
I.J. Intelligent Systems and Applications, 2017, 9, 37-45
Published Online September 2017 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijisa.2017.09.05

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 9, 37-45

Performance Analysis of a System that Identifies

the Parallel Modules through Program

Dependence Graph

Shanthi Makka
Department of Computer Science and Engineering, JRE Group of Institutions, Greater Noida, 201310, India

E-mail: Shanthi.makka@gmail.com

Dr. B.B.Sagar
Department of Computer Science and Engineering, BITs, Ranchi(Noida Campus201301, India

E-mail: drbbsagar@gmail.com

Received: 02 March 2017; Accepted: 08 June 2017; Published: 08 September 2017

Abstract—We have proposed a new approach to identify

segments, which can be executed simultaneously, or

coextending to achieve high computational speed with

optimized utilization of available resources. Our

suggested approach is divided into four modules. In first

module we have represented a program segment using

Abstract Syntax Tree (AST) along with an algorithm for

constructing AST and in second module, this AST has

been converted into Program Dependence Graph (PDG),

the detailed approach has been described in section II,

The process of construction of PDG is divided into two

steps: First we construct a Control Dependence Graph

(CDG, In second step reachability definition algorithm

has been used to identify data dependencies between the

various modules of a program by constructing Data

Dependence Graph (DDG). In third module an algorithm

is suggested to identify parallel modules, i.e., the

modules that can be executed simultaneously in the

section III and in fourth module performance analysis is

discussed through our approach along with the

computation of time complexity and its comparison with

sequential approach is demonstrated in a pictorial form.

Index Terms—Abstract Syntax Tree, Program

Dependence Graph, Control Dependence Graph, Data

Dependence Graph, Performance Analysis, Parallel

Modules.

I. INTRODUCTION

Despite Moore's law [3], uniprocessor clock speeds

have now stalled, rather than using single processors

running at ever-higher clock speeds, and drawing ever

increasing amounts of power, even consumer laptops,

tablets and desktops now have dual, quad or hexa-core

processors. Job Scheduling on parallel computer [21] or

parallel machines has been an imminent topic in the past

couple of decades. Many researchers are working to

invent optimization techniques for scheduling multiple

jobs on parallel machines. So researchers started

thinking parallel [13] to achieve good performance of

applications and co up with technological growth

reflecting in day-to-day life. One approach is to

parallelize a program [9] is to rewrite it from scratch.

However, the most common way is to parallelize a

program incrementally, one piece at a time. Each small

step can be seen as a behavior preserving transformation,

i.e., a refactoring Programmer prefer this approach [4]

because it is safer; they prefer to maintain a working,

deployable version of the program. Also, the incremental

approach is more economical than rewriting. For our

approach we consider input as Abstract Syntax Tree i.e.,

The Abstract Syntax Tree (AST) [5] is a representation

of the source code that is commonly used in compilers. It

gives complete representation of the source code in the

sense that it is possible to re generate an equivalent

version of the original source code from an AST. The

only things that are not modeled by an AST are spaces,

blank lines and comments. The AST is closely related to

the parse tree and hence to the formal grammar of the

programming language. The only difference with the

parse-tree is that the AST usually removes useless

constructs, such as useless parentheses. The rules on

what and how useless constructs are removed are not

clearly defined and vary from one implementation to

another.

The PDG [19] is constructed for the AST in the

preceding step, which procreate perspicuous twain the

data and control dependences for each operational

statement in a program. Data dependence graphs have

sustained some optimizing compilers [11] with a definite

effigy of the definition-use relationships inherently

commenced in a source program [6,7]. A control flow

graph [8] is a conventional embodiment for the control

flow interconnections of a program; the control

conditions on which an operation depends can be

described in a graphical form. The program dependence

mailto:drbbsagar@gmail.com

38 Performance Analysis of a System that Identifies the Parallel Modules through Program Dependence Graph

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 9, 37-45

graph extraordinarily denotes both the essential data

relationships, as present in the data dependence graph,

and the important control relationships, without the

unwanted sequencing present in the control flow graph.

These essential dependences determine the necessary

sequencing between operations, producing potential

parallelism. Approachability of statements in a program

can be determined by using reachability definition

algorithm and also demonstrated through an example and

Finally a new approach where even topological sort is

used to find nearest predecessor which has been

demonstrated algorithmically as well as with example

and its computational time is also calculated and

graphically depicted.

