
I.J. Intelligent Systems and Applications, 2017, 8, 59-70
Published Online August 2017 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijisa.2017.08.07

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 8, 59-70

A Hybrid Artificial Bee Colony and Harmony

Search Algorithm to Generate Covering Arrays

for Pair-wise Testing

Priti Bansal
Netaji Subhas Institute of Technology, Sector-3, Dwarka, New Delhi-110078, India

E-mail: first.bansalpriti79@gmail.com

Sangeeta Sabharwal and Nitish Mittal
Netaji Subhas Institute of Technology, Sector-3, Dwarka, New Delhi-110078, India

E-mail: ssab63@gmail.com, nitishmittal94@gmail.com

Received: 08 January 2017; Accepted: 22 February 2017; Published: 08 August 2017

Abstract—Combinatorial Interaction Testing (CIT) is a

cost effective testing technique that aims to detect

interaction faults generated as a result of interaction

between components or parameters in a software system.

CIT requires the generation of effective test sets that

cover all possible t-way (t denotes the strength of testing)

interactions between parameters. Covering array (CA)

and mixed covering array (MCA) are often used to

represent test sets. This paper presents a hybrid

algorithm that integrates artificial bee colony algorithm

(ABC) and harmony search algorithm (HS) to construct

CAs for testing all 2-way interactions (pair-wise testing)

in software systems. The performance of the proposed

hybrid algorithm ABCHS-CAG is compared and

analyzed by performing experiments on a set of

benchmark problems on pair-wise testing. The results

show that ABCHS-CAG generates smaller CAs than its

greedy counterparts whereas its performance is

comparable to the existing state-of-the-art meta-heuristic

algorithms.

Index Terms—Covering array, pair-wise testing,

artificial bee colony, harmony search.

I. INTRODUCTION

Interaction among parameters in software systems with

multiple configurable parameters or among components

in component based systems often lead to interaction

faults. To uncover these faults, it is important to test all

possible interactions between them. Real world software

applications generally have large number of configurable

parameters and exhaustively testing all possible

interactions is impractical due to time and resource

constraints. For instance, consider a system having 6

parameters and each parameter has 4 possible values.

This will require a total of 46 = 4096 test cases to test the

system exhaustively which further increases

exponentially with the increase in number of parameters.

However, it has been shown that in a system, majority of

the faults are caused due to the interaction of

comparatively small number of parameter interactions,

usually ranging from 2 to 6. This is the essence of

combinatorial interaction testing (CIT) which test the

system by generating test cases to cover all t-way

interactions (t denotes the strength of testing) between

parameters instead of testing all possible interactions [1].

For instance, the number of test cases to test all 2-way

and 3-way interactions for the aforementioned system is

19 and 64 respectively which is quite small in comparison

to the number of test cases required for exhaustive testing.

It is therefore feasible to generate a set of test cases that

provides coverage of all t-way interactions instead of all

possible interactions. It has also been shown in past by

researchers [2, 3] that more than 70% of the failures are

generated by 2-way interactions.

For efficient testing it is required to generate a minimal

number of test cases that achieve 100% coverage criteria

which in our case is the strength (t) of testing. A set of

test cases are usually represented by combinatorial

structure namely covering array (CA). One of the major

problems in the field of CIT is the generation of minimal

CA popularly known as CAG (Covering Array

Generation) problem [4]. CAG is an NP-complete

problem [5]. Many algorithms/tools exist in literature to

solve CAG problem. These algorithms/tools falls in three

categories: algebraic methods, greedy techniques and

meta-heuristic algorithms.

Although greedy algorithms are more popular in the

software testing community, meta-heuristic algorithms

are more effective as compared to algebraic approaches

and greedy algorithms [6]. Moreover, this approach is

more flexible as compared to algebraic approaches which

require that each component must possess same number

of values. The term meta-heuristic describes heuristic

methods that can be applied to a wide range of

optimization problems [7]. They provide a robust and

efficient way to solve complex real world problems.

Many meta-heuristic algorithms such as genetic

60 A Hybrid Artificial Bee Colony and Harmony Search Algorithm to Generate

Covering Arrays for Pair-wise Testing

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 8, 59-70

algorithm (GA), artificial bee colony algorithm (ABC),

particle swarm optimization (PSO), simulated annealing

(SA), and harmony search (HS) have been used

successfully by researchers to solve various optimization

problems. Recently, an increasing interest of researchers

has been observed in hybridizing various meta-heuristic

algorithms. The main motivation behind such

amalgamation is to obtain an algorithm that combines and

exploits the advantages of the individual strategies and

covers up the weaknesses of each other.

In this paper we propose a hybrid algorithm ABCHS-

CAG (Artificial bee colony harmony search - covering

array generation) that combines ABC and HS to solve

CAG problem for pair-wise testing of software systems.

It is organized as follows. In Section II and Section III,

we briefly explain ABC and HS algorithms respectively.

Section IV gives a brief overview of combinatorial

structures. Section V discusses the existing literature on

CAG. Section VI describes the proposed ABCHS-CAG

algorithm. Section VII describes the implementation of

ABCHS-CAG and presents the result of experiments

conducted to evaluate the effectiveness of the proposed

approach. Section VIII concludes the paper with a

discussion on the future plans.

II. ARTIFICIAL BEE COLONY ALGORITHM

ABC [8] is a swarm-based algorithm inspired by the

intelligent foraging behavior of honey bee swarm. In

ABC algorithm, artificial bee colony is divided into three

groups: employed bees, onlooker bees and scouts, and the

position of each food source represents a possible

solution to the given optimization problem. The nectar

amount of the food source is the measure of its quality

(fitness). In ABC, exploitation is done by means of

employed bees and onlooker bees which are equal to the

number of food sources (solutions) and exploration is

done by scouts. ABC algorithm starts by generating a

random initial population of possible solutions to the

given optimization problem and each employed bee tries

to produce a new solution by updating the selected

solution xi using (1).

 ij ij ij kjijv x x x (1)

Here, xij denotes the j th dimension of selected

solution viorxi , Dj,,2,1 is a randomly selected

dimension and D is the number of optimization

parameters, xkj is a randomly selected neighbor of ix

where, SNk,,2,1 and SN is the number of food

sources in the population. Although k is determined

randomly, it has to be different from i. ij is a random

number between [−1, 1].

After modification each employed bee applies a greedy

selection between the old solution and the newly

generated solution and selects the one which has higher

fitness (nectar amount of the food source). Once the

search process of employed bees is completed, they share

the position and nectar information of the food sources

with the onlooker bees. A probability is assigned to each

solution xi | 1 ≤ i ≤ SN which is calculated using (2).

SN

n
xn

xi
xi

fitness

fitness
P

1

 (2)

An onlooker bee selects a food source based on the

probability assigned to them and performs modification

on the selected food source using (1) to generate a

candidate food source. A greedy selection is again

applied by the onlooker bee as done in case of employed

bees. Exploration is done by means of a scout which

looks out for solutions which have not been improved by

employed bee or onlooker bee through a predefined

number of cycles called limit and replaces it with a

randomly generated solution. For further explanation of

ABC algorithm, readers can refer Karaboga [8].

