International Journal of Information Technology and Computer Science (IJITCS)

ISSN: 2074-9007 (Print)

ISSN: 2074-9015 (Online)

DOI: https://doi.org/10.5815/ijitcs

Website: https://www.mecs-press.org/ijitcs

Published By: MECS Press

Frequency: 6 issues per year

Number(s) Available: 133

(IJITCS) in Google Scholar Citations / h5-index

IJITCS is committed to bridge the theory and practice of information technology and computer science. From innovative ideas to specific algorithms and full system implementations, IJITCS publishes original, peer-reviewed, and high quality articles in the areas of information technology and computer science. IJITCS is a well-indexed scholarly journal and is indispensable reading and references for people working at the cutting edge of information technology and computer science applications.

 

IJITCS has been abstracted or indexed by several world class databases: Scopus, Google Scholar, Microsoft Academic Search, CrossRef, Baidu Wenku, IndexCopernicus, IET Inspec, EBSCO, VINITI, JournalSeek, ULRICH's Periodicals Directory, WorldCat, Scirus, Academic Journals Database, Stanford University Libraries, Cornell University Library, UniSA Library, CNKI Scholar, J-Gate, ZDB, BASE, OhioLINK, iThenticate, Open Access Articles, Open Science Directory, National Science Library of Chinese Academy of Sciences, The HKU Scholars Hub, etc..

Latest Issue
Most Viewed
Most Downloaded

IJITCS Vol. 16, No. 5, Oct. 2024

REGULAR PAPERS

Enhancing Healthcare Information Systems in Ethiopian Hospitals: Exploring Challenges and Prospects of a Cloud-based Model for Smart and Sustainable Information Services

By Aschalew Arega Durga Prasad Sharma

DOI: https://doi.org/10.5815/ijitcs.2024.05.01, Pub. Date: 8 Oct. 2024

Hospitals are the primary hubs for healthcare service providers in Ethiopia; however, hospitals face significant challenges in adopting digital health information systems solutions due to disparate, non-interoperable systems and limited access. Information technology, especially via cloud computing, is crucial in healthcare for efficient data management, secure storage, real-time access to critical information, seamless provider communication, enhanced collaboration, and scalable IT infrastructure. This study investigated the challenges to standardizing smart and green healthcare information services and proposed a cloud-based model for overcoming them. We conducted a mixed-methods study in 11 public hospitals, employing quantitative and qualitative approaches with diverse stakeholders (N = 103). The data was collected through surveys, interviews, and technical observations by purposive quota sampling with the Raosoft platform and analyzed using IBM SPSS. Findings revealed several shortcomings in existing information systems, including limited storage, scalability, and security; impaired data sharing and collaboration; accessibility issues; no interoperability; ownership ambiguity; unreliable data recovery; environmental concerns; affordability challenges; and inadequate policy enforcement. Notably, hospitals lacked a centralized data management system, cloud-enabled systems for remote access, and modern data recovery strategies. Despite these challenges, 90.3% of respondents expressed interest in adopting cloud-enabled data recovery systems. However, infrastructure limitations, inadequate cloud computing/IT knowledge, lack of top management support, digital illiteracy, limited innovation, and data security concerns were identified as challenges to cloud adoption. The study further identified three existing healthcare information systems: paper-based methods, electronic medical catalog systems, and district health information systems2. Limitations of the paper-based method include error-proneness, significant cost, data fragmentation, and restricted remote access. Growing hospital congestion and carbon footprint highlighted the need for sustainable solutions.  Based on these findings, we proposed a cloud-based model tailored to the Ethiopian context. This six-layered model, delivered as a Software-as-a-Service within a community cloud deployment, aims to improve healthcare services through instant access, unified data management, and evidence-based medical practices. The model demonstrates high acceptability and potential for improving healthcare delivery, and implementation recommendations are suggested based on the proposed model.

[...] Read more.
A Machine Learning Approach for Sentiment Analysis Using Social Media Posts

By Ritushree Narayan Pintu Samanta

DOI: https://doi.org/10.5815/ijitcs.2024.05.02, Pub. Date: 8 Oct. 2024

Sentiment analysis on Twitter provides organizations and persons with quick and effective instrument to observe the public's perceptions of them and their competition. A modest number of assessment datasets have been produced in recent years to check the efficiency of sentiment analysis algorithms on Twitter. Researchers offer a review of eight publicly accessible as well as manually annotated assessment datasets for analyzing Twitter sentiment in this research. As a result of this evaluation, we demonstrate that is a widespread weakness of many when using these datasets performing at sentiment analysis the objective (entity) level is indeed the absence of different sentiment classifications across tweets as well as the objects contained in them.[1], As an example all of that "I love my iPhone but I despise my iPad." Could be marked with a made-by-mixing classify however the object iPhone contained within this Twitter post should be annotated with just a label with an optimism. To get around this restriction and enhance existing assessment We have datasets that provide STS-Gold a novel assessment of datasets in which tweets or objects (entities) remain tagged separately hence might show alternative opinion labels. Though research furthermore compares the various datasets on multiple characteristics such as an entire quantity of posts as well as vocabulary size and sparsity.[2] In addition, look at pair by pair relationships between these variables and how they relate to sentiment classifier performance on various data. In this study we used five different classifiers and compared them and, in our experiment, we found that the bagging ensemble classifier performed best among them and have an accuracy level of 94.2% for the GASP dataset and 91.3% for the STS-Gold dataset.

