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Abstract—Combinatorial Interaction Testing (CIT) is a 

cost effective testing technique that aims to detect 

interaction faults generated as a result of interaction 

between components or parameters in a software system. 

CIT requires the generation of effective test sets that 

cover all possible t-way (t denotes the strength of testing) 

interactions between parameters. Covering array (CA) 

and mixed covering array (MCA) are often used to 

represent test sets.  This paper presents a hybrid 

algorithm that integrates artificial bee colony algorithm 

(ABC) and harmony search algorithm (HS) to construct 

CAs for testing all 2-way interactions (pair-wise testing) 

in software systems. The performance of the proposed 

hybrid algorithm ABCHS-CAG is compared and 

analyzed by performing experiments on a set of 

benchmark problems on pair-wise testing. The results 

show that ABCHS-CAG generates smaller CAs than its 

greedy counterparts whereas its performance is 

comparable to the existing state-of-the-art meta-heuristic 

algorithms. 

 

Index Terms—Covering array, pair-wise testing, 

artificial bee colony, harmony search. 

 

I.  INTRODUCTION 

Interaction among parameters in software systems with 

multiple configurable parameters or among components 

in component based systems often lead to interaction 

faults. To uncover these faults, it is important to test all 

possible interactions between them. Real world software 

applications generally have large number of configurable 

parameters and exhaustively testing all possible 

interactions is impractical due to time and resource 

constraints. For instance, consider a system having 6 

parameters and each parameter has 4 possible values. 

This will require a total of 46 = 4096 test cases to test the 

system exhaustively which further increases 

exponentially with the increase in number of parameters. 

However, it has been shown that in a system, majority of 

the faults are caused due to the interaction of 

comparatively small number of parameter interactions, 

usually ranging from 2 to 6. This is the essence of 

combinatorial interaction testing (CIT) which test the 

system by generating test cases to cover all t-way 

interactions (t denotes the strength of testing) between 

parameters instead of testing all possible interactions [1]. 

For instance, the number of test cases to test all 2-way 

and 3-way interactions for the aforementioned system is 

19 and 64 respectively which is quite small in comparison 

to the number of test cases required for exhaustive testing. 

It is therefore feasible to generate a set of test cases that 

provides coverage of all t-way interactions instead of all 

possible interactions. It has also been shown in past by 

researchers [2, 3] that more than 70% of the failures are 

generated by 2-way interactions.  

For efficient testing it is required to generate a minimal 

number of test cases that achieve 100% coverage criteria 

which in our case is the strength (t) of testing. A set of 

test cases are usually represented by combinatorial 

structure namely covering array (CA). One of the major 

problems in the field of CIT is the generation of minimal 

CA popularly known as CAG (Covering Array 

Generation) problem [4]. CAG is an NP-complete 

problem [5]. Many algorithms/tools exist in literature to 

solve CAG problem. These algorithms/tools falls in three 

categories:  algebraic methods, greedy techniques and 

meta-heuristic algorithms.  

Although greedy algorithms are more popular in the 

software testing community, meta-heuristic algorithms 

are more effective as compared to algebraic approaches 

and greedy algorithms [6]. Moreover, this approach is 

more flexible as compared to algebraic approaches which 

require that each component must possess same number 

of values. The term meta-heuristic describes heuristic 

methods that can be applied to a wide range of 

optimization problems [7]. They provide a robust and 

efficient way to solve complex real world problems. 

Many meta-heuristic algorithms such as genetic 
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algorithm (GA), artificial bee colony algorithm (ABC), 

particle swarm optimization (PSO), simulated annealing 

(SA), and harmony search (HS) have been used 

successfully by researchers to solve various optimization 

problems. Recently, an increasing interest of researchers 

has been observed in hybridizing various meta-heuristic 

algorithms. The main motivation behind such 

amalgamation is to obtain an algorithm that combines and 

exploits the advantages of the individual strategies and 

covers up the weaknesses of each other.   

In this paper we propose a hybrid algorithm ABCHS-

CAG (Artificial bee colony harmony search - covering 

array generation) that combines ABC and HS to solve 

CAG problem for pair-wise testing of software systems. 

It is organized as follows. In Section II and Section III, 

we briefly explain ABC and HS algorithms respectively. 

Section IV gives a brief overview of combinatorial 

structures. Section V discusses the existing literature on 

CAG. Section VI describes the proposed ABCHS-CAG 

algorithm. Section VII describes the implementation of 

ABCHS-CAG and presents the result of experiments 

conducted to evaluate the effectiveness of the proposed 

approach. Section VIII concludes the paper with a 

discussion on the future plans. 

 

II.  ARTIFICIAL BEE COLONY ALGORITHM 

ABC [8] is a swarm-based algorithm inspired by the 

intelligent foraging behavior of honey bee swarm. In 

ABC algorithm, artificial bee colony is divided into three 

groups: employed bees, onlooker bees and scouts, and the 

position of each food source represents a possible 

solution to the given optimization problem.  The nectar 

amount of the food source is the measure of its quality 

(fitness). In ABC, exploitation is done by means of 

employed bees and onlooker bees which are equal to the 

number of food sources (solutions) and exploration is 

done by scouts. ABC algorithm starts by generating a 

random initial population of possible solutions to the 

given optimization problem and each employed bee tries 

to produce a new solution by updating the selected 

solution xi  using (1).  