III. HARMONY SEARCH ALGORITHM

HSA [9] is a meta-heuristic algorithm inspired from

the musical performance process that involves searching

for a better state of harmony by a musician. In HSA, a

musical instrument or note in improvisation corresponds

to decision variables in optimization, the range of pitch

corresponds to the range of value of the decision variable

and a harmony corresponds to a solution vector. HSA

starts by randomly generating and storing an initial

population of HMS harmony vectors (solution vectors) in

the harmony memory (HM), where HMS is the size of

HM. During the improvisation process, each musician

improvises its notes using one of the three rules 1) by

playing a note in his memory, 2) by playing a variation of

note in his memory, or 3) by playing a randomly

generated note. Whether a new harmony is generated by

experience, variation of experience or randomness will

depend upon harmony memory consideration rate

(HMCR) and pitch adjustment rate (PAR). A new

Harmony vector),......,,,(
121

new
k

new
k

newnewnew xxxxx

 ,

where k denotes the number of instruments, is generated

by first generating a uniform random number r1 in the

range [0, 1] and if r1 is less than HMCR, the i th decision

variable xnew
i is selected by the memory consideration as

shown in (3). In the memory consideration, xnew
i is

selected from any harmony vector x N
i in the HM.

Otherwise, xnew
i is selected randomly from all possible

values of the respective decision variable (exploration).

1

1

|

|

N

new i

i rand

i

x r HMCR
x

x r HCMR

 (3)

Where, N = 1, 2,, HMS

 A Hybrid Artificial Bee Colony and Harmony Search Algorithm to Generate 61

Covering Arrays for Pair-wise Testing

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 8, 59-70

In case the decision variable xnew
i is selected from the

HM, a uniform random number r2 is again generated in

the range [0, 1] to determine whether the decision

variable (note) generated by memory consideration

should be pitch adjusted. If r2 is less than PAR, then

xnew
i is adjusted slightly as shown in (4).

3 2

2

|

|

N

new i

i

x r BW r PAR
x

Do not adjust pitch r PAR

 (4)

Where, r3 is a random number between [0, 1]

 BW is the distance bandwidth

The above procedure is used to generate all xnew
i | i ϵ

{1, 2, …, k}. Finally, HM is updated by replacing the

worst harmony by the newly generated harmony if it is

better than the former. The above process is repeated

until a solution is found or maximum number of

generations is reached.

IV. COMBINATORIAL STRUCTURES

Off late, combinatorial structures have widely been

used in software testing for generating test sets. Covering

arrays (CAs) are widely used notation to represent test

sets. A covering array CA (N; t, k, v) [10] is a N × k

array and is used to represent a set of test cases to test all

t-way interactions between k parameters (each having v

possible values) of the system under test. Each row of a

CA corresponds to a test case. One important property of

CA is that every t-tuple needs to be covered by at least

one of the test case in the CA. An important constraint

on CA is that each parameter must have same number of

values which is not the case with most of the real world

systems. In such cases mixed covering arrays (MCAs) are

used.

A mixed covering array MCA (N; t, k, (v1 v2 …vk)) [6]

is an N × k array and is used to represent a set of test

cases to test all t-way interactions between k parameters

of the system under test. v1, v2,…, vk indicates the number

of possible values of k parameters respectively. MCA

can also be represented using the shorthand notation

MCA (N; t, k, (w1
q1 …. ws

qs)) which is obtained by

combining equal entries in vi | 1 ≤ i ≤ k. Each element

wj
qi in the set (w1

q1w2
q2 ….ws

qs) means that qi parameters

can take wj values each.

To illustrate an instance of MCA, consider a web

application where the user has different choices of

browser, operating system (OS), internet protocols, CPU

and DBMS as shown in Table 1.

Table 1. Various configuration options

Browser OS Protocol CPU DBMS

Internet Explorer XP IPv4 Intel MySQL

Firefox OS X IPv6 AMD Oracle

 RHL Sybase

The application must run on any configuration of

browser, OS, internet protocol, CPU and DBMS. To

check that the application runs on all possible

configurations, a total of 2 × 3 × 2 × 2 × 3 = 72 test cases

are required. As exhaustive testing becomes infeasible for

large number of configurable parameters, combinatorial

testing is performed that enables the tester to test the

system with relatively less number of test cases. Instances

of MCAs generated to test all 2-way and 3-way

interactions for the system in Table 1 are shown in Fig.

1(a) and Fig. 1(b) respectively.

𝐼𝐸 𝑂𝑆 𝑋 𝐼𝑃𝑣4 𝐼𝑛𝑡𝑒𝑙 𝑀𝑦𝑆𝑄𝐿
𝐼𝐸 𝑋𝑃 𝐼𝑃𝑣6 𝐼𝑛𝑡𝑒𝑙 𝑆𝑦𝑏𝑎𝑠𝑒

𝐼𝐸 𝑅𝐻𝐿 𝐼𝑃𝑣4 𝐴𝑀𝐷 𝑆𝑦𝑏𝑎𝑠𝑒
𝐹𝑖𝑟𝑒𝑓𝑜𝑥 𝑂𝑆 𝑋 𝐼𝑃𝑣6 𝐼𝑛𝑡𝑒𝑙 𝑂𝑟𝑎𝑐𝑙𝑒
𝐹𝑖𝑟𝑒𝑓𝑜𝑥 𝑂𝑆 𝑋 𝐼𝑃𝑣4 𝐴𝑀𝐷 𝑆𝑦𝑏𝑎𝑠𝑒

𝐼𝐸 𝑅𝐻𝐿 𝐼𝑃𝑣6 𝐴𝑀𝐷 𝑂𝑟𝑎𝑐𝑙𝑒
𝐹𝑖𝑟𝑒𝑓𝑜𝑥 𝑅𝐻𝐿 𝐼𝑃𝑣6 𝐼𝑛𝑡𝑒𝑙 𝑀𝑦𝑆𝑄𝐿
𝐹𝑖𝑟𝑒𝑓𝑜𝑥 𝑋𝑃 𝐼𝑃𝑣6 𝐴𝑀𝐷 𝑀𝑦𝑆𝑄𝐿

𝐼𝐸 𝑋𝑃 𝐼𝑃𝑣4 𝐴𝑀𝐷 𝑂𝑟𝑎𝑐𝑙𝑒

(a)