[...] Read more.
Enhancing Jakarta Faces Web App with AI Data-Driven Python Data Analysis and Visualization

By Bala Dhandayuthapani V.

DOI: https://doi.org/10.5815/ijitcs.2024.05.03, Pub. Date: 8 Oct. 2024

Python is widely used in artificial intelligence (AI) and machine learning (ML) because of its flexibility, adaptability, rich libraries, active community, and broad environment, which makes it a popular choice for AI development. Python compatibility has already been examined with Java using TCP socket programming on both non-graphical and graphical user interfaces, which is highly essential to implement in the Jakarta Faces web application to grab potential competitive advantages. Python data analysis library modules such as numpy, pandas, and scipy, as well as visualization library modules such as Matplotlib and Seaborn, and machine-learning module Scikit-learn, are intended to be integrated into the Jakarta Faces web application. The research method uses similar TCP socket programming for the enhancement process, which allows instruction and data exchange between Python and Jakarta Faces web applications. The outcome of the findings emphasizes the significance of modernizing data science and machine learning (ML) workflows for Jakarta Faces web developers to take advantage of Python modules without using any third-party libraries. Moreover, this research provides a well-defined research design for an execution model, incorporating practical implementation procedures and highlighting the results of the innovative fusion of AI from Python into Jakarta Faces.

[...] Read more.
IBOA: Cost-aware Task Scheduling Model for Integrated Cloud-fog Environments

By Santhosh Kumar Medishetti Ganesh Reddy Karri Rakesh Kumar Donthi

DOI: https://doi.org/10.5815/ijitcs.2024.05.04, Pub. Date: 8 Oct. 2024

Scheduling is an NP-hard problem, and metaheuristic algorithms are often used to find approximate solutions within a feasible time frame. Existing metaheuristic algorithms, such as ACO, PSO, and BOA address this problem either in cloud or fog environments. However, when these environments are combined into a hybrid cloud-fog environment, these algorithms become inefficient due to inadequate handling of local and global search strategies. This inefficiency leads to suboptimal scheduling across the cloud-fog environment because the algorithms fail to adapt effectively to the combined challenges of both environments. In our proposed Improved Butterfly Optimization Algorithm (IBOA), we enhance adaptability by dynamically updating the computation cost, communication cost, and total cost, effectively balancing both local and global search strategies. This dynamic adaptation allows the algorithm to select the best resources for executing tasks in both cloud and fog environments. We implemented our proposed approach in the CloudSim simulator and compared it with traditional algorithms such as ACO, PSO, and BOA. The results demonstrate that IBOA offers significant reductions in total cost, communication cost, and computation cost by 19.65%, 18.28%, and 25.41%, respectively, making it a promising solution for real-world cloud-fog computing (CFC) applications.

[...] Read more.
Selection of Health Insurance Policy: Using Analytic Hierarchy Process and Combined Compromised Solution Approach Under Spherical Fuzzy Environment

By Mangesh P. Joshi Priya M. Khandekar

DOI: https://doi.org/10.5815/ijitcs.2024.05.05, Pub. Date: 8 Oct. 2024

The process of health insurance policy selection is a critical decision with far–reaching financial implications. The complexity of health insurance policy selection necessitates a structured approach to facilitate informed decision-making amidst numerous criteria and provider options. This study addresses the health insurance policy selection problem by employing a comprehensive methodology integrating Spherical Fuzzy Analytic Hierarchy Process (SF–AHP) and Combined Compromise Solution (CoCoSo) Algorithm. Eight experienced experts, four from academia and industry each, were engaged, and eleven critical factors were identified through literature review, survey, and expert opinions. SF–AHP was utilized to assign weights to these factors, with Claim settlement ratio (C9) deemed the most significant. Subsequently, CoCoSo Algorithm facilitated the ranking of insurance service providers, with alternative A6 emerging as the superior choice. The research undertakes sensitivity analysis, confirming the stability of the model across various scenarios. Notably, alternative A6 consistently demonstrates superior performance, reaffirming the reliability of the decision-making process. The study’s conclusion emphasizes the efficacy of the joint SF–AHP and CoCoSo approach in facilitating informed health insurance policy selection, considering multiple criteria and their interdependencies. Practical implications of the research extend to individuals, insurance companies, and policymakers. Individuals benefit from making more informed choices aligned with their healthcare needs and financial constraints. Insurance companies can tailor policies to customer preferences, enhancing competitiveness and customer satisfaction. Policymakers gain insights to inform regulatory decisions, promoting fair practices and consumer protection in the insurance market. This study underscores the significance of a structured approach in navigating the intricate health insurance landscape, offering practical insights for stakeholders and laying a foundation for future research advancements.