 

 ij ij ij kjijv x x x                          (1) 

 

Here, xij  denotes the j th dimension of selected 

solution  viorxi ,  Dj .......,,2,1  is a randomly selected 

dimension and D is the number of optimization 

parameters, xkj  is a randomly selected neighbor of ix  

where,  SNk .......,,2,1 and SN is the number of food 

sources in the population. Although k is determined 

randomly, it has to be different from i.  ij  is a random 

number between [−1, 1].  

After modification each employed bee applies a greedy 

selection between the old solution and the newly 

generated solution and selects the one which has higher 

fitness (nectar amount of the food source). Once the 

search process of employed bees is completed, they share 

the position and nectar information of the food sources 

with the onlooker bees. A probability is assigned to each 

solution xi | 1 ≤ i ≤ SN which is calculated using (2). 
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An onlooker bee selects a food source based on the 

probability assigned to them and performs modification 

on the selected food source using (1) to generate a 

candidate food source. A greedy selection is again 

applied by the onlooker bee as done in case of employed 

bees. Exploration is done by means of a scout which 

looks out for solutions which have not been improved by 

employed bee or onlooker bee through a predefined 

number of cycles called limit and replaces it with a 

randomly generated solution. For further explanation of 

ABC algorithm, readers can refer Karaboga [8]. 

 

III.  HARMONY SEARCH ALGORITHM 

HSA [9] is a meta-heuristic algorithm inspired from 

the musical performance process that involves searching 

for a better state of harmony by a musician. In HSA, a 

musical instrument or note in improvisation corresponds 

to decision variables in optimization, the range of pitch 

corresponds to the range of value of the decision variable 

and a harmony corresponds to a solution vector. HSA 

starts by randomly generating and storing an initial 

population of HMS harmony vectors (solution vectors) in 

the harmony memory (HM), where HMS is the size of 

HM. During the improvisation process, each musician 

improvises its notes using one of the three rules 1) by 

playing a note in his memory, 2) by playing a variation of 

note in his memory, or 3) by playing a randomly 

generated note. Whether a new harmony is generated by 

experience, variation of experience or randomness will 

depend upon harmony memory consideration rate 

(HMCR) and pitch adjustment rate (PAR). A new 

Harmony vector ),......,,,(
121

new
k

new
k

newnewnew xxxxx


 , 

where k denotes the number of instruments, is generated 

by first generating a uniform random number r1 in the 

range [0, 1] and if r1 is less than HMCR, the i th  decision 

variable xnew
i  is selected by the memory consideration as 

shown in (3). In the memory consideration, xnew
i is 

selected from any harmony vector x N
i in the HM. 

Otherwise, xnew
i is selected randomly from all possible 

values of the respective decision variable (exploration). 
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Where, N = 1, 2, ......, HMS 
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In case the decision variable xnew
i  is selected from the 

HM, a uniform random number r2 is again generated in 

the range [0, 1] to determine whether the decision 

variable (note) generated by memory consideration 

should be pitch adjusted. If r2 is less than PAR, then 

xnew
i  is adjusted slightly as shown in (4).  
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Where, r3 is a random number between [0, 1] 

             BW is the distance bandwidth 

The above procedure is used to generate all xnew
i  | i ϵ 

{1, 2, …, k}. Finally, HM is updated by replacing the 

worst harmony by the newly generated harmony if it is 

better than the former. The above process is repeated 

until a solution is found or maximum number of 

generations is reached.  

 

IV.  COMBINATORIAL STRUCTURES 

Off late, combinatorial structures have widely been 

used in software testing for generating test sets. Covering 

arrays (CAs) are widely used notation to represent test 

sets.  A covering array CA (N; t, k, v) [10] is a N × k 

array and is used to represent a set of test cases to test all 

t-way interactions between k parameters (each having v 

possible values) of the system under test. Each row of a 

CA corresponds to a test case. One important property of 

CA is that every t-tuple needs to be covered by at least 

one of the test case in the CA.  An important constraint 

on CA is that each parameter must have same number of 

values which is not the case with most of the real world 

systems. In such cases mixed covering arrays (MCAs) are 

used. 

A mixed covering array MCA (N; t, k, (v1 v2 …vk)) [6] 

is an N × k array and is used to represent a set of test 

cases to test all t-way interactions between k parameters 

of the system under test. v1, v2,…, vk indicates the number 

of possible values of k parameters respectively.  MCA 

can   also be represented using the shorthand notation 

MCA (N; t, k, (w1
q1 …. ws

qs)) which is obtained by 

combining equal entries in vi | 1 ≤ i ≤ k.   Each element 

wj
qi in the set (w1

q1w2
q2 ….ws

qs) means that qi parameters 

can take wj values each.  

To illustrate an instance of MCA, consider a web 

application where the user has different choices of 

browser, operating system (OS), internet protocols, CPU 

and DBMS as shown in Table 1.  