𝐹𝑖𝑟𝑒𝑓𝑜𝑥 𝑂𝑆 𝑋 𝐼𝑃𝑣4 𝐴𝑀𝐷 𝑀𝑦𝑆𝑄𝐿

𝐼𝐸 𝑅𝐻𝐿 𝐼𝑃𝑣4 𝐼𝑛𝑡𝑒𝑙 𝑂𝑟𝑎𝑐𝑙𝑒
𝐹𝑖𝑟𝑒𝑓𝑜𝑥 𝑂𝑆 𝑋 𝐼𝑃𝑣6 𝐼𝑛𝑡𝑒𝑙 𝑂𝑟𝑐𝑎𝑙𝑒

𝐹𝑖𝑟𝑒𝑓𝑜𝑥 𝑂𝑆 𝑋 𝐼𝑃𝑣6 𝐴𝑀𝐷 𝑆𝑦𝑏𝑎𝑠𝑒
𝐼𝐸 𝑋𝑃 𝐼𝑃𝑣6 𝐴𝑀𝐷 𝑀𝑦𝑆𝑄𝐿

𝐹𝑖𝑟𝑒𝑓𝑜𝑥 𝑅𝐻𝐿 𝐼𝑃𝑣4 𝐼𝑛𝑡𝑒𝑙 𝑆𝑦𝑏𝑎𝑠𝑒
𝐼𝐸 𝑅𝐻𝐿 𝐼𝑃𝑣6 𝐴𝑀𝐷 𝑆𝑦𝑏𝑎𝑠𝑒
𝐼𝐸 𝑂𝑆 𝑋 𝐼𝑃𝑣4 𝐴𝑀𝐷 𝑂𝑟𝑎𝑐𝑙𝑒

𝐹𝑖𝑟𝑒𝑓𝑜𝑥 𝑋𝑃 𝐼𝑃𝑣4 𝐴𝑀𝐷 𝑂𝑟𝑎𝑐𝑙𝑒

𝐹𝑖𝑟𝑒𝑓𝑜𝑥 𝑅𝐻𝐿 𝐼𝑃𝑣6 𝐼𝑛𝑡𝑒𝑙 𝑀𝑦𝑆𝑄𝐿
𝐼𝐸 𝑂𝑆 𝑋 𝐼𝑃𝑣4 𝐼𝑛𝑡𝑒𝑙 𝑆𝑦𝑏𝑎𝑠𝑒
𝐼𝐸 𝑋𝑃 𝐼𝑃𝑣4 𝐴𝑀𝐷 𝑆𝑦𝑏𝑎𝑠𝑒
𝐼𝐸 𝑂𝑆 𝑋 𝐼𝑃𝑣6 𝐼𝑛𝑡𝑒𝑙 𝑀𝑦𝑆𝑄𝐿
𝐼𝐸 𝑅𝐻𝐿 𝐼𝑃𝑣4 𝐴𝑀𝐷 𝑀𝑦𝑆𝑄𝐿

𝐹𝑖𝑟𝑒𝑓𝑜𝑥 𝑋𝑃 𝐼𝑃𝑣4 𝐼𝑛𝑡𝑒𝑙 𝑀𝑦𝑆𝑄𝐿
𝐹𝑖𝑟𝑒𝑓𝑜𝑥 𝑋𝑃 𝐼𝑃𝑣6 𝐼𝑛𝑡𝑒𝑙 𝑆𝑦𝑏𝑎𝑠𝑒

𝐹𝑖𝑟𝑒𝑓𝑜𝑥 𝑅𝐻𝐿 𝐼𝑃𝑣6 𝐴𝑀𝐷 𝑂𝑟𝑎𝑐𝑙𝑒
𝐼𝐸 𝑋𝑃 𝐼𝑃𝑣6 𝐼𝑛𝑡𝑒𝑙 𝑂𝑟𝑎𝑐𝑙𝑒

(b)

Fig.1. Instances of MCA for 2-way and 3-way testing

V. RELATED WORK

In the last 20 years, CAG problem has become a

popular research area among researchers in the fields of

Mathematics as well as Computer Science. Various tools

and algorithms have been proposed by researchers to

solve CAG problem.

Mathematicians use algebraic methods to generate CAs.

These methods are extremely fast; however they are

mostly designed to generate CAs only. Greedy algorithms

use two approaches to construct CA: test based

generation and parameter based generation. In test based

generation, CA is constructed by generating one test at a

time until all the uncovered combinations are covered.

Parameter based generation starts by constructing a small

CA for the first t parameters initially and then extends it

by taking one more parameter in the next iteration.

Extension is done in both horizontal as well as vertical

direction.

Recently, meta-heuristic techniques have also been

used to solve CAG problem. Meta-heuristic search

techniques start from a pre-existing CA or a population of

18 × 5

9 × 5

62 A Hybrid Artificial Bee Colony and Harmony Search Algorithm to Generate

Covering Arrays for Pair-wise Testing

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 8, 59-70

CA and apply a series of transformations on them until a

CA is found that covers all the uncovered combinations.

A summary of various algebraic, greedy and meta-

heuristic algorithms /tools to generate CA for CIT is

shown in Table 2.

Table 2. Summary of existing tools/algorithms for combinatorial testing

Existing Strategies
t-way

testing
Category

Support

Constraint

Test Cover [11] 4

Algebraic methods

(Parameter-based generation)

TConfig [12] 2

Combinatorial Test Services (CTS) [13] 4

Algebraic Method [14] 2

AETG [1] 2

Greedy algorithms

(Test based generation)

TCG (Test Case Generator) [15] 2

TVG (Test Vector Generator) [16] 6

AllPairs1 2

PICT [17] 6

Jenny [18] ≤ 8

Density [19] 3

CASCADE [20] 6

ACTS(IPOG) [21] 6

Paraorder [19] 3

GA [22] 3

Meta-heuristic

Techniques

(Test based

generation)

GA

ACA [22] 3 ACO

TSA [23] 6 TS

SA [24] 6 SA

PPSTG [25] 6 PSO

CASA [26] 3 SA

GAPTS [27] 2 GA

PWiseGen [28] 2 GA

GA [29] 2 GA

CS [30] 6 CS

FSAPSO[31] 4 Adaptive PSO

TCA [32] Two-mode local search

PWiseGenPM [33] 2 GA

PWiseGen-GM(Greedy Mutation) [34] 2 GA

HHSA(Hyper Heuristic Simulated Annealing) [35] 3 SA

ABC-CAG (Artificial Bee Colony- Covering Array

Generator) [36]
2 ABC

VI. THE PROPOSED HYBRID ABC AND HS ALGORITHM

(ABCHS-CAG)

Every stochastic search algorithm is characterized by a

trade-off between two mechanisms, namely exploration

and exploitation. To find an optimal solution it is

essential to maintain a good balance between these two

otherwise, the optimization method either suffers from

premature convergence to a suboptimal solution or slow

convergence. ABC is very good at exploration but poor in

exploitation as employed bees and onlooker bees only

modify a small part of the solution instead of taking the

global best, which may lead to the trapping of ABC in

local minima.

In HSA, exploration or diversification is controlled by

randomization and pitch adjustment (PA). As discussed

in Section III, in HSA randomization generates a new

harmony randomly (global search) whereas PA

corresponds to the generation of a slightly different

harmony (solution). PA is done by adjusting the pitch in

the given BW by a small random amount with respect to

the existing pitch (solution) from the HM [9]. Although

PA is a diversification factor but the subtlety of this is

that it acts as an intensification factor because it makes

sure that the newly generated solutions are of good

quality, at the same time not far from the existing solution.

 A Hybrid Artificial Bee Colony and Harmony Search Algorithm to Generate 63

Covering Arrays for Pair-wise Testing

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 8, 59-70

So PA is a controlled diversification (local search). In

HM, exploitation or intensification is represented by

HMCR which ensures that good harmonies (solutions)

from the HM are transferred to the next generation which

as discussed above will further be enhanced by the

controlled PA. Therefore, intensification in HSA can be

controlled by adjusting the HMCR.