[...] Read more.
Multi-head Network based Students Behaviour Prediction with Feedback Generation for Enhancing Classroom Engagement and Teaching Effectiveness

By Naga Prameela Marri Swamy Das Raiza D. Borreo

DOI: https://doi.org/10.5815/ijitcs.2024.05.06, Pub. Date: 8 Oct. 2024

Emotions are pivotal in the learning process, highlighting the importance of identifying students' emotional states within educational settings. While neural network models, particularly those rooted in deep learning, have demonstrated remarkable accuracy in detecting primary emotions like happiness, sadness, fear, disgust, and anger from facial expressions in videos, these emotions occur infrequently in learning environments. Conversely, cognitive emotions such as engagement, confusion, frustration, and boredom are significantly more prevalent, transpiring five times more frequently than basic emotions. However, unlike basic emotions which are relatively distinct, cognitive emotions present a subtler distinction, necessitating the utilization of more sophisticated models for accurate recognition. The proposed work presents an efficient Facial Expression Recognition (FER) model for monitoring the student engagement in a learning environment by considering their facial expressions like boredom, frustration, confusion and engagement. The proposed methodology includes certain pre-processing steps followed by facial expression recognition founded on Efficient-Net B3 CNN in which the learning parameters are optimized using Circle-Inspired Optimization Algorithm (CIOA). Finally, the post processing stage estimates the frame-wise group engagement level (GEL) of students based on certain expression labels. Based on the acquired results, it is noted that the suggested Efficient-Net B3 CNN-CIOA based FER model provides promising results in terms of accuracy by 99.5%, precision by 99.2%, recall by 99.5% and f1-score by 99.6%, when compared with some state-of-art facial expression recognition approaches. Also, the suggested approach computational complexity is very much less than the compared existing approaches.

[...] Read more.
A Comparative Model for Blurred Text Detection in Wild Scene Using Independent Component Analysis (ICA) and Enhanced Genetic Algorithm (Using a Bird Approach) with Classifiers

By Nwufoh. C.V Sakpere W.

DOI: https://doi.org/10.5815/ijitcs.2024.05.07, Pub. Date: 8 Oct. 2024

The advent of the study of Scene Text Detection and Recognition has exposed some significant challenges text recognition faces, such as blurred text detection. This study proposes a comparative model for detecting blurred text in wild scenes using independent component analysis (ICA) and enhanced genetic algorithm (E-GA) with support vector machine (SVM) and k-nearest neighbors (KNN) as classifiers. The proposed model aims to improve the accuracy of blurred text detection in challenging environments with complex backgrounds, noise, and illumination variations. The proposed model consists of three main stages: preprocessing, feature extraction, and classification. In the preprocessing stage, the input image is first preprocessed to remove noise and enhance edges using a median filter and a Sobel filter, respectively. Then, the blurred text regions are extracted using the Laplacian of Gaussian (LoG) filter. In the feature extraction stage, ICA is used to extract independent components from the blurred text regions. The extracted components are then fed into an E-GA-based feature selection algorithm to select the most discriminative features. The E-GA simply fine tunes the selection functionalities of the traditional GA using a bird approach. The selected features are then normalized and fed into the SVM and KNN classifiers. Experimental results on a benchmarking dataset (ICDAR 2019 LSVT) shows that the model outperforms state-of-the-art methods in terms of detection accuracy, precision, recall, and F1-score. The proposed model achieves an overall accuracy of 95.13% for SVM and 88.69% for KNN, which is significantly higher than the already existing methods which for SVM is 93%. In conclusion, the proposed model provides a promising approach for detecting blurred text in wild scenes. The combination of ICA, E-GA, and SVM/KNN classifiers enhances the robustness and accuracy of the detection system, which can be beneficial for a wide range of applications, such as text recognition, document analysis, and security systems.

[...] Read more.
Design and Implementation of a Web-based Document Management System

By Samuel M. Alade

DOI: https://doi.org/10.5815/ijitcs.2023.02.04, Pub. Date: 8 Apr. 2023

One area that has seen rapid growth and differing perspectives from many developers in recent years is document management. This idea has advanced beyond some of the steps where developers have made it simple for anyone to access papers in a matter of seconds. It is impossible to overstate the importance of document management systems as a necessity in the workplace environment of an organization. Interviews, scenario creation using participants' and stakeholders' first-hand accounts, and examination of current procedures and structures were all used to collect data. The development approach followed a software development methodology called Object-Oriented Hypermedia Design Methodology. With the help of Unified Modeling Language (UML) tools, a web-based electronic document management system (WBEDMS) was created. Its database was created using MySQL, and the system was constructed using web technologies including XAMPP, HTML, and PHP Programming language. The results of the system evaluation showed a successful outcome. After using the system that was created, respondents' satisfaction with it was 96.60%. This shows that the document system was regarded as adequate and excellent enough to achieve or meet the specified requirement when users (secretaries and departmental personnel) used it. Result showed that the system developed yielded an accuracy of 95% and usability of 99.20%. The report came to the conclusion that a suggested electronic document management system would improve user happiness, boost productivity, and guarantee time and data efficiency. It follows that well-known document management systems undoubtedly assist in holding and managing a substantial portion of the knowledge assets, which include documents and other associated items, of Organizations.