II. CONSTRUCTION OF PDG

The primary dominion of graph transformations [14]

in inured is that they effete a mannered and mathematical

model that capitulate for divergent cursory fortuitous

upon abilities, umbrella of the aptitude prone to a given

transfiguration is remedy. Flow analysis is a technique of

analysis of data and control flows of a source program.

In object-oriented programming languages [1],

preconditions [15] can be established by the data flow in

source program i.e., the extracted method is

acknowledged with at most one result and the control

flow in a program conciliate whether the method can be

extracted at all or not i.e., it has to verify that there must

be a unique entry and unique exit precondition scrap.

Program Dependence Graph (PDG) is a figurative

illustration [2] of a program moiety, which has a docility

of representing both control and data dependences

between different segments of program. Control

dependences mediates next instruction to be executed

and data dependences pageant the value ascribe to

variable ‗a‘ in statement ‗X‘ is recycled in other sections

in a program. The construction of PDG consists of two

steps, initially construct Control Dependence Graph

(CDG) for an Abstract Syntax Tree (representation of a

program segment) and secondly incorporate data

dependencies to CDG using reachability algorithm.

A. Abstract Syntax Tree (AST)

An AST is a non-linear data structure, hierarchical

representation of the abstract syntactic anatomy [5] of

source code drafted in a programming language. Each

node of the tree signifies a construct occurring in the

source code or every individual statement represented as

a node and it is widely targeted in syntax analyzer phase

of a compiler. In other words it is basically represents the

structure of code. Abstract syntax trees are data

structures extensively employed in compiler design, due

to property of personify the representation of program

code. The generation of AST is an output of syntax

analyzer, which is a second phase of compilation. It

recurrently oblige as an intermediate representation of

the program through multiple phases that the compiler

expects, and has a great role in the determination of

targeted production of the compiler.

It provides abstract view of a given source code and

first node (root) is main_node, it has eight Children to

represent S1 to S6 statements, Predicate P1 and

statement S10. The while loop has three children one for

condition inside while, second for if_else and one for S9.

The conditional construct if_else has further has three

links one for it‘s own condition, one for if_clause and

one for else_clause. The construction of AST is shown

here for the given below segment.

Fig.1. Program with AST

B. Construction of CDG

CDG is Control Dependence Graph, which reflects

control dependences between different segments of a

program. If a statement ‗A‘ has control dependence on

statement ‗B‘, then ‗B‘ has to be executed priory as

compared to ‗A‘. In this section, we have demonstrated

our approach with an algorithm and as well as with an

example. The CDG construction takes Abstract Syntax

Tree (AST) as an input and Produces Control

Dependence Graph (CDG) as an output. To maintain

simplicity in explanation, we consider structured control

statements i.e., while and if_else, simple assignment

statements, unconditional transfer of control statements

https://en.wikipedia.org/wiki/Data_structures
https://en.wikipedia.org/wiki/Data_structures
https://en.wikipedia.org/wiki/Compilers

 Performance Analysis of a System that Identifies the Parallel Modules through Program Dependence Graph 39

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 9, 37-45

i.e., goto statements and so on. To implement our

approach we used data structure Stack and it‘s operations

PUSH and POP to insert and delete an element from the

stack to maintain nesting and control dependences

between the modules of a program. To have access on

each and every statements of AST, preorder traversal

(root, left, right) is done. Algorithm begins with

construction of entry node, which denotes entire process

is created and placed in STACK, subsequently nodes are

added to the STACK, the children of the nodes are at the

top of the STACK. Once innermost statements on the top

of the STACK get evaluated, then next level of the

statement will be evaluated. For example if_else

statement in placed inside the while loop, node will be

added as active or live for if_else, once it is evaluated

then control moves to the while statement.

Whenever there is a conditional constructs in program,

one region node is created with the name Ri, it has

further child link to predicate node (Pi), which in turn

denotes the conditional statement. As Pi is a conditional

statement, it has two children links one for true and other

for false, again two region (body) nodes will be created

for true and false clauses of predicate node, under these

region nodes the corresponding statements will be

evaluated. Through backward arrows repetition of

statements under looping constructed are handled and

these backward arrows will be connected to the entry of

that region node (Ri).