To enhance the exploitation capability of ABC, we

present a hybrid algorithm ABCHS-CAG that combines

ABC algorithm and HSA to generate CA for pair-wise

testing. The main motive behind the hybridization of

ABC and HS algorithm is to incorporate the

intensification capability of HS in ABC thereby

enhancing the performance of ABC algorithm. In

ABCHS-CAG, the exploitation ability of employed bees

is enhanced by utilizing the memory consideration and

pitch adjustment mechanism of HS algorithm. The

various steps of ABCHS-CAG are:

Step 1: Generation of initial population

The first step of ABCHS-CAG is the generation of

initial population of SN covering arrays CAi = {CA1,

CA2,…, CASN} of size N × k. Each CA corresponds to a

food source. Initially N is unknown at the start of the

search process, so we can use either of the two methods

suggested by Stardom [37]. The first one is to set a loose

lower bound (LB) and upper bound (UB) on the size of a

CA and then apply binary search repeatedly until a

solution is found. In case the size of N is known in

advance i.e. the best bound achieved in the existing

literature, we can start with the known size and try to

optimize it further. ABCHS-CAG uses the first method

where it starts with a population of large random CAs of

size N × k, where N = (LB + UB)/2 and apply binary

search repeatedly until an optimal CA is found. In case

the size is known in advance, ABCHS-CAG uses the

second method. After population initialization, fitness of

each CA is calculated which is the measure of its quality.

The fitness of CA is calculated by counting the total

number of distinct 2-way interactions covered by it as

shown in (5):

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =
 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 2 − way
𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑏𝑦 𝐶𝐴𝑖

 ∀ 𝑖𝜖 {1. . 𝑆𝑁}

(5)

An example to illustrate how population of CA is

created and how their fitness is calculated is shown in Fig.

2. Here, we have taken a system that has 4 configurable

parameters P1, P2, P3 and P4 with P1 and P4 having 2

values and, P2 and P3 having 3 values each. The values

taken by each parameter are mapped to set X = {0, 1,

2...}. Let us assume that the CA size N is known in

advance and is 7 in our case. To find an optimal CA for

testing all 2-way interactions of parameters, ABCHS-

CAG starts by generating an initial population of CAs

represented by CAi = {CA1, CA2, …, CASN} of size 7 × 4

and calculates the fitness of each CA. In Fig. 2, all the 2-

way interactions covered by each test case of the first

covering array CA1 in the initial population are shown. It

is clear from Fig. 2, that CA1 covers 29 distinct 2-way

interactions out of 37 distinct 2-way interactions present

in the system. So the fitness of CA1 is 29. Similarly the

fitness of each CA in the initial population is calculated

by ABCHS-CAG.

0 1 1 0
1 0 2 1
1 1 0 0

0 0 1 1
0 1 0 1
0 2 1 1
1 0 1 0

 Population = {CA1, CA2,…, CASN}

 P1 P2 P3 P4

 CA1

N × k

2-way interactions
covered by CA1

Fitness(CA1) = 29

tc1

tc2

tc3

tc4

tc5

tc6

tc7

 Distinct 2-way

 P1 P2 interaction

0 1
1 0
1 1
0 0
0 1
0 2
1 0

 5

 P1 P3

0 1
1 2
1 0
0 1
0 0
0 1
1 1

 5

 P1 P4

0 0
1 1
1 0
0 1
0 1
0 1
1 0

 4

 P2 P3

1 1
0 2
1 0
0 1
1 0
2 1
0 1

 5

 P2 P4

1 0
0 1
1 0
0 1
1 1
2 1
0 0

 5

 P3 P4

1 0
2 1
0 0
1 1
0 1
1 1
1 0

 5

Fig.2. An example to illustrate the way t-way interactions are

covered by a CA.

After generation of initial population of CAs, they are

subjected to repeated cycles of the search process of

employed bees, onlooker bees and scout bees in an

attempt to generate a CA that maximizes the objective

function f | f : CAi → I+, where, I+ is a set of positive

integer and f (CAi) is calculated as:

() ()i if CA fitness CA (6)

ABCHS-CAG tries to find a covering array CAmax,

such that

𝑓 𝐶𝐴𝑚𝑎𝑥 = 𝑚𝑎𝑥 𝑓(𝐶𝐴𝑖),⍱ 𝑖 𝜖 1, 2,… ,𝑆𝑁

(7)

64 A Hybrid Artificial Bee Colony and Harmony Search Algorithm to Generate

Covering Arrays for Pair-wise Testing

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 8, 59-70

Step 2: Initialization of HSA parameters

During this step, the value of HSA parameters i.e.,

HMCR and PAR is set. The typical value of HMCR

varies from 0 to 1. A low value of HMCR will result in

selection of only best harmonies from the HM which

ultimately results in slower convergence. A high value of

HMCR will use most of the harmonies from HM thereby

leaving other harmonies unexplored leading to poor

solutions. The value of PAR also varies from 0 to 1. A

low PAR along with a narrow BW will result in slow

convergence whereas; a high PAR along with a wide

bandwidth may cause the solution to scatter around some

potential optima. Therefore, the values of HMCR and

PAR need to be selected carefully.

Step 3: Employed bee phase

Unlike traditional ABC, ABCHS-CAG enhances the

exploitation capability of an employed bee by enabling it

to select the worst test case of the selected covering array

CAi and modify this worst test case represented by CAiq

to generate a new test case CAiq
new = (CAiq1

new,

CAiq2
new, ……, CAiqj

new), on the basis of HMCR and PAR.

Here, j = 1 to k represents the jth parameter of the worst

test case i.e., qth test case of CAi. The worst test case is

the one that covers least number of distinct 2-way

interactions in the selected CA. The value of each

parameter CAiqj in CAiq is modified on the basis of the

value of random number r1 which is in the range [0, 1]. If

r1 < HMCR, CAiqj
new is generated by modifying CAiqj

using (8) otherwise, CAiqj
new is selected randomly from

all possible values of parameter Pj.

𝐶𝐴𝑖𝑞𝑗
𝑛𝑒𝑤 = 𝑟𝑜𝑢𝑛𝑑 𝐶𝐴𝑖𝑞𝑗 + ∅𝑖𝑞𝑗 𝐶𝐴𝑖𝑞𝑗 − 𝐶𝐴𝑚𝑞𝑗

(8)

Where, CAm is a randomly selected neighbor of CAi,

Øiqj is a random number between [-1, 1]

For calculation purpose, the values in the domain of

each parameter are mapped to an integer number in the

range [0, vj), where vj is the number of possible values of

parameter „j‟ It is quite possible that a non-integral value

may get generated as a result of calculation performed

using (8). In such a situation, when a non-integer value is

generated for a parameter, it gets rounded to the nearest

integer number. After rounding off the value, if it doesn‟t

fall in the range [0, vj), then a value is selected randomly

from the input domain of the respective parameter and it

replaces the existing value of the selected parameter. In

case CAiqj
new is generated using (8), a random number r2

is generated in the range [0, 1] and the value of PAR is

examined. The value of PAR indicates the chances of

moving to the left or to the right neighbors of CAiqj
new.