Table 1. Various configuration options 

Browser OS Protocol CPU DBMS 

Internet Explorer XP IPv4 Intel MySQL 

Firefox OS X IPv6 AMD Oracle 

 RHL   Sybase 

 

The application must run on any configuration of 

browser, OS, internet protocol, CPU and DBMS. To 

check that the application runs on all possible 

configurations, a total of 2 × 3 × 2 × 2 × 3 = 72 test cases 

are required. As exhaustive testing becomes infeasible for 

large number of configurable parameters, combinatorial 

testing is performed that enables the tester to test the 

system with relatively less number of test cases. Instances 

of MCAs generated to test all 2-way and 3-way 

interactions for the system in Table 1 are shown in Fig. 

1(a) and Fig. 1(b) respectively.  
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Fig.1. Instances of MCA for 2-way and 3-way testing 

 

V.  RELATED WORK 

In the last 20 years, CAG problem has become a 

popular research area among researchers in the fields of 

Mathematics as well as Computer Science. Various tools 

and algorithms have been proposed by researchers to 

solve CAG problem.     

Mathematicians use algebraic methods to generate CAs. 

These methods are extremely fast; however they are 

mostly designed to generate CAs only. Greedy algorithms 

use two approaches to construct CA: test based 

generation and parameter based generation. In test based 

generation, CA is constructed by generating one test at a 

time until all the uncovered combinations are covered. 

Parameter based generation starts by constructing a small 

CA for the first t parameters initially and then extends it 

by taking one more parameter in the next iteration. 

Extension is done in both horizontal as well as vertical 

direction.  

Recently, meta-heuristic techniques have also been 

used to solve CAG problem. Meta-heuristic search 

techniques start from a pre-existing CA or a population of  

18 × 5 

9 × 5 



62 A Hybrid Artificial Bee Colony and Harmony Search Algorithm to Generate  

Covering Arrays for Pair-wise Testing 

Copyright © 2017 MECS                                                             I.J. Intelligent Systems and Applications, 2017, 8, 59-70 

CA and apply a series of transformations on them until a 

CA is found that covers all the uncovered combinations. 

A summary of various algebraic, greedy and meta-

heuristic algorithms /tools to generate CA for CIT is 

shown in Table 2. 

Table 2. Summary of existing tools/algorithms for combinatorial testing 

Existing Strategies 
t-way 

testing 
Category 

Support 

Constraint 

Test Cover [11] 4 

Algebraic methods 

(Parameter-based generation) 

 

TConfig [12] 2  

Combinatorial Test Services (CTS) [13] 4  

Algebraic Method [14] 2  

AETG [1] 2 

Greedy algorithms 

(Test based generation) 

 

TCG (Test Case Generator) [15] 2  

TVG (Test Vector Generator) [16] 6  

AllPairs1 2 
 

PICT [17] 6  

Jenny [18] ≤ 8  

Density [19] 3  

CASCADE [20] 6  

ACTS(IPOG) [21] 6  

Paraorder [19] 3  

GA [22] 3 

Meta-heuristic 

Techniques 

(Test based 

generation) 

GA  

ACA [22] 3 ACO  

TSA [23] 6 TS  

SA [24] 6 SA  

PPSTG [25] 6 PSO  

CASA [26] 3 SA  

GAPTS [27] 2 GA  

PWiseGen [28] 2 GA  

GA [29] 2 GA  

CS [30] 6 CS  

FSAPSO[31] 4 Adaptive PSO  

TCA [32]  Two-mode local search  

PWiseGenPM [33] 2 GA  

PWiseGen-GM(Greedy Mutation) [34] 2 GA  

HHSA(Hyper Heuristic Simulated Annealing) [35] 3 SA  

ABC-CAG (Artificial Bee Colony- Covering Array 

Generator) [36] 
2 ABC  

 

VI.  THE PROPOSED HYBRID ABC AND HS ALGORITHM 

(ABCHS-CAG) 

Every stochastic search algorithm is characterized by a 

trade-off between two mechanisms, namely exploration 

and exploitation. To find an optimal solution it is 

essential to maintain a good balance between these two 

otherwise, the optimization method either suffers from 

premature convergence to a suboptimal solution or slow 

convergence. ABC is very good at exploration but poor in 

exploitation as employed bees and onlooker bees only 

modify a small part of the solution instead of taking the 

global best, which may lead to the trapping of ABC in 

local minima.  

In HSA, exploration or diversification is controlled by 

randomization and pitch adjustment (PA). As discussed 

in Section III, in HSA randomization generates a new 

harmony randomly (global search) whereas PA 

corresponds to the generation of a slightly different 

harmony (solution). PA is done by adjusting the pitch in 

the given BW by a small random amount with respect to 

the existing pitch (solution) from the HM [9]. Although 

PA is a diversification factor but the subtlety of this is 

that it acts as an intensification factor because it makes 

sure that the newly generated solutions are of good 

quality, at the same time not far from the existing solution. 
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So PA is a controlled diversification (local search). In 

HM, exploitation or intensification is represented by 

HMCR which ensures that good harmonies (solutions) 

from the HM are transferred to the next generation which 

as discussed above will further be enhanced by the 

controlled PA. Therefore, intensification in HSA can be 

controlled by adjusting the HMCR.  