Algorithm:

Algorithm CDG_construction(T, root[T])

// T is abstract syntax tree; root [T] is address of T.

//This algorithm takes AST of a program S as input and

produces CDG as output for the program S.

//For implementation the PUSH and POP operations on

the data structure STACK (ST) is performed.

//main_node is nothing but root[T]

{

while (nodes are present in AST) do

{

node=call CDG_Insert_Node();

switch(node)

{

case main_node:

{

node=call CDG_Insert_Node(entry,live);

consider node as root of CDG

 PUSH(ST,node);

 Create an exit node for latter use;

}

case ‗=‘:

{

node=call CDG_Insert_Node(statement, live);

}

case ‗while‘:

{//beginning of while

node=call CDG_Insert_Node(head, live);

 PUSH(node);

node=call CDG_Insert_Node(predicate,node);

node=call CDG_Insert_Node(body,predicate);

 PUSH(node);

 // end of while; condition id false

 node=POP(ST)

solve the statement in ‗node‘ node=POP(ST)

this will be the header node, i.e. the body of while loop is

executed

node=call CDG_Insert_Node(statement followed by

while,live);

consider node as Top of the stack

}

case ‗if_else‘:

{

node=call CDG_Insert_Node(predicate,live);

 PUSH(ST,node);

 Begin if_clause(true)

node=call CDG_Insert_Node(body,live);

 PUSH(ST,node);

Begin else_clause(flase)

node=call CDG_Insert_Node(body,live);

 PUSH(ST,node);

 End of if_else

 Node=POP(ST);

 Solve the statement in node

node=call CDG_Insert_Node(statement followed by if-

else,live);

consider node as Top of the stack

end of if_clause or end of else_clause

list out all the unresolved nodes

node=POP(ST); }

case ‗structured control transfer‘:

{

node=call CDG_Insert_Node(statement,live);

find out the follow information and update STACK

Add special flow and dependence edge }

case ‗goto‘:{

node=call CDG_Insert_Node(statement,live);

update label table

set flag to true }

case ‗label‘:

{

node=call CDG_Insert_Node(label body,live);

PUSH(ST,node);

update label table

} } }

node=call CDG_Insert_Node(exit,live);

}

In our algorithm, we have used while loop at the

beginning to consider every node in AST, at the same

time we have created exit node for later use. Procedure

like CDG_Insert_Node() has two parameters X,Y is

used to create a now node for X which will be made as

child to Y, i.e., it adds an edge between X and Y. When

an algorithm finds end of any looping construct, then it

pops all the statements in side that loop and inserts a

backward arrow to region node of that loop. When it

reaches to end of if_else statement in AST, algorithm

pops all the statements under if_else and makes followed

statement as top of the stack if present. Otherwise it

reaches to exit node.

40 Performance Analysis of a System that Identifies the Parallel Modules through Program Dependence Graph

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 9, 37-45

Fig.2. Construction of CDG

C. Construction of DDG

DDG is Data Dependence Graph, which depicts the

data dependences between segments of a program. If

there is a data dependency [12] from a block ‗X‘ to block

‗Y‘, then the segment represented by ‗X‘ assigns some

value to a variable, which will be used at the segment

represented by ‗Y‘. Here we have chosen a reachability

algorithm to identify data dependences between

statements or modules. Preferably we have selected

blocks [18] due to clumsiness created due to individual

statements consideration. For every block we have

created four sets of values [8], GEN[B] is set of variables

their values are currently used in block B, prior to any

definition of that variables. KILL[B] is set of variables

assigns some values in B, prior to any use of that variable

in B. OUT[B] is set of variable active after that block B

or OUT[B]= IN[S], where S is a successor of B.

IN[B] is set of variable active at the beginning of that

block B. IN[B]=GEN[B] (OUT[B]-KILL[B]).

The DEF,KILL,IN and OUT are to be calculated for

every statement in the program and OUT set has to be

computed for predicate or region nodes in CDG.

Fig.3. Construction of DDG

In our example, GEN of first block is f, g and d,

because f, g and d are used on the right hand side of the

three assignment statements before they are assigned any

values. In fact, they are not assigned any values at all.