The movement towards the neighbors as shown in (9)

occurs if and only if r2 < PAR. Otherwise, no changes are

made to CAiqj
new.

1new new

iqj iqjCA CA (9)

Finally, a greedy selection is applied and CAiq
new

replaces CAiq, if fitness (CAi
new) > fitness (CAi).

Step 4: Onlooker bee phase

After the employed bees phase, the fitness of each CA

in the search space is calculated and a probability of

selection is assigned to each of them using (2). An

onlooker bee in ABCHS-CAG selects a CA on the basis

of probability assigned to them. This is done by

generating a random number in the range [0, 1] and

selecting a CA based on the interval in which the random

number falls. Unlike the traditional ABC, ABCHS-CAG

takes advantage of the global best CA denoted by CAbest

in the population (based on gbest-guided ABC (GABC)

[38])to guide the search of candidate solution and

modifies the selected CA. Like employed bee, onlooker

bee selects the worst test case (dimension) of the selected

CA and replaces it with a test case that is generated by

using the information of the global best CA i.e., CAbest

and a randomly selected neighboring CA i.e., CAm using

(10). The GABC technique drives the new candidate

solution CAi
new towards the global best solution, thereby

improving its exploitation capabilities. However, in case

CAbest gets selected per se, based on the generated

random number, ABC-CAG modifies it by replacing its

worst test case by a smart test case. A smart test case is

constructed by selecting the value for each parameter

greedily. For each parameter, a value is selected whose

occurrence in CAbest is the minimum. The replacement of

worst test case in CAbest by a smart test case is done to

make sure that certain new pairs get covered by this

replacement.

 𝐶𝐴𝑖𝑞𝑗
𝑛𝑒𝑤 = 𝐶𝐴𝑖𝑞𝑗 + Ø𝑖𝑞𝑗 𝐶𝐴𝑖𝑞𝑗 − 𝐶𝐴𝑚𝑞𝑗

 + 𝛹𝑖𝑞𝑗 (𝐶𝐴𝑞𝑗
𝑏𝑒𝑠𝑡 − 𝐶𝐴𝑖𝑞𝑗)

(10)

Here, best

qjCA is the value of thj component of thq test

case of best

qjCA , iqj is a uniform random number in the

range [0, C], C is a non-negative constant.

Step 5: Scout bee phase

ABC‟s exploration strategy is effectuated by scout bees

by replacing a food source abandoned by an employed

bee, with a randomly generated food source. To further

improve ABC algorithm‟s exploration capability, we use

a greedy approach to select a CA instead of the primitive

approach followed by ABC. In ABC, the food sources

that cannot be improved through a predetermined

threshold called the limit are abandoned. The

aforementioned abandoned food sources are there upon

replaced by randomly created new food sources by

artificial scout. In ABCHS-CAG, scout replaces the worst

CA (least fitness) in the population by a new CA.

ABCHS-CAG necessitates setting the frequency of scout

operation with discretion: a very high value of frequency

will proliferate diversity of the population and avoid

getting stuck in local minima but concurrently makes it

 A Hybrid Artificial Bee Colony and Harmony Search Algorithm to Generate 65

Covering Arrays for Pair-wise Testing

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 8, 59-70

difficult to converge to a good solution; whereas, a lower

value of frequency will result in early convergence

leading to sub optimal solution. Hence, it is required to

set the frequency of scout denoted by fscout to an optimal

value. ABHSC-CAG replaces the worst CA by a

randomly generated CA after every fscout generations.

Step 6: Stopping/Exit Criteria

Step 3- step 5 are repeated until a solution is found i.e.,

a CA is found that covers 100% 2-way interactions or

maximum number of iterations is reached. Now there are

two cases:

Fig.3. Pseudo code of ABCHS-CAG

Input: SUT (t, k, v, N), Output: CA of strength-2

1: Set parameters: SN, NI, HMCR, PAR, fscout

2: Generate initial population of SN covering arrays

 CAi | 1 ≤ i ≤ SN

3: Calculate fitness of all CAi |1 ≤ i ≤ SN using Equation (5)

4: Iteration ← 1, Cycles ← 1

5: Employed bee phase // intensification using HS

 for i = 1 to SN

 Select the worst test case q of CAi

 for j = 1 to k

 Generate a random number r1 in the range [0, 1]

 if (r1 < HMCR)

𝐶𝐴𝑖𝑞𝑗

𝑛𝑒𝑤 = 𝑟𝑜𝑢𝑛𝑑 𝐶𝐴𝑖𝑞𝑗 + ∅𝑖𝑞𝑗 𝐶𝐴𝑖𝑞𝑗 − 𝐶𝐴𝑚𝑞𝑗

 Generate a random number r2 in the range [0, 1]

 if (r2 < PAR)

 𝐶𝐴𝑖𝑞𝑗
𝑛𝑒𝑤 = 𝐶𝐴𝑖𝑞𝑗

𝑛𝑒𝑤 ± 1
 end if

 else

 end if

 end for

 if (fitness (CAinew > CAi)

 𝑅𝑒𝑝𝑙𝑎𝑐𝑒 𝐶𝐴𝑖 𝑏𝑦 𝐶𝐴𝑖
𝑛𝑒𝑤

 end for

6: Onlooker bee phase

 6.1: Compute the probability of selection of each covering array CAi

 𝑃(𝐶𝐴𝑖) =
𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝐶𝐴𝑖)

 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 (𝐶𝐴𝑛)𝑆𝑁
𝑛=1

 6.2: for i = 1 to SN

 let CAi be the CA selected by onlooker bee

 ← worst test case of CAi

 ← global best CA

 if (CAi == CAbest)

 replace by smart test case

 else

 for j = 1 to k

 𝐶𝐴𝑖𝑞𝑗
𝑛𝑒𝑤 = 𝐶𝐴𝑖𝑞𝑗 + Ø𝑖𝑞𝑗 𝐶𝐴𝑖𝑞𝑗 −𝐶𝐴𝑚𝑞𝑗 + 𝛹𝑖𝑞𝑗 (𝐶𝐴𝑞𝑗

𝑏𝑒𝑠𝑡 − 𝐶𝐴𝑖𝑞𝑗)
 end for

 end if

 end for

7: Scout phase

 if (cycles = = fscout)

 replace the worst CA i.e.,CAi
worst by randomly generated covering

array CArandom

 cycles = 1

 else

 cycles ++

 end if

8: if (there exist a CAi that achieves 100% fitness)

 stop and return CAi

 else

 iteration ← iteration + 1

 if (iteration > NI)

 return solution not found

 else

 goto step 5

 end if

 end if

66 A Hybrid Artificial Bee Colony and Harmony Search Algorithm to Generate

Covering Arrays for Pair-wise Testing

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 8, 59-70

Case 1: If a solution is found at N where, N was

determined by setting loose LB and UB on the size of CA

i.e., N = (LB + UB)/2 then ABCHS-CAG changes the

UB to N-1 otherwise, changes the LB to N + 1 and re-

execute with a new initial population of CAs of size N =

(LB + UB)/2. This process is repeated until the smallest

CA that covers 100% t-way interactions of input

parameters is obtained.