To enhance the exploitation capability of ABC, we 

present a hybrid algorithm ABCHS-CAG that combines 

ABC algorithm and HSA to generate CA for pair-wise 

testing. The main motive behind the hybridization of 

ABC and HS algorithm is to incorporate the 

intensification capability of HS in ABC thereby 

enhancing the performance of ABC algorithm.  In 

ABCHS-CAG, the exploitation ability of employed bees 

is enhanced by utilizing the memory consideration and 

pitch adjustment mechanism of HS algorithm. The 

various steps of ABCHS-CAG are: 

Step 1: Generation of initial population 

The first step of ABCHS-CAG is the generation of 

initial population of SN covering arrays CAi = {CA1, 

CA2,…, CASN} of size N × k. Each CA corresponds to a 

food source. Initially N is unknown at the start of the 

search process, so we can use either of the two methods 

suggested by Stardom [37]. The first one is to set a loose 

lower bound (LB) and upper bound (UB) on the size of a 

CA and then apply binary search repeatedly until a 

solution is found. In case the size of N is known in 

advance i.e. the best bound achieved in the existing 

literature, we can start with the known size and try to 

optimize it further. ABCHS-CAG uses the first method 

where it starts with a population of large random CAs of 

size N × k, where N = (LB + UB)/2 and apply binary 

search repeatedly until an optimal CA is found. In case 

the size is known in advance, ABCHS-CAG uses the 

second method. After population initialization, fitness of 

each CA is calculated which is the measure of its quality. 

The fitness of CA is calculated by counting the total 

number of distinct 2-way interactions covered by it as 

shown in (5): 

 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  
 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 2 − way
𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑏𝑦 𝐶𝐴𝑖

 ∀ 𝑖𝜖 {1. . 𝑆𝑁} 
 

(5) 

 

An example to illustrate how population of CA is 

created and how their fitness is calculated is shown in Fig. 

2.  Here, we have taken a system that has 4 configurable 

parameters P1, P2, P3 and P4 with P1 and P4 having 2 

values and, P2 and P3 having 3 values each. The values 

taken by each parameter are mapped to set X = {0, 1, 

2...}. Let us assume that the CA size N is known in 

advance and is 7 in our case. To find an optimal CA for 

testing all 2-way interactions of parameters, ABCHS-

CAG starts by generating an initial population of CAs 

represented by CAi = {CA1, CA2, …, CASN} of size 7 × 4 

and calculates the fitness of each CA. In Fig. 2, all the 2-

way interactions covered by each test case of the first 

covering array CA1 in the initial population are shown. It 

is clear from Fig. 2, that CA1 covers 29 distinct 2-way 

interactions out of 37 distinct 2-way interactions present 

in the system. So the fitness of CA1 is 29. Similarly the 

fitness of each CA in the initial population is calculated 

by ABCHS-CAG. 
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Fig.2. An example to illustrate the way t-way interactions are  

covered by a CA. 

After generation of initial population of CAs, they are 

subjected to repeated cycles of the search process of 

employed bees, onlooker bees and scout bees in an 

attempt to generate a CA that maximizes the objective 

function f | f : CAi → I+, where, I+ is a set of positive 

integer and f (CAi) is calculated as: 

 

( ) ( )i if CA fitness CA                        (6) 

 

ABCHS-CAG tries to find a covering array CAmax, 

such that 

 
𝑓 𝐶𝐴𝑚𝑎𝑥 = 𝑚𝑎𝑥 𝑓(𝐶𝐴𝑖  ),⍱ 𝑖 𝜖  1, 2,… ,𝑆𝑁      

(7)



64 A Hybrid Artificial Bee Colony and Harmony Search Algorithm to Generate  

Covering Arrays for Pair-wise Testing 

Copyright © 2017 MECS                                                             I.J. Intelligent Systems and Applications, 2017, 8, 59-70 

Step 2: Initialization of HSA parameters 

During this step, the value of HSA parameters i.e., 

HMCR and PAR is set. The typical value of HMCR 

varies from 0 to 1. A low value of HMCR will result in 

selection of only best harmonies from the HM which 

ultimately results in slower convergence. A high value of 

HMCR will use most of the harmonies from HM thereby 

leaving other harmonies unexplored leading to poor 

solutions. The value of PAR also varies from 0 to 1. A 

low PAR along with a narrow BW will result in slow 

convergence whereas; a high PAR along with a wide 

bandwidth may cause the solution to scatter around some 

potential optima. Therefore, the values of HMCR and 

PAR need to be selected carefully. 

Step 3: Employed bee phase 

Unlike traditional ABC, ABCHS-CAG enhances the 

exploitation capability of an employed bee by enabling it 

to select the worst test case of the selected covering array 

CAi and modify this worst test case represented by CAiq 

to generate a new test case CAiq
new = (CAiq1

new, 

CAiq2
new, ……, CAiqj

new), on the basis of HMCR and PAR. 