[...] Read more.
Cardiotocography Data Analysis to Predict Fetal Health Risks with Tree-Based Ensemble Learning

By Pankaj Bhowmik Pulak Chandra Bhowmik U. A. Md. Ehsan Ali Md. Sohrawordi

DOI: https://doi.org/10.5815/ijitcs.2021.05.03, Pub. Date: 8 Oct. 2021

A sizeable number of women face difficulties during pregnancy, which eventually can lead the fetus towards serious health problems. However, early detection of these risks can save both the invaluable life of infants and mothers. Cardiotocography (CTG) data provides sophisticated information by monitoring the heart rate signal of the fetus, is used to predict the potential risks of fetal wellbeing and for making clinical conclusions. This paper proposed to analyze the antepartum CTG data (available on UCI Machine Learning Repository) and develop an efficient tree-based ensemble learning (EL) classifier model to predict fetal health status. In this study, EL considers the Stacking approach, and a concise overview of this approach is discussed and developed accordingly. The study also endeavors to apply distinct machine learning algorithmic techniques on the CTG dataset and determine their performances. The Stacking EL technique, in this paper, involves four tree-based machine learning algorithms, namely, Random Forest classifier, Decision Tree classifier, Extra Trees classifier, and Deep Forest classifier as base learners. The CTG dataset contains 21 features, but only 10 most important features are selected from the dataset with the Chi-square method for this experiment, and then the features are normalized with Min-Max scaling. Following that, Grid Search is applied for tuning the hyperparameters of the base algorithms. Subsequently, 10-folds cross validation is performed to select the meta learner of the EL classifier model. However, a comparative model assessment is made between the individual base learning algorithms and the EL classifier model; and the finding depicts EL classifiers’ superiority in fetal health risks prediction with securing the accuracy of about 96.05%. Eventually, this study concludes that the Stacking EL approach can be a substantial paradigm in machine learning studies to improve models’ accuracy and reduce the error rate.

[...] Read more.
Accident Response Time Enhancement Using Drones: A Case Study in Najm for Insurance Services

By Salma M. Elhag Ghadi H. Shaheen Fatmah H. Alahmadi

DOI: https://doi.org/10.5815/ijitcs.2023.06.01, Pub. Date: 8 Dec. 2023

One of the main reasons for mortality among people is traffic accidents. The percentage of traffic accidents in the world has increased to become the third in the expected causes of death in 2020. In Saudi Arabia, there are more than 460,000 car accidents every year. The number of car accidents in Saudi Arabia is rising, especially during busy periods such as Ramadan and the Hajj season. The Saudi Arabia’s government is making the required efforts to lower the nations of car accident rate. This paper suggests a business process improvement for car accident reports handled by Najm in accordance with the Saudi Vision 2030. According to drone success in many fields (e.g., entertainment, monitoring, and photography), the paper proposes using drones to respond to accident reports, which will help to expedite the process and minimize turnaround time. In addition, the drone provides quick accident response and recording scenes with accurate results. The Business Process Management (BPM) methodology is followed in this proposal. The model was validated by comparing before and after simulation results which shows a significant impact on performance about 40% regarding turnaround time. Therefore, using drones can enhance the process of accident response with Najm in Saudi Arabia.

[...] Read more.
Advanced Applications of Neural Networks and Artificial Intelligence: A Review

By Koushal Kumar Gour Sundar Mitra Thakur

DOI: https://doi.org/10.5815/ijitcs.2012.06.08, Pub. Date: 8 Jun. 2012

Artificial Neural Network is a branch of Artificial intelligence and has been accepted as a new computing technology in computer science fields. This paper reviews the field of Artificial intelligence and focusing on recent applications which uses Artificial Neural Networks (ANN’s) and Artificial Intelligence (AI). It also considers the integration of neural networks with other computing methods Such as fuzzy logic to enhance the interpretation ability of data. Artificial Neural Networks is considers as major soft-computing technology and have been extensively studied and applied during the last two decades. The most general applications where neural networks are most widely used for problem solving are in pattern recognition, data analysis, control and clustering. Artificial Neural Networks have abundant features including high processing speeds and the ability to learn the solution to a problem from a set of examples. The main aim of this paper is to explore the recent applications of Neural Networks and Artificial Intelligence and provides an overview of the field, where the AI & ANN’s are used and discusses the critical role of AI & NN played in different areas.

[...] Read more.
PDF Marksheet Generator

By Srushti Shimpi Sanket Mandare Tyagraj Sonawane Aman Trivedi K. T. V. Reddy

DOI: https://doi.org/10.5815/ijitcs.2014.11.05, Pub. Date: 8 Oct. 2014

The Marksheet Generator is flexible for generating progress mark sheet of students. This system is mainly based in the database technology and the credit based grading system (CBGS). The system is targeted to small enterprises, schools, colleges and universities. It can produce sophisticated ready-to-use mark sheet, which could be created and will be ready to print. The development of a marksheet and gadget sheet is focusing at describing tables with columns/rows and sub-column sub-rows, rules of data selection and summarizing for report, particular table or column/row, and formatting the report in destination document. The adjustable data interface will be popular data sources (SQL Server) and report destinations (PDF file). Marksheet generation system can be used in universities to automate the distribution of digitally verifiable mark-sheets of students. The system accesses the students’ exam information from the university database and generates the gadget-sheet Gadget sheet keeps the track of student information in properly listed manner. The project aims at developing a marksheet generation system which can be used in universities to automate the distribution of digitally verifiable student result mark sheets. The system accesses the students’ results information from the institute student database and generates the mark sheets in Portable Document Format which is tamper proof which provides the authenticity of the document. Authenticity of the document can also be verified easily.