Case 2: If a solution is found at N where N was taken

from the existing literature, ABCHS-CAG decreases N

by 1 otherwise, increases N by 1 and re-execute with a

new initial population of CAs of size N × k. This process

of incrementing or decrementing N continues until an

optimal CA is found that covers 100% t-way interactions

of input parameter values. The algorithm ABCHS-CAG

is shown in Fig. 3.

VII. EVALUATION

This section presents the result of experiments

performed to evaluate the performance of ABCHS-CAG

with respect to the existing algorithms to construct CA

for pair-wise testing. We have implemented ABCHS-

CAG in Java and three sets of experiments are conducted

to make comparison on the basis of CA size and CA

generation time. For the first experiment, smart phone

application (SPA) benchmark problem [39] is considered.

In the second experiment, we have taken a utility in a

software application. For the third experiment, some

benchmarks problems are carefully selected from the

existing literature [6, 24, 25] on pair-wise testing for

comparison. CA size is absolute and is independent on

the execution environment whereas, CA generation time

depends upon the execution environment. Therefore, CA

generation time is reported only for publicly available

tools.

Experiments were conducted by executing the

benchmark problems on these publicly available tools

under Windows with INTEL Pentium Dual Core 1.73

GHZ processor and 1 GB memory. As discussed in

Section VI, the values of various parameters such as

HMCR, PAR, fscout and NI (number of iterations) need

to be set before performing the experiments. We

performed extensive study with various combinations of

HMCR and PAR and reached to a conclusion that

HMCR= 0.7 and PAR =0.4 work best in our case. We

have set fscout = 5 which means that the scout will

replace the worst CA after every fifth iteration which

enables us to reach to an optimal solution within

reasonable time. We performed experiments with varying

number of iterations. NI < 2000 will make the algorithm

terminate early for most of the benchmark problems

preventing it to converge to a good solution whereas NI >

5000 will not make any significant difference in the

quality of final solution. Hence NI is set as 5000. As

meta-heuristic techniques/tools generates non-

deterministic results, we ran each benchmark problem

ABCHS-CAG, ABC-CAG, CASA and PWiseGen-PM 30

times and reported the average and best result obtained in

each case. However, we have reported the CA generation

time for the best cases only.

A. Benchmark 1:Smart phone Application example (SPA)

The wide spread and growing popularity of smart

phones have led to the development of tens of thousands

of smart phone applications or „apps‟ annually [39].

Android is one of the platforms for smart phone apps.

The behavior of a smart phone can be controlled by

setting many configuration options that are available in

the android unit, which in turn plays an important role

while executing an app on a variety of hardware and

software platforms. Table 3 shows the various android

configuration options.

To ensure that a particular app works across all

possible configurations, a total of 3 × 3 × 4 × 3 × 5 × 4 ×

4 × 5 × 4 = 172,800 test cases will be required which is

infeasible. Using combinatorial testing, tester can

generate a test set to test all t-way interactions between

configurations thereby reducing the testing time and

effort required by exhaustive testing.

Here, we generate a MCA to test all 2-way interactions

between configurations. SPA can easily be represented by

an MCA instance MCA (N; t, 9, 334452). The size and the

generation time (in seconds) of MCAs generated by the

existing state-of-the-art tools/algorithms for 2-way testing

of SPA are shown in Table 4.

Table 3. Android configuration options

Parameters Values

HARDKEYBOARDHIDDEN NO, UNDEFINED, YES

KEYBOARDHIDDEN NO, UNDEFINED, YES

NAVIGATIONHIDDEN NO, UNDEFINED, YES

SCREENLAYOUT_LONG MASK, NO, UNDEFINED, YES

ORIENTATION LANDSCAPE, PORTRAIT, SQUARE, UNDEFINED

TOUCHSCREEN FINGER, NOTOUCH, STYLUS, UNDEFINED

KEYBOARD 12KEY, NOKEYS, QWERTY, UNDEFINED

NAVIGATION DPAD, NONAV, TRACKBALL, UNDEFINED, WHEEL

SCREENLAYOUT_SIZE LARGE, MASK, NORMAL, SMALL, UNDEFINED

 A Hybrid Artificial Bee Colony and Harmony Search Algorithm to Generate 67

Covering Arrays for Pair-wise Testing

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 8, 59-70

Table 4. Comparison of MCA size/MCA generation time (in seconds) for SPA

Jenny PICT Allpairs TVG
ACTS

(IPOG)

CASA PWiseGenPM ABC-CAG ABCHS-CAG

avg best avg best avg best avg best

31/ 0.12 30 34/ 0.02 31/ 0.35 29/0.015 25 25/ 6.57 25 25 /0.63 25 25/ 4.03 25 25/ 3.57

B. Benchmark 2:MS Word example

Here, we have taken an example of “Insert Table of

Figures” feature available in MS-Word that models and

illustrates the concept of CIT. It can be seen from Fig. 4

that there are 6 attributes whose values a user can set

while using this feature of MS-Word. For example, the

user can check or uncheck “show page number” attribute.

Similarly, for the “tab leader” attribute a user can select

from four possible values which we represent by 0, 1, 2

and 3. Here, each attribute that a user can set is

considered as an input parameter and each of them has

different possible values. Table 5 summarizes the

parameters and the values for “Insert Table of Figures”

feature available in MS-Word. It is clear from Table 5

that “Insert Table of Figures” can be represented by an

MCA instance MCA (N; t, 6, 234261). Exhaustive testing

of this feature will require 2 × 2 × 2 × 4 × 4 × 6 = 768 test

cases. The size and the generation time of MCAs

generated by the existing state-of-the-art tools/algorithms

for 2-way testing of “Insert Table of Figures” feature are

shown in Table 6.

C. Benchmark 3

Here, we have taken some benchmark problems

selected carefully from the existing literature [6, 24, 25]

on pair-wise testing. Comparison of CA sizes generated

by ABCHS-CAG with the existing algorithms for pair-

wise testing is done by executing the benchmark

problems if the tool is publicly available otherwise they

are compared based on the results reported in past. Table

7 and Table 8 shows the size and generation time of CA

generated by the existing algorithms for the selected

benchmark problems. „-„ in Table 7 indicates that the

result is unavailable. It is evident from Table 4, 6, 7 and 8

that ABCHS-CAG takes more time to generate CAs as

compared to their greedy and meta-heuristic counterparts

however, it generates smaller CAs as compared to their

greedy counterparts whereas the results are better or

comparable to the existing meta-heuristic techniques.

Fig.4. “Insert Table of Figures” feature in MS-Word

Table 5. Input parameters and their values of “Insert Table

of Figures” feature.

Parameters Values

Show page numbers Yes, No

Include label and number Yes, No

Use hyperlinks instead of

page numbers
Yes, No

Tab leader 0, 1, 2, 3

Caption label None, Equation, Figure, Table

Formats

From template, Classic,

Distinctive, Centered, Simple,

Formal

Table 6. Comparison of MCA size/MCA generation time (in seconds) for “Insert Table of Figures” feature.