Here, j = 1 to k represents the jth parameter of the worst 

test case i.e., qth test case of CAi. The worst test case is 

the one that covers least number of distinct 2-way 

interactions in the selected CA. The value of each 

parameter CAiqj in CAiq is modified on the basis of the 

value of random number r1 which is in the range [0, 1]. If 

r1 < HMCR, CAiqj
new is generated by modifying CAiqj 

using (8) otherwise, CAiqj
new is selected randomly from 

all possible values of parameter Pj.  

 

𝐶𝐴𝑖𝑞𝑗
𝑛𝑒𝑤 = 𝑟𝑜𝑢𝑛𝑑 𝐶𝐴𝑖𝑞𝑗 + ∅𝑖𝑞𝑗 𝐶𝐴𝑖𝑞𝑗 −  𝐶𝐴𝑚𝑞𝑗   

 
(8) 

 

Where, CAm is a randomly selected neighbor of CAi, 

Øiqj is a random number between [-1, 1] 

For calculation purpose, the values in the domain of 

each parameter are mapped to an integer number in the 

range [0, vj), where vj is the number of possible values of 

parameter „j‟  It is quite possible that a non-integral value 

may get generated as a result of calculation performed 

using (8). In such a situation, when a non-integer value is 

generated for a parameter, it gets rounded to the nearest 

integer number. After rounding off the value, if it doesn‟t 

fall in the range [0, vj), then a value is selected randomly 

from the input domain of the respective parameter and it 

replaces the existing value of the selected parameter. In 

case CAiqj
new is generated using (8), a random number r2 

is generated in the range [0, 1] and the value of PAR is 

examined. The value of PAR indicates the chances of 

moving to the left or to the right neighbors of CAiqj
new. 

The movement towards the neighbors as shown in (9) 

occurs if and only if r2 < PAR. Otherwise, no changes are 

made to CAiqj
new. 

 

1new new

iqj iqjCA CA                            (9) 

 

Finally, a greedy selection is applied and CAiq
new 

replaces CAiq, if fitness (CAi
new) > fitness (CAi). 

Step 4: Onlooker bee phase 

After the employed bees phase, the fitness of each CA 

in the search space is calculated and a probability of 

selection is assigned to each of them using (2). An 

onlooker bee in ABCHS-CAG selects a CA on the basis 

of probability assigned to them. This is done by 

generating a random number in the range [0, 1] and 

selecting a CA based on the interval in which the random 

number falls. Unlike the traditional ABC, ABCHS-CAG 

takes advantage of the global best CA denoted by CAbest 

in the population (based on gbest-guided ABC (GABC) 

[38])to guide the search of candidate solution and 

modifies the selected CA. Like employed bee, onlooker 

bee selects the worst test case (dimension) of the selected 

CA and replaces it with a test case that is generated by 

using the information of the global best CA i.e., CAbest  

and a randomly selected neighboring CA i.e., CAm using 

(10). The GABC technique drives the new candidate 

solution CAi
new towards the global best solution, thereby 

improving its exploitation capabilities. However, in case 

CAbest gets selected per se, based on the generated 

random number, ABC-CAG modifies it by replacing its 

worst test case by a smart test case. A smart test case is 

constructed by selecting the value for each parameter 

greedily.  For each parameter, a value is selected whose 

occurrence in CAbest is the minimum. The replacement of 

worst test case in CAbest by a smart test case is done to 

make sure that certain new pairs get covered by this 

replacement.  

 

  𝐶𝐴𝑖𝑞𝑗
𝑛𝑒𝑤 = 𝐶𝐴𝑖𝑞𝑗  + Ø𝑖𝑞𝑗  𝐶𝐴𝑖𝑞𝑗 − 𝐶𝐴𝑚𝑞𝑗   

                                    +  𝛹𝑖𝑞𝑗 (𝐶𝐴𝑞𝑗
𝑏𝑒𝑠𝑡 −    𝐶𝐴𝑖𝑞𝑗 )                                           

 
(10) 

 

Here, best

qjCA  is the value of thj  component of thq  test 

case of best

qjCA , iqj  is a uniform random number in the 

range [0, C], C is a non-negative constant.  

Step 5: Scout bee phase 

ABC‟s exploration strategy is effectuated by scout bees 

by replacing a food source abandoned by an employed 

bee, with a randomly generated food source. To further 

improve ABC algorithm‟s exploration capability, we use 

a greedy approach to select a CA instead of the primitive 

approach followed by ABC. In ABC, the food sources 

that cannot be improved through a predetermined 

threshold called the limit are abandoned. The 

aforementioned abandoned food sources are there upon 

replaced by randomly created new food sources by 

artificial scout. In ABCHS-CAG, scout replaces the worst 

CA (least fitness) in the population by a new CA. 

ABCHS-CAG necessitates setting the frequency of scout 

operation with discretion: a very high value of frequency 

will proliferate diversity of the population and avoid 

getting stuck in local minima but concurrently makes it 
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difficult to converge to a good solution; whereas, a lower 

value of frequency will result in early convergence 

leading to sub optimal solution. Hence, it is required to 

set the frequency of scout denoted by fscout to an optimal 

value. ABHSC-CAG replaces the worst CA by a 

randomly generated CA after every fscout generations.  