[...] Read more.
Multi-Factor Authentication for Improved Enterprise Resource Planning Systems Security

By Carolyne Kimani James I. Obuhuma Emily Roche

DOI: https://doi.org/10.5815/ijitcs.2023.03.04, Pub. Date: 8 Jun. 2023

Universities across the globe have increasingly adopted Enterprise Resource Planning (ERP) systems, a software that provides integrated management of processes and transactions in real-time. These systems contain lots of information hence require secure authentication. Authentication in this case refers to the process of verifying an entity’s or device’s identity, to allow them access to specific resources upon request. However, there have been security and privacy concerns around ERP systems, where only the traditional authentication method of a username and password is commonly used. A password-based authentication approach has weaknesses that can be easily compromised. Cyber-attacks to access these ERP systems have become common to institutions of higher learning and cannot be underestimated as they evolve with emerging technologies. Some universities worldwide have been victims of cyber-attacks which targeted authentication vulnerabilities resulting in damages to the institutions reputations and credibilities. Thus, this research aimed at establishing authentication methods used for ERPs in Kenyan universities, their vulnerabilities, and proposing a solution to improve on ERP system authentication. The study aimed at developing and validating a multi-factor authentication prototype to improve ERP systems security. Multi-factor authentication which combines several authentication factors such as: something the user has, knows, or is, is a new state-of-the-art technology that is being adopted to strengthen systems’ authentication security. This research used an exploratory sequential design that involved a survey of chartered Kenyan Universities, where questionnaires were used to collect data that was later analyzed using descriptive and inferential statistics. Stratified, random and purposive sampling techniques were used to establish the sample size and the target group. The dependent variable for the study was limited to security rating with respect to realization of confidentiality, integrity, availability, and usability while the independent variables were limited to adequacy of security, authentication mechanisms, infrastructure, information security policies, vulnerabilities, and user training. Correlation and regression analysis established vulnerabilities, information security policies, and user training to be having a higher impact on system security. The three variables hence acted as the basis for the proposed multi-factor authentication framework for improve ERP systems security.

[...] Read more.
Performance of Machine Learning Algorithms with Different K Values in K-fold Cross-Validation

By Isaac Kofi Nti Owusu Nyarko-Boateng Justice Aning

DOI: https://doi.org/10.5815/ijitcs.2021.06.05, Pub. Date: 8 Dec. 2021

The numerical value of k in a k-fold cross-validation training technique of machine learning predictive models is an essential element that impacts the model’s performance. A right choice of k results in better accuracy, while a poorly chosen value for k might affect the model’s performance. In literature, the most commonly used values of k are five (5) or ten (10), as these two values are believed to give test error rate estimates that suffer neither from extremely high bias nor very high variance. However, there is no formal rule. To the best of our knowledge, few experimental studies attempted to investigate the effect of diverse k values in training different machine learning models. This paper empirically analyses the prevalence and effect of distinct k values (3, 5, 7, 10, 15 and 20) on the validation performance of four well-known machine learning algorithms (Gradient Boosting Machine (GBM), Logistic Regression (LR), Decision Tree (DT) and K-Nearest Neighbours (KNN)). It was observed that the value of k and model validation performance differ from one machine-learning algorithm to another for the same classification task. However, our empirical suggest that k = 7 offers a slight increase in validations accuracy and area under the curve measure with lesser computational complexity than k = 10 across most MLA. We discuss in detail the study outcomes and outline some guidelines for beginners in the machine learning field in selecting the best k value and machine learning algorithm for a given task.

[...] Read more.
A Systematic Review of Natural Language Processing in Healthcare

By Olaronke G. Iroju Janet O. Olaleke

DOI: https://doi.org/10.5815/ijitcs.2015.08.07, Pub. Date: 8 Jul. 2015

The healthcare system is a knowledge driven industry which consists of vast and growing volumes of narrative information obtained from discharge summaries/reports, physicians case notes, pathologists as well as radiologists reports. This information is usually stored in unstructured and non-standardized formats in electronic healthcare systems which make it difficult for the systems to understand the information contents of the narrative information. Thus, the access to valuable and meaningful healthcare information for decision making is a challenge. Nevertheless, Natural Language Processing (NLP) techniques have been used to structure narrative information in healthcare. Thus, NLP techniques have the capability to capture unstructured healthcare information, analyze its grammatical structure, determine the meaning of the information and translate the information so that it can be easily understood by the electronic healthcare systems. Consequently, NLP techniques reduce cost as well as improve the quality of healthcare. It is therefore against this background that this paper reviews the NLP techniques used in healthcare, their applications as well as their limitations.

[...] Read more.
An Efficient Algorithm for Density Based Subspace Clustering with Dynamic Parameter Setting

By B.Jaya Lakshmi K.B.Madhuri M.Shashi

DOI: https://doi.org/10.5815/ijitcs.2017.06.04, Pub. Date: 8 Jun. 2017

Density based Subspace Clustering algorithms have gained their importance owing to their ability to identify arbitrary shaped subspace clusters. Density-connected SUBspace CLUstering(SUBCLU) uses two input parameters namely epsilon and minpts whose values are same in all subspaces which leads to a significant loss to cluster quality. There are two important issues to be handled. Firstly, cluster densities vary in subspaces which refers to the phenomenon of density divergence. Secondly, the density of clusters within a subspace may vary due to the data characteristics which refers to the phenomenon of multi-density behavior. To handle these two issues of density divergence and multi-density behavior, the authors propose an efficient algorithm for generating subspace clusters by appropriately fixing the input parameter epsilon. The version1 of the proposed algorithm computes epsilon dynamically for each subspace based on the maximum spread of the data. To handle data that exhibits multi-density behavior, the algorithm is further refined and presented in version2. The initial value of epsilon is set to half of the value resulted in the version1 for a subspace and a small step value 'delta' is used for finalizing the epsilon separately for each cluster through step-wise refinement to form multiple higher dimensional subspace clusters. The proposed algorithm is implemented and tested on various bench-mark and synthetic datasets. It outperforms SUBCLU in terms of cluster quality and execution time.