Jenny PICT Allpairs TVG ACTS (IPOG)
CASA PWiseGenPM ABC-CAG ABCHS-CAG

avg best avg best avg best avg best

26/ 0.046 26 27/ 0.056
26/

0.141
24/ 0.059 24

24/

0.54
24 24/ 0.015 24

24/

0.96
24

24/

0.76

68 A Hybrid Artificial Bee Colony and Harmony Search Algorithm to Generate

Covering Arrays for Pair-wise Testing

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 8, 59-70

Table 7. Comparison of MCA size

MCA

Instance

AETG TVG AllPairs PICT Jenny
ACTS

(IPOG)
GA

ACA

ACOerfo

rms

ACOG

algorith

m.

gorithm

(ACA),

which

was

inspired

by

AETG

algorith

m. a rily

large N

and1010

101010

101010

101010

101010

101010

101010

101010

101010

1010

PSO TS PPSTG

CASA

PWiseGen

PM

CS FSAPO
ABC-

CAG

ABCHS-

CAG

 best avg best avg best avg

510 - 50 47 47 45 45 - - - - 45 38
39.

7
40 - - 41 41.6 39 39.8

4534 - 26 22 26 26 24 - - - 19 - 19 20 19 - - 19 19.8 19 19.6

513822 20 23 20 20 23 19 17 17 17 15 21 15
16.

2
15 21 18 15 15.9 15 15.4

514431125 30 33 27 32 32 26 26 27 27 22 - 22
23.

7
25 - - 22 23.9 21 21.6

6151463823 34 40 34 38 40 36 33 34 35 30 39 30
30.

2
30 43 35 30 30.2 30 30.4

624929 - 44 38 41 44 39 - - - 36 - 36
36.

4
39 - - 36 36.2 36 36.8

655534 - 63 53 59 56 56 - - - 50 - 47
49.

3
52 - - 51 52.5 46 46.42

7161514538

23 45 49 43 46 50 43 43 43 43 42 49 42 42 42 51 - 42 42.2 42 42.4

694327 - 69 59 67 64 61 - - - 51 - 52
53.

23
59 - - 51 51.7 51 51.3

Table 8. Comparison of MCA generation time (in seconds)

MCA Instance TVG AllPairs Jenny ACTS(IPOG) CASA PWiseGenPM ABC-CAG ABCHS-CAG

510 0.479 0.013 0.309 0.003 3.608 11.4 123.708 38.63

4534 0.023 0.012 0.15 0.001 0.6785 2.76 37.2 24.09

513822 0.098 0.013 0.095 0.002 0.8145 2.95 47.1 5.62

514431125 0.435 0.016 0.202 0.015 3.15 13.74 74.9 12.43

6151463823 0.339 0.009 0.229 0.016 11.2 23.94 78.65 36.45

624929 0.397 0.009 0.247 0.016 2.21 11.52 180.8 67.03

655534 0.415 0.015 0.249 0.015 106.56 88.8 246.87 206.7

716151453823 0.254 0.016 0.383 0.016 1.44 12.3 66.24 49.56

694327 0.847 0.015 0.319 0.016 7.06 33.04 633.23 215.2

 A Hybrid Artificial Bee Colony and Harmony Search Algorithm to Generate 69

Covering Arrays for Pair-wise Testing

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 8, 59-70

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a hybrid algorithm

ABCHS-CAG, where the exploitation capability of ABC

is improved by improvising the solutions using the three

rules of HS: memory consideration rule, pitch adjustment

rule and random selection. The performance of ABCHS-

CAG compared and analyzed with respect to the existing

literature on pair-wise testing. The experiments

conducted on a set of benchmark problems show that the

proposed strategy generates smaller or comparable CA as

compared to its greedy and meta-heuristic counterparts.

In future, we plan to incorporate constraint handling

features in ABCHS-CAG.

REFERENCES

[1] D. M. Cohen, S.R. Dalal, and M. L. Fredman, “The

combinatorial design approach to automatic test

generation,” IEEE Software, pp. 83–87, 1996.

[2] K. Burr, and W. Young, “Combinatorial test techniques:

table-based automation, test generation and code

coverage,” International Conference on Software Testing

Analysis & Review,San Diego,1998.

[3] R. Kuhn, D. Wallace, and A. Gallo, “Software fault

interactions and implications for software testing,” IEEE

Transactions of Software Engineering., 30(6), pp. 418–

421, 2004.

[4] C. Nie, H. Leung, “A survey of combinatorial testing,”

ACM Computing Surveys (CSUR), 43(2), pp. 1-29, 2011

[5] Y. Lei, and K. C. Tai, “ In-parameter-order: a test

generation strategy for pairwise testing,” In: 3rd IEEE

International Symposium on High-Assurance Systems

Engineering, p. 254–261, Washington, DC, 1998.

[6] M. B Cohen, C. J. Colbourn, P. B. Gibbons, and W. B.

Mugridge, “Constructing test suites for interaction

testing,” ICSE, pp. 38-48, Portland OR, 2003

[7] C. Blum, “Hybrid metaheuristics in combinatorial

optimization: A survey,” Applied Soft Computing, 11(6),

pp. 4135-4151, 2011.

[8] D. Karaboga,“An idea based on honeybee swarm for

numerical optimization,” Technical Report TR06, Erciyes

University, Engineering Faculty, Computer Engineering

Department, 2005.

[9] Z. W. Geem, J. H. Kim, and G. V. Loganathan, “A new

heuristic optimization algorithm: harmony search.

Simulation,” pp.60–68, 2001.

[10] A. Hedayat, N. Sloane, and J. Stufken, “Orthogonal

Arrays,” Springer New York, 1999.

[11] G. Sherwood , ”TestCover,”

http://testcover.com/pub/constex.php.

[12] A. W. Williams, “Determination of test configurations for

pair-wise interaction coverage,” 13th International

Conference on the Testing of Communicating Systems,

Ottawa, Canada, pp. 59-74, 2000.

[13] A. Hartman, and L. P. Raskin,“Problems and algorithms

for covering arrays.,”JDM.,284 (1-3), pp. 149-156, 2004.

[14] N. Kobayashi, T. Suchiya, and T. Kikuno, “A new

method for constructing pair-wise covering designs for

software testing.,” IPL, 81 (2), pp. 85-91, 2002.

[15] Y. Tung, and W. Aldiwan,“Automating test case

generation for the new generation mission software

system,”IEEE Aerospace Conference, pp. 431-437, 2000.

[16] J. Arshem, “Tvg,”: http://sourceforge.net/projects/tvg.

[17] J. Czerwonka,“ Pairwise testing in real world: practical

extension to test case generator,” 24th Pacific Northwest

Software Quality Conference, Portland, OR, USA, pp.

419-430, 2006.

[18] B. Jenkins,: http://burtleburtle.net/bob/math/jenny.html.