Whereas, in the case of second block, a and b are used;

before they are assigned a values. So, GEN will be a and

b and KILL set do not contain a, b because of their

accessibility before an assignment, but while exiting this

block a and b assigned new values which are not used in

that block i.e., KILL set also contains a and b. Even in

case of simple assignment statement this is true, i.e., e is

generated where as c is killed. As discussed earlier for

predicate nodes only OUT sets will be calculated, for the

first predicate node (i<=5) the OUT set contains a,b,c,e,

and i because these variables are active or used in the

processing after this block. For every predicate node

there are two outgoing lines one for true and other for

false. In Block-3, variable ‗e‘ is used at right hand side,

so it is included in GEN set and KILL set contains ‗c‘; it

is assigned a value, which is never used in this block. IN

 Performance Analysis of a System that Identifies the Parallel Modules through Program Dependence Graph 41

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 9, 37-45

sets are calculated by using above said formulae or we

can consider only those variables which are active at the

beginning of the block. In Block-4, GEN set contains b,c,

and i because their values are used in right hand side of a

statement where as KILL set contains a and i because

these values are not used in the same block. OUT and IN

sets are calculated by using same process described in

previous step. Finally in last block, only print statement

is there, GEN set contains only a and KILL set contains

no value because no assignment statements in this block

and IN and OUT is same, which contains only a.

After combining above two modules, we have

constructed PDG in Fig.4. For predicate nodes we have

used diamond symbol and rest of all other purposes oval

shape symbol has been used.

Fig.4. Construction of PDG

 Data dependence lines

 Control dependence lines

a=a
+4

entry

a=f-
1

b=g+
1

c=d

b=b-2

i=
1 R1

R
3

P2

P
1

R
4

c=e

i=i+
1

print
a

exit

T

F

T

F

R
2

a=c+
b

42 Performance Analysis of a System that Identifies the Parallel Modules through Program Dependence Graph

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 9, 37-45

III. IDENTIFICATION OF PARALLEL MODULES

In our approach, call Reachability Definitions to

construct GEN, KILL, IN and OUT sets, then we

consider all the vertices in a topological sequence. For

every vertex ‗v‘, find out the nearest predecessor ‗u‘, if

intersection of KILL[u] and IN[v] has some entries i.e.,

they have dependencies, then v and u can not be

executed parallel. Otherwise they can be executed

parallel. Demonstrated through an example in fig. 5.

Algorithm Parallel_Modules_Identification()

{

Call Reachability Definitions (G)

Call Topological Sort (G)

For all vertices vε V(G) in topological order do

{

Find vertex u ε nearest predecessor of v

p = KILL [u] ∩ IN[v]

If (p!= ∅)

{

Sequential execution required

}

else

{

Independent modules

Parallel execution

}

}

}

A. Reachability Definitions

In Graphical representation of data, reachability [20]

means path existence between any two vertices of a

graph. In our approach discussing about reachability of

definitions of a variable means the values assigned to a

variable in a particular block is approachable to any other

block, i.e., is used by any other variable in other block or

vertex. We began with finding out GEN and KILL sets

construction, then initialized IN sets of all the vertices to

GEN set of that node. We have considered a change

variable as flag, if it doesn‘t change it‘s value that means

final sets for IN and OUT is ready. Till then update IN

and OUT sets as mentioned in the algorithm.

Algorithm Reachability Definitions (G)

{

GEN[B]= set of variables used in block B;

KILL[B]=set of variables has definitions in block B;

for all blocks in a program do

{

IN[B]=GEN[B]

}

change=0;

do

{

for each block B do

{

if (block is a predicate node || region node) then

OUT[B]= OUT[P], where P is a predecessor of B

else

{

// forward flow

IN[B]= OUT[P], where P is a predecessor of B

OUT[B]=(OUT[B]-KILL[B]) GEN[B];

change=1;

// backward flow

OUT[B]= IN[S],where S is a successor of B

IN[B]=GEN[B] (OUT[B]-KILL[B])

change=1;

} while(change);

}

B. Topological Sort

A topological sort of a given graph G=(V, E) is ― A

linear Ordering of vertices [16] such that if there is an

edge from u->v then ‗u‘ precedes ‗v‘ in the sequence‖.

Many algorithms developed [10] to get topological

sequence of a graph. The primary applications or Real

word applications are instruction scheduling, ordering of

formula cell evaluation when re-computing formula

values in spreadsheets, logic synthesis, determining the

order of compilation tasks to perform in make files, data

serialization, and resolving symbol dependencies in

linkers. It is also used to decide in which order to load

tables with foreign keys in databases.