[...] Read more.
Comparative Analysis of Multiple Sequence Alignment Tools

By Eman M. Mohamed Hamdy M. Mousa Arabi E. keshk

DOI: https://doi.org/10.5815/ijitcs.2018.08.04, Pub. Date: 8 Aug. 2018

The perfect alignment between three or more sequences of Protein, RNA or DNA is a very difficult task in bioinformatics. There are many techniques for alignment multiple sequences. Many techniques maximize speed and do not concern with the accuracy of the resulting alignment. Likewise, many techniques maximize accuracy and do not concern with the speed. Reducing memory and execution time requirements and increasing the accuracy of multiple sequence alignment on large-scale datasets are the vital goal of any technique. The paper introduces the comparative analysis of the most well-known programs (CLUSTAL-OMEGA, MAFFT, BROBCONS, KALIGN, RETALIGN, and MUSCLE). For programs’ testing and evaluating, benchmark protein datasets are used. Both the execution time and alignment quality are two important metrics. The obtained results show that no single MSA tool can always achieve the best alignment for all datasets.

[...] Read more.
Cardiotocography Data Analysis to Predict Fetal Health Risks with Tree-Based Ensemble Learning

By Pankaj Bhowmik Pulak Chandra Bhowmik U. A. Md. Ehsan Ali Md. Sohrawordi

DOI: https://doi.org/10.5815/ijitcs.2021.05.03, Pub. Date: 8 Oct. 2021

A sizeable number of women face difficulties during pregnancy, which eventually can lead the fetus towards serious health problems. However, early detection of these risks can save both the invaluable life of infants and mothers. Cardiotocography (CTG) data provides sophisticated information by monitoring the heart rate signal of the fetus, is used to predict the potential risks of fetal wellbeing and for making clinical conclusions. This paper proposed to analyze the antepartum CTG data (available on UCI Machine Learning Repository) and develop an efficient tree-based ensemble learning (EL) classifier model to predict fetal health status. In this study, EL considers the Stacking approach, and a concise overview of this approach is discussed and developed accordingly. The study also endeavors to apply distinct machine learning algorithmic techniques on the CTG dataset and determine their performances. The Stacking EL technique, in this paper, involves four tree-based machine learning algorithms, namely, Random Forest classifier, Decision Tree classifier, Extra Trees classifier, and Deep Forest classifier as base learners. The CTG dataset contains 21 features, but only 10 most important features are selected from the dataset with the Chi-square method for this experiment, and then the features are normalized with Min-Max scaling. Following that, Grid Search is applied for tuning the hyperparameters of the base algorithms. Subsequently, 10-folds cross validation is performed to select the meta learner of the EL classifier model. However, a comparative model assessment is made between the individual base learning algorithms and the EL classifier model; and the finding depicts EL classifiers’ superiority in fetal health risks prediction with securing the accuracy of about 96.05%. Eventually, this study concludes that the Stacking EL approach can be a substantial paradigm in machine learning studies to improve models’ accuracy and reduce the error rate.

[...] Read more.
Design and Implementation of a Web-based Document Management System

By Samuel M. Alade

DOI: https://doi.org/10.5815/ijitcs.2023.02.04, Pub. Date: 8 Apr. 2023

One area that has seen rapid growth and differing perspectives from many developers in recent years is document management. This idea has advanced beyond some of the steps where developers have made it simple for anyone to access papers in a matter of seconds. It is impossible to overstate the importance of document management systems as a necessity in the workplace environment of an organization. Interviews, scenario creation using participants' and stakeholders' first-hand accounts, and examination of current procedures and structures were all used to collect data. The development approach followed a software development methodology called Object-Oriented Hypermedia Design Methodology. With the help of Unified Modeling Language (UML) tools, a web-based electronic document management system (WBEDMS) was created. Its database was created using MySQL, and the system was constructed using web technologies including XAMPP, HTML, and PHP Programming language. The results of the system evaluation showed a successful outcome. After using the system that was created, respondents' satisfaction with it was 96.60%. This shows that the document system was regarded as adequate and excellent enough to achieve or meet the specified requirement when users (secretaries and departmental personnel) used it. Result showed that the system developed yielded an accuracy of 95% and usability of 99.20%. The report came to the conclusion that a suggested electronic document management system would improve user happiness, boost productivity, and guarantee time and data efficiency. It follows that well-known document management systems undoubtedly assist in holding and managing a substantial portion of the knowledge assets, which include documents and other associated items, of Organizations.

