE Conference on Decision 

and Control (CDC ’01), 2001, vol. 4, pp. 3886–3891. 

[12] V.Ja. Katkovnik, V.Е. Heysin, "Adaptive control static 

essentially time-varying object," Automation and Remote 

Control, 1988, vol. 49, no. 4, pp. 465–474. 

[13] I. I. Perel'man, "Methods for sound estimation of linear 

dynamic plant parameters and feasibility of their imple-

mentation on finite samples," Automation and Remote 

Control, 1981, vol.42, no. 3, pp. 309–313. 

[14] D. Bestle, M. Zeitz, "Canonical form observer design for 

nonlinear time-variable systems," Int. J. Control, 1983. 

vol. 38, no. 2, pp. 419–431. 

[15] N.N. Karabutov, Adaptive identification of systems: in-

formation synthesis. Moscow: URSS, 2007. 

[16] N.N. Karabutov, "Methods of -algorithms control," In 

Mathematical models of non-linear phenomena, processes, 

and systems: from molecular scale to planetary atmos-

phere, Ed. Alexey B. Nadykto, Ludmila Uvarova, Anato-

lii V. Latyshev. Nova Science Publishers Inc, 2013, pp. 

359-396. 

[17] N.N. Karabutov, "Construction of adaptive observers of 

time-varying objects with specified quality of adaptation," 

In Microprocessor systems of automation: Theses of re-

ports of II All-Union scientific and technical conference. 

Novosibirsk, 1990, pp. 10-11. 

[18] N.N. Karabutov, "Influence of measurement information 

on the properties of adaptive systems," Measurement 

Techniques, 2010, vol. 53, no. 9, pp. 956-963. 

[19] F.R. Gantmacher, The Theory of Matrices. AMS Chelsea 

Publishing: Reprinted by American Mathematical Society, 

2000. 

[20] P. V. Pakshin, "Exponential dissipativeness of the ran-

dom-structure diffusion processes and problems of robust 

stabilization," Automation and Remote Control, 2007, vol. 

68, is. 10, pp. 1852–1870. 

[21] E.A. Barbashin, Lyapunov function. Moscow: Nauka, 

1970. 

 

 

 

Authors’ Profiles 

 
Nikolay Karabutov is the professor of depart-

ment Problem Control of Moscow technological 

University (MIREA), Moscow, Russia. Doctor 

of technical sciences, professor. 

The research areas are the automatic control 

theory, identification, adaptive control and deci-

sion-making. 

 

 

 

How to cite this paper: Nikolay Karabutov, "Adaptive Observ-

ers for Linear Time-Varying Dynamic Objects with Uncertainty 

Estimation", International Journal of Intelligent Systems and 

Applications(IJISA), Vol.9, No.6, pp.1-14, 2017. DOI: 

10.5815/ijisa.2017.06.01 

http://www.mathnet.ru/php/person.phtml?option_lang=eng&personid=71224