Algorithm Topological Sort (G)

{

Call DFS (G);

Insert nodes traversed through DFS in the descending

sequence of finishing times in to a linked list;

Return list of nodes of a linked list;

}

Global declaration of t=0;

Algorithm DFS (G)

{

 for each vertex v ∈ V(G) do

visit[v]=false; //visit[] is a Boolean field if a

vertex visited, then it is true otherwise it is false

for each vertex v ∈ V(G) do

 if(visit[v]==false) then

 call DFS_VISIT(v);

}

Algorithm DFS_VISIT(v)

{

t++;

visit[v]=true;

 S[v]=t; // starting times

For each vertex u ∈ adj(v) do

 If (visit [u]==false)

 {

Call DFS_VISIT (u);

}

t++;

F[v]=t; //finishing times

}

 Performance Analysis of a System that Identifies the Parallel Modules through Program Dependence Graph 43

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 9, 37-45

IV. PERFORMANCE ANALYSIS

Performance of a proposed approach can be

demonstrated: Reachability algorithm takes O (n2) time,

where ‗n‘ is number of statements in a program, and

number of statements is equal to number of vertices in a

graph, i.e., time complexity can be expressed as O (V2).

Topological sort [17] requires O (V+E) time and by

considering the vertices in topological sequence, finding

out independent modules requires O (V2) time. Total

time complexity of our approach is:

A. Sequential versus Parallel execution

If a single processor is used for the execution of below

program segment, first block requires exactly m*n time,

where as second block requires s*e time and the last

block requires o*p time. The total time required is

(Linear time complexity)

T (n)= θ(mn+op+se)

Fig.5. Construction of GEN,KILL,IN,OUT sets

By taking sample data a graph has been plotted with

red colored line. For thinking in parallel perspective, find

out all four sets for individual modules, i.e., GEN, KILL,

IN and OUT. Make the comparison between IN set data

with KILL set of near by predecessor to determine

independence modules. If we use two processors for the

execution of the same code, it required s*e*f time due to

parallel execution of these three independent modules. A

graph has been plotted below with blue colored line.

Fig.6. Performance Analysis

B. Speedup

In parallel computing, the speedup is nothing but ratio

between sequential and parallel execution times i.e., it

reflects what extent a parallel algorithm is faster than a

corresponding sequential algorithm. Speedup is a factor,

which improves performance in terms execution after

enhancement of resources. In Table 1, observe the data in

the column speedup, it varies from 1.5 to 2.0 i.e., The

parallel approach is 1.5 to 2 times faster than sequential

approach, which has been illustrated through a pictorial

representation or in the form of a graph in below figure.

Fig.7. Speedup

In Table 1 data is considered randomly to determine

caliber or performance of a suggested system.