[...] Read more.
Accident Response Time Enhancement Using Drones: A Case Study in Najm for Insurance Services

By Salma M. Elhag Ghadi H. Shaheen Fatmah H. Alahmadi

DOI: https://doi.org/10.5815/ijitcs.2023.06.01, Pub. Date: 8 Dec. 2023

One of the main reasons for mortality among people is traffic accidents. The percentage of traffic accidents in the world has increased to become the third in the expected causes of death in 2020. In Saudi Arabia, there are more than 460,000 car accidents every year. The number of car accidents in Saudi Arabia is rising, especially during busy periods such as Ramadan and the Hajj season. The Saudi Arabia’s government is making the required efforts to lower the nations of car accident rate. This paper suggests a business process improvement for car accident reports handled by Najm in accordance with the Saudi Vision 2030. According to drone success in many fields (e.g., entertainment, monitoring, and photography), the paper proposes using drones to respond to accident reports, which will help to expedite the process and minimize turnaround time. In addition, the drone provides quick accident response and recording scenes with accurate results. The Business Process Management (BPM) methodology is followed in this proposal. The model was validated by comparing before and after simulation results which shows a significant impact on performance about 40% regarding turnaround time. Therefore, using drones can enhance the process of accident response with Najm in Saudi Arabia.

[...] Read more.
Multi-Factor Authentication for Improved Enterprise Resource Planning Systems Security

By Carolyne Kimani James I. Obuhuma Emily Roche

DOI: https://doi.org/10.5815/ijitcs.2023.03.04, Pub. Date: 8 Jun. 2023

Universities across the globe have increasingly adopted Enterprise Resource Planning (ERP) systems, a software that provides integrated management of processes and transactions in real-time. These systems contain lots of information hence require secure authentication. Authentication in this case refers to the process of verifying an entity’s or device’s identity, to allow them access to specific resources upon request. However, there have been security and privacy concerns around ERP systems, where only the traditional authentication method of a username and password is commonly used. A password-based authentication approach has weaknesses that can be easily compromised. Cyber-attacks to access these ERP systems have become common to institutions of higher learning and cannot be underestimated as they evolve with emerging technologies. Some universities worldwide have been victims of cyber-attacks which targeted authentication vulnerabilities resulting in damages to the institutions reputations and credibilities. Thus, this research aimed at establishing authentication methods used for ERPs in Kenyan universities, their vulnerabilities, and proposing a solution to improve on ERP system authentication. The study aimed at developing and validating a multi-factor authentication prototype to improve ERP systems security. Multi-factor authentication which combines several authentication factors such as: something the user has, knows, or is, is a new state-of-the-art technology that is being adopted to strengthen systems’ authentication security. This research used an exploratory sequential design that involved a survey of chartered Kenyan Universities, where questionnaires were used to collect data that was later analyzed using descriptive and inferential statistics. Stratified, random and purposive sampling techniques were used to establish the sample size and the target group. The dependent variable for the study was limited to security rating with respect to realization of confidentiality, integrity, availability, and usability while the independent variables were limited to adequacy of security, authentication mechanisms, infrastructure, information security policies, vulnerabilities, and user training. Correlation and regression analysis established vulnerabilities, information security policies, and user training to be having a higher impact on system security. The three variables hence acted as the basis for the proposed multi-factor authentication framework for improve ERP systems security.

[...] Read more.
Incorporating Preference Changes through Users’ Input in Collaborative Filtering Movie Recommender System

By Abba Almu Aliyu Ahmad Abubakar Roko Mansur Aliyu

DOI: https://doi.org/10.5815/ijitcs.2022.04.05, Pub. Date: 8 Aug. 2022

The usefulness of Collaborative filtering recommender system is affected by its ability to capture users' preference changes on the recommended items during recommendation process. This makes it easy for the system to satisfy users' interest over time providing good and quality recommendations. The Existing system studied fails to solicit for user inputs on the recommended items and it is also unable to incorporate users' preference changes with time which lead to poor quality recommendations. In this work, an Enhanced Movie Recommender system that recommends movies to users is presented to improve the quality of recommendations. The system solicits for users' inputs to create a user profiles. It then incorporates a set of new features (such as age and genre) to be able to predict user's preference changes with time. This enabled it to recommend movies to the users based on users new preferences. The experimental study conducted on Netflix and Movielens datasets demonstrated that, compared to the existing work, the proposed work improved the recommendation results to the users based on the values of Precision and RMSE obtained in this study which in turn returns good recommendations to the users.

[...] Read more.
Comparative Analysis of Multiple Sequence Alignment Tools

By Eman M. Mohamed Hamdy M. Mousa Arabi E. keshk

DOI: https://doi.org/10.5815/ijitcs.2018.08.04, Pub. Date: 8 Aug. 2018

The perfect alignment between three or more sequences of Protein, RNA or DNA is a very difficult task in bioinformatics. There are many techniques for alignment multiple sequences. Many techniques maximize speed and do not concern with the accuracy of the resulting alignment. Likewise, many techniques maximize accuracy and do not concern with the speed. Reducing memory and execution time requirements and increasing the accuracy of multiple sequence alignment on large-scale datasets are the vital goal of any technique. The paper introduces the comparative analysis of the most well-known programs (CLUSTAL-OMEGA, MAFFT, BROBCONS, KALIGN, RETALIGN, and MUSCLE). For programs’ testing and evaluating, benchmark protein datasets are used. Both the execution time and alignment quality are two important metrics. The obtained results show that no single MSA tool can always achieve the best alignment for all datasets.

