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Abstract—Code-injection attacks pose serious threat to 
today’s Internet. The existing code-injection attack defense 
methods have some deficiencies on performance overhead 
and effectiveness. To this end, we propose a method that 
uses system called randomization to counter code injection 
attacks based on instruction set randomization idea. System 
calls must be used when an injected code would perform its 
actions. By creating randomized system calls of the target 
process, an attacker who does not know the key to the 
randomization algorithm will inject code that isn’t 
randomized like as the target process and is invalid for the 
corresponding de-randomized module. The injected code   
would fail to execute without calling system calls correctly. 
Moreover, with extended complier, our method creates 
source code randomization during its compiling and 
implements binary executable files randomization by 
feature matching. Our experiments on built prototype show 
that our method can effectively counter variety code 
injection attacks with low-overhead.  
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I.  INTRODUCTION 

Code injection attacks are to exploit software 
vulnerabilities and inject malicious code into a target 
program. The process control flow is modified in some 
way that the injected code is finally executed. In general, 
the term “shellcode” is used to refer to injected code.  

Many techniques have been introduced to prevent code 
injection attacks from various angles. The most notable 
technique is Instruction Set Randomization (ISR) [1-5]. 
ISR randomizes instruction set for each process of target 
system, performs de-randomization before executing on  
CPU to  recover  the  original  instruction set and execute  

correctly. An attacker does not know the key of the 
randomization algorithm. The shellcode can’t be 
randomized like the target program so that it is invalid for 
that de-randomized process, causing a runtime error. 
Code injection attack would fail to execute. ISR is 
showed as figure 1. 

 

 
Although ISR can effectively thwart code injection 

attacks, it incurs enormous performance cost because of 
its per-instruction de-randomization on a virtual 
processor and lack of hardware support.  Such a system 
cannot be practically deployed.  ________________________________________________________

Manuscript received Marchl 14, 2009; revised June 22, 2009; 
accepted September 27, 2009. Full instruction set randomization must cause the 

performance to drop down quickly. To solve this problem, 
from the level of the OS kernel, we simply randomize and 
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de-randomize system call of the target program and 
reduce the ISR overhead greatly. Moreover, using a 
extended compiler, we perform source code 
randomization during compiling and implement binary 
executable files randomization by feature matching.  
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Figure 2. System Call Randomization and De-randomization 

In the rest of paper, we first present the defense 
principle in Section 2. We then describe the 
implementation in Section 3. We demonstrate 
effectiveness and efficiency by experiments in Section 4. 
We explain related work in Section 5. Finally, we 
conclude in Section 6. 

II.  PRINCIPLE 

The majority of injected code is machine instruction, 
so we focus on machine instruction code injected attacks 
in this paper. The characteristics of the shellcode need to 
be noticed including (1) machine instruction complied, (2) 
attacking target platform oriented, (3) short code and (4) 
system call must be used. According to the architecture of 
computer system, system calls are the only interfaces for 
a program to access system resources. The program 
would fail to execute without calling system calls 
correctly. In essence, a shellcode would perform its 
actions with system calls like a normal program. Each 
system call has an index called system call number. OS 
will call the implement functions according to this 
number. System call number randomization on operating 
system level will prevent shellcode from successful 
execution. Our method can defeat a wide variety of code 
injection attacks while incurring low performance penalty.  
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Figure 3. The Prototype of Our System 

In general, OS maintains a consistent and backward 
compatible mapping between system call numbers and 
their implement functions. First, the system call numbers 
of target program are randomized. The original system 
call number Xo is overwritten with a new value Xn, 
calculated by the equation (1): 

Xn = f (Xo , r )                               (1) 

In equation (1), f is our randomization algorithm, r is 
randomization factor. There is a system call dispatcher in 
OS kernel which dispatches the function according to the 
system call number. We customize the system call 
dispatcher to perform de-randomization. The original 
system call number is recovered using the equation (2): 

Xo = f -1 (Xn , r )                           (2) 

In equation (2) f -1 is our de-randomization algorithm. 
The target program can execute correctly. Attackers do 
not know that the target program has been randomized, in 
the kernel space our de-randomization module transforms 
the system call number in shellcode into another one 
which can not be corresponding to the implement 
function expected by the attacker. Finally the shellcode 
fails to execute because of invalid parameters or 
meaningless system call number. As shown in Figure 2.. 

Attackers may attempt to acquire the randomization 
algorithm f and randomization factor r. The attempt is 
also defeated. First, f and r are stored in the kernel space, 
user-level program are unable to get them. Second, the f 
and r on each machine may be different. Final, we 

develop a dynamic scheme to enable configuration the f 
and r in any time.   

  

 

III.  IMPLEMENTATION 

We built a prototype on Linux platform, shown in 
Figure 3. 

The prototype system consists of randomization, de-
randomization, and preprocessing. 
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A.  Randomization 
On one hand, a program can call system calls directly 

or via library functions indirectly. In this paper, the 
randomization to source programs will be enforced 
through extended GCC and GLIBC. On the other hand, 
the randomization to the binary executable files without 
source code is also implemented. As a consequence, our 
system can provide full protection against code injection 
attackers. 