[19] Z.Wang, B. Xu, C. Nie, “Greedy heuristic algorithms to

generate variable strength combinatorial test suite,”

International Conference on Quality Software. IEEE

Computer Society. pp. 155–160, 2008.

[20] Z. Zhang, J. Yan, Y. Zhao, and J. Zhang, “Generating

combinatorial test suite using combinatorial

optimization,” Journal of Systems and Software, vol. 98,

pp. 191–207, 2014.

[21] Y. .Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence,

“IPOG: A general strategy for t-way software testing,”

14th IEEE International Conference and Work-shops on

the Engineering of Computer- Based Systems-ECBS,”

Tuscon, AZ,USA, pp. 549-556, 2007.

[22] T. Shiba, T. Tsuchiya, and T. Kikuno, “Using artificial

life techniques to generate test cases for combinatorial

testing,” 28th Annual International Computer Software

and Applications Conference, pp. 72–77, IEEE Computer

Society, 2004.

[23] L. Gonzalez-Hernandez, N. Rangel-Valdez, J. Torres-

Jimenez, “Construction of mixed covering arrays of

strengths 2 through 6 using a tabu search approach,”

Discrete Mathematics Algorithms and Applications, 4

(3),2012.

[24] H. Avila-George, J. Torres-Jimenez, V. Hernández, V. L.

Gonzalez-Hernandez,“Simulated annealing for

constructing mixed covering arrays,” Advances in

Intelligent and Soft Computing,vol.151, pp. 657–664,

Springer Berlin , Heidelberg, 2012.

[25] B. S. Ahmed, K. Z. Zamli, “The development of a particle

swarm based optimization strategy for pairwise testing,”

Journal of Artificial Intelligence, 4, pp. 156-165, 2011.

[26] B. J. Garvin, M. B. Cohen, M. B. Dwyer,”Evaluating

improvements to a meta-heuristic search for constrained

interaction testing,” Empirical Software Engineering,

16(1). pp. 61-102, 2011.

[27] J. D. McCaffrey,“Generation of pairwise test sets using a

genetic algorithm,” 33rd Annual IEEE International

Computer Software and Applications Conference,” pp.

626–631, Los Alamitos, 2009.

[28] P. Flores, Y. Cheon, “PWiseGen: Generating test cases

for pairwise testing using genetic

algorithms,”International Conference on Computer

Science and Automation Engineering, pp. 747 –752, 2011.

[29] P. Bansal, S. Sabharwal, S. Malik, V. Arora, V. Kumar,

“An approach to test set generation for pair-wise testing

using genetic algorithms,” In: G. Ruhe and Y. Zhang

(Eds.): SSBSE 2103, LNCS 808., pp. 294-299, Springer-

Verlag, Berlin Heidelberg, 2013.

[30] B. S. Ahmed, T. S. Abdulsamad, and M. Y.

Potrus,“ Achievement of minimized combinatorial test

suite for configuration-aware software functional testing

using the Cuckoo search algorithm.,”Information and

Software Technology, 66, pp. 13–29, 2015.

[31] T. Mahmoud, B. S. Ahmed, “An efficient strategy for

covering array construction with fuzzy logic-based

adaptive swarm optimization for software testing use,”

Experts Systems with Applications, 42, pp. 8753–8765,

2015.

[32] J. Lin, C. Luo, S. Cai, K. Su, D. Hao, and Lu Zhang,

“TCA: An efficient two-mode meta-heuristic algorithm

for combinatorial test generation,” In 30th International

IEEE/ACM Conference on Automated Software

Engineering (ASE), pp. 494-505, 2015.

http://testcover.com/pub/constex.php
http://burtleburtle.net/bob/math/jenny.html

70 A Hybrid Artificial Bee Colony and Harmony Search Algorithm to Generate

Covering Arrays for Pair-wise Testing

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 8, 59-70

[33] S. Sabharwal, P Bansal, N. Mittal, and S. Malik,

“Construction of Mixed Covering Arrays for Pair-wise

Testing Using Probabilistic Approach in Genetic

Algorithm,” The Arabian Journal for Science and

Engineering, Springer, 2016.

[34] S. Sabharwal, P.Bansal and N.Mittal, “Construction of

Strength Two Mixed Covering Arrays Using Greedy

Mutation in Genetic Algorithm,” International Journal of

Information Technology and Computer Science (IJITCS),

Vol. 7, No. 10, pp. no..23-34, September 2015, ISSN:

2074-9007 (Print), ISSN: 2074-9015 (Online), DOI:

10.5815/ijitcs

[35] Y. Jia, M. Cohen, and M. Petke, “Learning Combinatorial

Interaction Test Generation Strategies using

Hyperheuristic Search,” ICSE, pp.540–550, 2015.

[36] P. Bansal, S. Sabharwal, N. Mittal and S. Arora,“ABC-

CAG: Covering Array Generator for Pair-wise Testing

Using Artificial Bee Colony Algorithm,”e-Informatica

Software Engineering Journal, 2016.

[37] J. Stardom, “Metaheuristic and the search for covering

and packing arrays,” Master‟s Thesis, Simon Fraser

University, 2001.

[38] G. Zhu, and S. Kwong, „Gbest-guided artificial bee

colony algorithm for numerical function optimization,”

Applied Mathematics and Computatio,. 217, pp. 3166–

3173, 2010.

[39] D. R Kuhn, R. N. Kacker, and Yu Lei, “Practical

Combinatorial Testing,” NIST Special Publication, 800-

142, 2010.

Authors’ Profiles

Priti Bansal received her B.E in Computer

Science from University of Mumbai, India

in 2001 and her M.Tech in Information

System from University of Delhi, India in

2009. She is pursuing Ph.D from NSIT,

University of Delhi. She is currently

working as Assistant Professor in the

Department of Information Technology, NSIT, New Delhi,

India. Her research interest includes model based testing, web

application testing, search based software engineering and

neural networks.

Sangeeta Sabharwal did her M.Tech in

Computer Science and Ph.D from from

University of Delhi, India. Presently she is

a Professor, Division of Computer Science

at NSIT, University of Delhi, India. She

has around 25 years of experience in the

field of software engineering. Her areas of

interest include model based testing, web application testing,

search based software engineering and meta modeling.

Nitish Mittal received his B.E in

Computer Science from NSIT, University

of Delhi, India in 2016. He is currently

working as Software engineer in Wadi.com,

Dubai, UAE. His areas of interest include

software testing, soft computing and data

mining.

How to cite this paper: Priti Bansal, Sangeeta Sabharwal,

Nitish Mittal,"A Hybrid Artificial Bee Colony and Harmony

Search Algorithm to Generate Covering Arrays for Pair-wise

Testing", International Journal of Intelligent Systems and

Applications(IJISA), Vol.9, No.8, pp.59-70, 2017. DOI:

10.5815/ijisa.2017.08.07

http://www.e-informatyka.pl/attach/e-Informatica_-_Volume_10/eInformatica2016Art1.pdf
http://www.e-informatyka.pl/attach/e-Informatica_-_Volume_10/eInformatica2016Art1.pdf
http://www.e-informatyka.pl/attach/e-Informatica_-_Volume_10/eInformatica2016Art1.pdf