[...] Read more.
A Fast Topological Parallel Algorithm for Traversing Large Datasets

By Thiago Nascimento Rodrigues

DOI: https://doi.org/10.5815/ijitcs.2023.01.01, Pub. Date: 8 Feb. 2023

This work presents a parallel implementation of a graph-generating algorithm designed to be straightforwardly adapted to traverse large datasets. This new approach has been validated in a correlated scenario known as the word ladder problem. The new parallel algorithm induces the same topological structure proposed by its serial version and also builds the shortest path between any pair of words to be connected by a ladder of words. The implemented parallelism paradigm is the Multiple Instruction Stream - Multiple Data Stream (MIMD) and the test suite embraces 23-word ladder instances whose intermediate words were extracted from a dictionary of 183,719 words (dataset). The word morph quality (the shortest path between two input words) and the word morph performance (CPU time) were evaluated against a serial implementation of the original algorithm. The proposed parallel algorithm generated the optimal solution for each pair of words tested, that is, the minimum word ladder connecting an initial word to a final word was found. Thus, there was no negative impact on the quality of the solutions comparing them with those obtained through the serial ANG algorithm. However, there was an outstanding improvement considering the CPU time required to build the word ladder solutions. In fact, the time improvement was up to 99.85%, and speedups greater than 2.0X were achieved with the parallel algorithm.

[...] Read more.
A Systematic Literature Review of Studies Comparing Process Mining Tools

By Cuma Ali Kesici Necmettin Ozkan Sedat Taskesenlioglu Tugba Gurgen Erdogan

DOI: https://doi.org/10.5815/ijitcs.2022.05.01, Pub. Date: 8 Oct. 2022

Process Mining (PM) and PM tool abilities play a significant role in meeting the needs of organizations in terms of getting benefits from their processes and event data, especially in this digital era. The success of PM initiatives in producing effective and efficient outputs and outcomes that organizations desire is largely dependent on the capabilities of the PM tools. This importance of the tools makes the selection of them for a specific context critical. In the selection process of appropriate tools, a comparison of them can lead organizations to an effective result. In order to meet this need and to give insight to both practitioners and researchers, in our study, we systematically reviewed the literature and elicited the papers that compare PM tools, yielding comprehensive results through a comparison of available PM tools. It specifically delivers tools’ comparison frequency, methods and criteria used to compare them, strengths and weaknesses of the compared tools for the selection of appropriate PM tools, and findings related to the identified papers' trends and demographics. Although some articles conduct a comparison for the PM tools, there is a lack of literature reviews on the studies that compare PM tools in the market. As far as we know, this paper presents the first example of a review in literature in this regard.

[...] Read more.
Detecting and Preventing Common Web Application Vulnerabilities: A Comprehensive Approach

By Najla Odeh Sherin Hijazi

DOI: https://doi.org/10.5815/ijitcs.2023.03.03, Pub. Date: 8 Jun. 2023

Web applications are becoming very important in our lives as many sensitive processes depend on them. Therefore, it is critical for safety and invulnerability against malicious attacks. Most studies focus on ways to detect these attacks individually. In this study, we develop a new vulnerability system to detect and prevent vulnerabilities in web applications. It has multiple functions to deal with some recurring vulnerabilities. The proposed system provided the detection and prevention of four types of vulnerabilities, including SQL injection, cross-site scripting attacks, remote code execution, and fingerprinting of backend technologies. We investigated the way worked for every type of vulnerability; then the process of detecting each type of vulnerability; finally, we provided prevention for each type of vulnerability. Which achieved three goals: reduce testing costs, increase efficiency, and safety. The proposed system has been validated through a practical application on a website, and experimental results demonstrate its effectiveness in detecting and preventing security threats. Our study contributes to the field of security by presenting an innovative approach to addressing security concerns, and our results highlight the importance of implementing advanced detection and prevention methods to protect against potential cyberattacks. The significance and research value of this survey lies in its potential to enhance the security of online systems and reduce the risk of data breaches.

[...] Read more.
A Trust Management System for the Nigerian Cyber-health Community

By Ifeoluwani Jenyo Elizabeth A. Amusan Justice O. Emuoyibofarhe

DOI: https://doi.org/10.5815/ijitcs.2023.01.02, Pub. Date: 8 Feb. 2023

Trust is a basic requirement for the acceptance and adoption of new services related to health care, and therefore, vital in ensuring that the integrity of shared patient information among multi-care providers is preserved and that no one has tampered with it. The cyber-health community in Nigeria is in its infant stage with health care systems and services being mostly fragmented, disjointed, and heterogeneous with strong local autonomy and distributed among several healthcare givers platforms. There is the need for a trust management structure for guaranteed privacy and confidentiality to mitigate vulnerabilities to privacy thefts. In this paper, we developed an efficient Trust Management System that hybridized Real-Time Integrity Check (RTIC) and Dynamic Trust Negotiation (DTN) premised on the Confidentiality, Integrity, and Availability (CIA) model of information security. This was achieved through the design and implementation of an indigenous and generic architectural framework and model for a secured Trust Management System with the use of the advanced encryption standard (AES-256) algorithm for securing health records during transmission. The developed system achieved Reliabity score, Accuracy and Availability of 0.97, 91.30% and 96.52% respectively.

[...] Read more.