Step 6: Stopping/Exit Criteria 

Step 3- step 5 are repeated until a solution is found i.e., 

a CA is found that covers 100% 2-way interactions or 

maximum number of iterations is reached. Now there are 

two cases: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig.3. Pseudo code of ABCHS-CAG 

  

Input:  SUT (t, k, v, N), Output: CA of strength-2   

1:  Set parameters: SN, NI, HMCR, PAR, fscout 

2:  Generate initial population of SN covering arrays  

 CAi |  1 ≤  i ≤ SN 

3: Calculate fitness of all CAi |1 ≤  i ≤ SN using Equation (5) 

4:  Iteration ← 1, Cycles ← 1 

5:  Employed bee phase // intensification using HS 

       for i = 1 to SN  

           Select the worst test case q of CAi  

           for j = 1 to k 

                 Generate a random number r1 in the range [0, 1] 

  if  (r1 < HMCR)  

                   
𝐶𝐴𝑖𝑞𝑗

𝑛𝑒𝑤 = 𝑟𝑜𝑢𝑛𝑑 𝐶𝐴𝑖𝑞𝑗 + ∅𝑖𝑞𝑗  𝐶𝐴𝑖𝑞𝑗 −  𝐶𝐴𝑚𝑞𝑗    
 

                        Generate a random number r2 in the range [0, 1] 

        if  (r2 < PAR) 

                         𝐶𝐴𝑖𝑞𝑗
𝑛𝑒𝑤 = 𝐶𝐴𝑖𝑞𝑗

𝑛𝑒𝑤  ± 1  
                         end if 

                 else 

 
                   end if 

             end for 

          if (fitness  (CAinew > CAi)  

               𝑅𝑒𝑝𝑙𝑎𝑐𝑒  𝐶𝐴𝑖  𝑏𝑦 𝐶𝐴𝑖
𝑛𝑒𝑤    

        end for 

6:  Onlooker bee phase  

  6.1: Compute the probability of selection of each covering array CAi 

            

        𝑃(𝐶𝐴𝑖)  =  
𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝐶𝐴𝑖)

 𝑓𝑖𝑡𝑛𝑒𝑠𝑠  (𝐶𝐴𝑛)𝑆𝑁
𝑛=1

 

 
  6.2: for i = 1 to SN 

           let CAi be the CA selected by onlooker bee 

            ← worst test case of CAi 

           ← global best CA  

            if  (CAi == CAbest) 

              replace  by smart test case 

           else 

             for j = 1 to k  

          𝐶𝐴𝑖𝑞𝑗
𝑛𝑒𝑤 = 𝐶𝐴𝑖𝑞𝑗  + Ø𝑖𝑞𝑗  𝐶𝐴𝑖𝑞𝑗 −𝐶𝐴𝑚𝑞𝑗  +  𝛹𝑖𝑞𝑗 (𝐶𝐴𝑞𝑗

𝑏𝑒𝑠𝑡 −  𝐶𝐴𝑖𝑞𝑗 )  
             end for 

           end if 

       end for       

7:  Scout phase 

         if ( cycles = = fscout) 

            replace the worst CA i.e.,CAi
worst by randomly generated   covering     

array CArandom    

            cycles = 1  

        else 

            cycles ++ 

        end if        

8:  if ( there exist a CAi that achieves 100% fitness)  

          stop and return CAi 

     else  

          iteration ← iteration + 1 

           if (iteration > NI)  

                 return solution not found 

           else  

                 goto step 5 

           end if 

      end if  
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Case 1: If a solution is found at N where, N was 

determined by setting loose LB and UB on the size of CA 

i.e., N = (LB + UB)/2 then ABCHS-CAG changes the 

UB to N-1 otherwise, changes the LB to N + 1 and re-

execute with a new initial population of CAs of size N = 

(LB + UB)/2. This process is repeated until the smallest 

CA that covers 100% t-way interactions of input 

parameters is obtained.  

 

Case 2: If a solution is found at N where N was taken 

from the existing literature, ABCHS-CAG decreases N 

by 1 otherwise, increases N by 1 and re-execute with a 

new initial population of CAs of size N × k. This process 

of incrementing or decrementing N continues until an 

optimal CA is found that covers 100% t-way interactions 

of input parameter values. The algorithm ABCHS-CAG 

is shown in Fig. 3. 

 

VII.  EVALUATION 

This section presents the result of experiments 

performed to evaluate the performance of ABCHS-CAG 

with respect to the existing algorithms to construct CA 

for pair-wise testing. We have implemented ABCHS-

CAG in Java and three sets of experiments are conducted 

to make comparison on the basis of CA size and CA 

generation time. For the first experiment, smart phone 

application (SPA) benchmark problem [39] is considered. 