0

1000000

2000000

3000000

4000000

5000000

6000000

1 2 3 4 5 6 7 8 9 1011121314

sequential

parallel

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14

speedup

speedup

for i= 1 to m do

{

for j=1 to n do

{x++

y—}}

for k= 1 to o do
{

for l=1 to p do
{a++

b=*b }}

for q=1 to s do

{

for c= 1 to e do

{x++

y++ }}

GEN={m,n,i,j,x,y}

KILL={x,y,i,j}

IN={m,n,i,j,x,y,k,l,o,p,a,b,c,s,e

}

OUT={k,l,o,p,a,b,q,c,s,e,x,y,i,j

}

GEN={o,p,k,l,a,b}

KILL={a,b,k,l}

IN={ o,p,k,l,a,b}

OUT={o,p,k,l,a,b}

GEN={q,c,s,e,x,y}

KILL={q,c,x,y}

IN={ q,c,s,e,x,y }

OUT={k,l,o,p,a,b,x,y,q,c}

44 Performance Analysis of a System that Identifies the Parallel Modules through Program Dependence Graph

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 9, 37-45

Table 1. Comparison of sequential and Parallel Execution time

m n s E O p m*n s*e o*p Sequential Parallel Speedup

100 50 50 200 400 20 5000 10000 8000 23000 15000 1.533

200 100 100 400 600 100 20000 40000 60000 120000 60000 2

300 150 200 450 800 120 45000 90000 96000 231000 135000 1.71

400 200 300 550 1000 200 80000 165000 200000 445000 245000 1.81

500 250 400 550 1200 250 125000 220000 300000 645000 345000 1.86

600 300 500 700 1400 300 180000 350000 420000 950000 530000 1.79

700 350 600 750 1600 350 245000 450000 560000 1255000 695000 1.80

800 400 700 800 1800 400 320000 560000 720000 1600000 880000 1.81

900 450 800 1000 2000 450 405000 800000 900000 2105000 1205000 1.74

1000 500 900 1200 2200 500 500000 1080000 1100000 2680000 1580000 1.69

1100 550 1000 1350 2400 550 605000 1350000 1320000 3275000 1955000 1.67

1200 600 1100 1500 2600 600 720000 1650000 1560000 3930000 2370000 1.65

1300 650 1200 1650 2800 650 845000 1980000 1820000 4645000 2825000 1.64

1400 700 1300 1700 3000 700 980000 2210000 2100000 5290000 3190000 1.65

V. CONCLUSION

This paper presents a research plan with an

overarching goal to ensure that effectiveness of an

approach in identifying parallel segments. While this

framework provides new scenario to identify parallel

modules. A given application is represented using AST

and further it is converted into PDG, and by using

reachability definition concept we identified concurrent

modules.

VI. FUTURE WORK

After identifying parallel modules according to our

approach, this research plan can be extended for the

execution of those modules on heterogeneous parallel

architectures according to the topology suggested. This

work can further bring in to the parallelization scenario.

REFERENCES

[1] Mathieu Verbaere, Ran Ettinger and Oege de Moor

JunGL. A Scripting Language for Refactoring, 28th

International Conference on Software Engineering, pp.

172–181, 2006.

[2] Makka Shanthi, and B. B. Sagar. "A New Approach for

Optimization of Program Dependence Graph using Finite

Automata." Indian Journal of Science and

Technology 9.38 (2016).

[3] G. E. Moore, ―Readings in Computer Architecture.

chapter Cramming more components onto integrated

circuits,‖ Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 2000, pp.56-59.

[4] D. Dig, "A refactoring approach to parallelism," Software,

IEEE 28.1 (2011): 17-22.

[5] Baxter, Ira D., et al. "Clone detection using abstract

syntax trees." Software Maintenance, 1998. Proceedings,

International Conference on. IEEE, 1998.

[6] KUCK, D. J., KUHN, R. H., PADUA, D. A., LEASURE,

B., AND WOLFE, M. Dependence graphs and compiler

optimizations. In 8th Annual ACM Symposium on

Principles of Programming Languages (Williamsburg,

VA, Jan. 26-28,1981), ACM, New York, 207-218.

[7] OTTENSTEIN, K. J. Data-flow graphs as an intermediate

program form. Ph.D. dissertation, Computer Sciences

Dept., Purdue University, Lafayette, IN, August 1978.

[8] AHO, A. V., SETHI, R., AND ULLMAN, J. D.

Compilers: Principles, Techniques, and Took. Addison-

Wesley, 1986. [An alternative reference is this book‘s

predecessor, AHO, A. V. AND ULLMAN, J. D.

Principles of Compiler Design. Addison-Wesley, 1977.)

[9] W. F. Opdyke, Refactoring: A Program Restructuring

Aid in Designing Object-Oriented Application

Frameworks Ph.D. thesis, University of Illinois at Urbana

Champaign, 1992.

[10] Pearce, David J., and Paul HJ Kelly. "A dynamic

topological sort algorithm for directed acyclic

graphs." Journal of Experimental Algorithmics (JEA) 11

(2007): 1-7.

[11] M. Aldinucci, M. Danelutto, P. Kilpatrick, M. Meneghin,

and M. Torquati. Accelerating Code on Multi-cores with

FastFlow. In Euro-Par, pages 170–181, 2011.

[12] Ferrante, Jeanne, Karl J. Ottenstein, and Joe D. Warren.

"The program dependence graph and its use in

optimization." ACM Transactions on Programming

Languages and Systems (TOPLAS) 9.3 (1987): 319-349.

[13] Jain, Sanjay, and Efim Kinber. "Parallel learning of

automatic classes of languages." International

Conference on Algorithmic Learning Theory. Springer

International Publishing, 2014.