In the second experiment, we have taken a utility in a 

software application. For the third experiment, some 

benchmarks problems are carefully selected from the 

existing literature [6, 24, 25] on pair-wise testing for 

comparison. CA size is absolute and is independent on 

the execution environment whereas, CA generation time 

depends upon the execution environment. Therefore, CA 

generation time is reported only for publicly available 

tools.  

Experiments were conducted by executing the 

benchmark problems on these publicly available tools 

under Windows with INTEL Pentium Dual Core 1.73 

GHZ processor and 1 GB memory. As discussed in 

Section VI, the values of various parameters such as 

HMCR, PAR, fscout and NI (number of iterations) need 

to be set before performing the experiments. We 

performed extensive study with various combinations of 

HMCR and PAR and reached to a conclusion that 

HMCR= 0.7 and PAR =0.4 work best in our case. We 

have set fscout = 5 which means that the scout will 

replace the worst CA after every fifth iteration which 

enables us to reach to an optimal solution within 

reasonable time. We performed experiments with varying 

number of iterations. NI < 2000 will make the algorithm 

terminate early for most of the benchmark problems 

preventing it to converge to a good solution whereas NI > 

5000 will not make any significant difference in the 

quality of final solution. Hence NI is set as 5000. As 

meta-heuristic techniques/tools generates non-

deterministic results, we ran each benchmark problem 

ABCHS-CAG, ABC-CAG, CASA and PWiseGen-PM 30 

times and reported the average and best result obtained in 

each case. However, we have reported the CA generation 

time for the best cases only. 

A.  Benchmark 1:Smart phone Application example (SPA) 

The wide spread and growing popularity of smart 

phones have led to the development of tens of thousands 

of smart phone applications or „apps‟ annually [39]. 

Android is one of the platforms for smart phone apps. 

The behavior of a smart phone can be controlled by 

setting many configuration options that are available in 

the android unit, which in turn plays an important role 

while executing an app on a variety of hardware and 

software platforms. Table 3 shows the various android 

configuration options.    

To ensure that a particular app works across all 

possible configurations, a total of 3 × 3 × 4 × 3 × 5 × 4 × 

4 × 5 × 4 = 172,800 test cases will be required which is 

infeasible. Using combinatorial testing, tester can 

generate a test set to test all t-way interactions between 

configurations thereby reducing the testing time and 

effort required by exhaustive testing. 

Here, we generate a MCA to test all 2-way interactions 

between configurations. SPA can easily be represented by 

an MCA instance MCA (N; t, 9, 334452). The size and the 

generation time (in seconds) of MCAs generated by the 

existing state-of-the-art tools/algorithms for 2-way testing 

of SPA are shown in Table 4. 

Table 3. Android configuration options 

Parameters Values 

HARDKEYBOARDHIDDEN NO, UNDEFINED, YES 

KEYBOARDHIDDEN NO, UNDEFINED, YES 

NAVIGATIONHIDDEN NO, UNDEFINED, YES 

SCREENLAYOUT_LONG MASK, NO, UNDEFINED, YES 

ORIENTATION LANDSCAPE, PORTRAIT, SQUARE, UNDEFINED 

TOUCHSCREEN FINGER, NOTOUCH, STYLUS, UNDEFINED 

KEYBOARD 12KEY, NOKEYS, QWERTY, UNDEFINED 

NAVIGATION DPAD, NONAV, TRACKBALL, UNDEFINED, WHEEL 

SCREENLAYOUT_SIZE LARGE, MASK, NORMAL, SMALL, UNDEFINED 
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Table 4. Comparison of MCA size/MCA generation time (in seconds) for SPA 

Jenny PICT Allpairs TVG 
ACTS 

(IPOG) 

CASA PWiseGenPM ABC-CAG ABCHS-CAG 

avg best avg best avg best avg best 

31/ 0.12 30 34/ 0.02 31/ 0.35 29/0.015 25 25/ 6.57 25 25 /0.63 25 25/ 4.03 25 25/ 3.57 

 

B.  Benchmark 2:MS Word example 

Here, we have taken an example of “Insert Table of 

Figures” feature available in MS-Word that models and 

illustrates the concept of CIT. It can be seen from Fig. 4 

that there are 6 attributes whose values a user can set 

while using this feature of MS-Word. For example, the 

user can check or uncheck “show page number” attribute. 

Similarly, for the “tab leader” attribute a user can select 

from four possible values which we represent by 0, 1, 2 

and 3. Here, each attribute that a user can set is 

considered as an input parameter and each of them has 

different possible values. Table 5 summarizes the 

parameters and the values for “Insert Table of Figures” 

feature available in MS-Word. It is clear from Table 5 

that “Insert Table of Figures” can be represented by an 

MCA instance MCA (N; t, 6, 234261).  Exhaustive testing 

of this feature will require 2 × 2 × 2 × 4 × 4 × 6 = 768 test 

cases.  The size and the generation time of MCAs 

generated by the existing state-of-the-art tools/algorithms 

for 2-way testing of “Insert Table of Figures” feature are 

shown in Table 6. 

C.  Benchmark 3 

Here, we have taken some benchmark problems 

selected carefully from the existing literature [6, 24, 25] 

on pair-wise testing. Comparison of CA sizes generated 

by ABCHS-CAG with the existing algorithms for pair-

wise testing  is done by executing the benchmark 

problems if the tool is publicly available otherwise they 

are compared based on the results reported in past. Table 

7 and Table 8 shows the size and generation time of CA 

generated by the existing algorithms for the selected 

benchmark problems. „-„ in Table 7 indicates that the 

result is unavailable. It is evident from Table 4, 6, 7 and 8 

that ABCHS-CAG takes more time to generate CAs as 

compared to their greedy and meta-heuristic counterparts 

however, it generates smaller CAs as compared to their 

greedy counterparts whereas the results are better or 

comparable to the existing meta-heuristic techniques. 

 

 

Fig.4. “Insert Table of Figures” feature in MS-Word 

Table 5. Input parameters and their values of “Insert Table  

of Figures” feature. 

Parameters Values 

Show page numbers Yes, No 

Include label and number Yes, No 

Use hyperlinks instead of 

page numbers 
Yes, No 

Tab leader 0, 1, 2, 3 

Caption label None, Equation, Figure, Table 

Formats 

From template, Classic, 

Distinctive, Centered, Simple, 

Formal 

Table 6. Comparison of MCA size/MCA generation time (in seconds) for “Insert Table of Figures” feature. 

Jenny PICT Allpairs TVG ACTS (IPOG) 
CASA PWiseGenPM ABC-CAG ABCHS-CAG 

avg best avg best avg best avg best 

26/ 0.046 26 27/ 0.056 
26/ 

0.141 
24/ 0.059 24 

24/ 

0.54 
24 24/ 0.015 24 

24/ 

0.96 
24 

24/ 

0.76 
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Table 7. Comparison of MCA size 

MCA 

Instance 

AETG TVG AllPairs PICT Jenny 
ACTS 

(IPOG) 
GA 

ACA  

ACOerfo

rms 

ACOG 

algorith

m. 

gorithm 

(ACA), 

which 

was 

inspired 

by 

AETG 

algorith

m. a rily 

large N 

and1010

101010

101010

101010

101010

101010

101010

101010

101010

1010 

PSO TS PPSTG 

CASA 

PWiseGen 

PM 

CS FSAPO 
ABC-

CAG 

ABCHS-

CAG 

 best avg   best avg best avg 

510 - 50 47 47 45 45 - - - - 45 38 
39.

7 
40 - - 41 41.6 39 39.8 

4534 - 26 22 26 26 24 - - - 19 - 19 20 19 - - 19 19.8 19 19.6 

513822 20 23 20 20 23 19 17 17 17 15 21 15 
16.

2 
15 21 18 15 15.9 15 15.4 

514431125 30 33 27 32 32 26 26 27 27 22 - 22 
23.

7 
25 - - 22 23.9 21 21.6 

6151463823 34 40 34 38 40 36 33 34 35 30 39 30 
30.

2 
30 43 35 30 30.2 30 30.4 

624929 - 44 38 41 44 39 - - - 36 - 36 
36.

4 
39 - - 36 36.2 36 36.8 

655534 - 63 53 59 56 56 - - - 50 - 47 
49.

3 
52 - - 51 52.5 46 46.42 

7161514538

23 45 49 43 46 50 43 43 43 43 42 49 42 42 42 51 - 42 42.2 42 42.4 

694327 - 69 59 67 64 61 - - - 51 - 52 
53.

23 
59 - - 51 51.7 51 51.3 

Table 8. Comparison of MCA generation time (in seconds) 

MCA Instance TVG AllPairs Jenny ACTS(IPOG) CASA PWiseGenPM ABC-CAG ABCHS-CAG 

510 0.479 0.013 0.309 0.003 3.608 11.4 123.708 38.63 

4534 0.023 0.012 0.15 0.001 0.6785 2.76 37.2 24.09 

513822 0.098 0.013 0.095 0.002 0.8145 2.95 47.1 5.62 

514431125 0.435 0.016 0.202 0.015 3.15 13.74 74.9 12.43 

6151463823 0.339 0.009 0.229 0.016 11.2 23.94 78.65 36.45 

624929 0.397 0.009 0.247 0.016 2.21 11.52 180.8 67.03 

655534 0.415 0.015 0.249 0.015 106.56 88.8 246.87 206.7 

716151453823 0.254 0.016 0.383 0.016 1.44 12.3 66.24 49.56 

694327 0.847 0.015 0.319 0.016 7.06 33.04 633.23 215.2 
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VIII.  CONCLUSION AND FUTURE WORK 

In this paper, we have proposed a hybrid algorithm 

ABCHS-CAG, where the exploitation capability of ABC 

is improved by improvising the solutions using the three 

rules of HS: memory consideration rule, pitch adjustment 

rule and random selection. The performance of ABCHS-

CAG compared and analyzed with respect to the existing 

literature on pair-wise testing. The experiments 

conducted on a set of benchmark problems show that the 

proposed strategy generates smaller or comparable CA as 

compared to its greedy and meta-heuristic counterparts.  

In future, we plan to incorporate constraint handling 

features in ABCHS-CAG.  
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