[14] Alhazov, Artiom, Chang Li, and Ion Petre. "Computing

the graph-based parallel complexity of gene

assembly." Theoretical Computer Science 411.25 (2010):

2359-2367.

[15] Korel, Bogdan. "The program dependence graph in static

program testing."Information Processing Letters 24.2

(1987): 103-108.

[16] Meinke, Karl. "Topological methods for algebraic

specification." Theoretical computer science 166.1

(1996): 263-290.

[17] Toda, Seinosuka. "On the complexity of topological

sorting." Information processing letters 35.5 (1990): 229-

233.

[18] Tekchandani, Rajkumar, Rajesh Bhatia, and Maninder

Singh. "Semantic code clone detection for Internet of

Things applications using reaching definition and

liveness analysis." The Journal of Supercomputing (2016):

1-28.

[19] Harrold, Mary Jean, Brian Malloy, and Gregg Rothermel.

"Efficient construction of program dependence

graphs." ACM SIGSOFT Software Engineering Notes.

 Performance Analysis of a System that Identifies the Parallel Modules through Program Dependence Graph 45

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 9, 37-45

Vol. 18. No. 3. ACM, 1993.

[20] Ghiya, Rakesh, and Laurie J. Hendren. "Connection

analysis: A practical interprocedural heap analysis for

C." International Journal of Parallel Programming 24.6

(1996): 547-578.

[21] Singh, Paramvir. "Hybrid Black Hole Algorithm for Bi-

Criteria Job Scheduling on Parallel

Machines." International Journal of Intelligent Systems

and Applications 8.4 (2016): 1.

Authors’ Profiles

Shanthi Makka, from greater Noida- Uttar

Pradesh completed B.tech in Computer

Science and Systems Engineering in 2000

from GITAM university, done M.Tech in

Computer Science and Engineering and

pursuing Ph.D. in Parallel Computing from

BITs-Mesra(Noida campus).

Having total experience of 15 years in

academics at various places which includes south India, Orissa,

Himachal Pradesh and currently working in JRE Group of

Institutions since 2014. I am also heading the department of

Information Technology at JRE. Publication details (few) are:

"A New Approach for Optimization of Program Dependence

Graph using Finite Automata." Indian Journal of Science and

Technology 9.38 (2016), "Simulation of a Model for

Refactoring Approach for Parallelism Using Parallel

Computing Tool Box." Proceedings of First International

Conference on Information and Communication Technology for

Intelligent Systems: Volume 2. Springer International

Publishing, 2016, ―The Program Dependence Graph and its

applications in refactoring ‖, paper has been ACCEPTED and

registered in International Conference on Communication and

Networks (COMNET 2016) and publication in Springer AISC

series. Accepted on February, 2016 and ―Survey on a new

advanced approach for refactoring approach for parallelism

using heterogeneous parallel architectures‖, International

Journal of Science and Research(IJSR)-ISSN 2319-

7064,Volume 3, Issue 5, May 2014.

Dr. B. B. Sagar is currently working as

an Assistant Professor in Department of

CSE, Birla Institute of Technology,

Mesra Ranchi and posted at BIT Noida

Campus. Received MCA from UPTU

and Ph.D. (Computer Science &

Engineering) from SHIATS Allahabad in

2004 and 2011 respectively. Also having

12 years teaching and research experience. Research interests

are in Software Reliability, Network Reliability, Parallel

Computing and Distributed Computing. A Reviewer of various

reputed SCI and Scopus International journals and conferences

like Elsevier, IEEE, Springer, Taylor & Francis, Inderscience

(USA) and published more than 40 research papers in Journal

and Conferences of international repute including SCI and

Scopus. Chaired many IEEE and other International conference.

Also a Professional member of IEEE (USA), IAENG (Hong

Kong) and Fellow of IETE (India) and Life member of

Vijnana Bharti (India). Got invited in various International

summits and conferences as an invited talk and special guest

organized by Govt. of India and others. Recently received

―Young Scientist Award‖ at University of Aalborg, Denmark

(Europe) in August, 2016.

How to cite this paper: Shanthi Makka, B.B.Sagar,

"Performance Analysis of a System that Identifies the Parallel

Modules through Program Dependence Graph", International

Journal of Intelligent Systems and Applications(IJISA), Vol.9,

No.9, pp.37-45, 2017. DOI: 10.5815/ijisa.2017.09.05