Figure 4.  System call instruction node 

Figure 5.  System call number transformation1) Extended GCC 

In this paper, GCC compiler is extended to randomize 
source code. A program will be translated into RTL 
format by GCC. The main structure of RTL format is a 
two-way linked list which is composed by instruction 
nodes. The instruction node “int $0x80” contains 
information about system call requests, shown in Figure 4. 

 

Figure 6.  Modification of DO-CALL 

 
Through feature matching, the extended GCC can 

identify these instruction nodes. Randomization will be 
done on these matched instruction nodes. 

The information about system call numbers has two 
kinds of modes. One is that the system call numbers is 
contained in the instruction nodes directly. For example, 
in the 6734 row of Figure 4, the system call number is 
106 from the sentence “const_int  106”. For another one, 
the system call number can’t be gotten from sentence 
directly. For example, the system call number can’t be 
found from the sentence “reg/f:SI 60”. It only tells us that 
the system call number is placed in the 60th SI register.  

To the former, GCC can read the system call number 
directly, and then perform the randomization. The 
transformed system call number will be used to construct 
a const_int type rtx. This rtx replaces the old rtx 
constructed by the original system call number. An 
example is shown in Figure 5. In Figure 5 the old rtx is 
u.fld[5].rtx–> u.fld[1].rtx. 

 
 

 

To the latter, GCC will forward searches the two-way 
linked list from the current node to find the register which 
contains the system call number , search the instruction 
node which performs the last assignment operation to this 
register, and read the system call number, then follow the 
same steps as the former. 

2) Extended GLIBC 

GLIBC is extended to randomize the system calls 
which are encapsulated in function libraries. GLIBC 
performs the system call mainly by means of two ways. 
One is PESUDO, another is INTERNAL_SYSCALL. 
The randomization module will be added into these two 
ways respectively. 

To the former, the core work is to modify the 
definition of DO_CALL. In the file glibc-

2.3.6\sysdeps\unix\sysv\linux\i386\sysdep.h, 

the definition of DO_CALL is modified as shown in 
Figure 6. 

 
In Figure 6, the original instruction “movl” is replaced 

by the other three assembly instructions. The first one is 
“pushl $SYS_ify(syscall_name)”, the system call number 
is transferred as a parameter to the user-defined function. 
The second one is “call change”. The function “change” 
is defined by user and performs the randomization. The 
third one is “addl $4,%esp” , it is to maintain the balance 
of stack when the function call returns. 

To the latter, the core work is to modify the definition 
of INLINE_CALL. In the file libc-

2.3.6\sysdeps\unix\sysv\linux\i386\sysdep.h 

the definition of INLINE_CALL is modified as 
shown in Figure 7. 
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Figure 7.   Modification  of  INLINE_CALL 

 
In Figure 7, the variable “newid” is added to receive 

the returned value of the randomization function 
“change”. The input restriction of inline assembly is 
modified, the immediate number __NR_##name can be 
replaced by the variable “newid”.  

3) Binary executable files 

The Executable and Linking Format (ELF) is a 
standard file format on many different platforms. The 
system call number can be located and rewritten by the 
system call instructions, so the first step is to find the 
system call instructions in ELF files.  

We have statistics for system call number transmission 
instruction shown in table I 

The statistics results illuminate that more than 98 
percent system call number can be recognized by the 

instruction “mov x,eax”. The system call request can be 
identified by the instruction “int 0x80”  

In addition, some parts of the data segment in ELF 
files contain the same assignment operations. However, 
they mainly appear in the extra segment of ELF files. We 
can jump over the extra segment and only deal with the 
code segment. 

So the system call number can be obtained by feature 
matching and randomized by user-defined algorithm. 

B.  De-randomization  
A kernel module based on the Loadable Kernel 

Module (LKM) is design to intercept system call requests, 
de-randomize the system call number before the system 
call  invoked in the kernel and store the original system 
call handler in the memory. If the current process is the 
target process which the user wants to protect, the kernel 
de-randomizes the system call number using the method 
provided by the user, and then invokes the corresponding 
system call handler. Otherwise, the original system call 
handler will be invoked. Only the system call number in 
the target process will be de-randomized.   

During the de-randomization, the parameters 
transmission can be handled by modification of function 
pointers in general,. But some extraordinary system calls 
need be processed specially, such as sys_clone(struct 
pt_regs regs). The inline assembly language is introduced 
to transfer parameters as follows.  

 

orig_sys[0]=orig_syscall[syscall_num];  

asm("movl %ebp,%esp\n\t";  

"popl %ebp\n\t"; 

"jmp *(orig_sys)");  
 
The first sentence is to obtain the address of the system 

call table; the second sentence and the third sentence are 
to recover the values of EBP and ESP register, so that the 
stack pointer goes back to the state before loading de-
randomization module. Final, the corresponding system 
call function is called by the instruction “jmp”. The 
experiment shows that this method is effectively. 

C.  Preprocessing  
Reducing the performance overhead is the main target 

of this paper. The preprocessing is employed to carry out 
many tasks in randomization and de-randomization.  

Given randomization algorithm f and randomization 
factor r, we proposed an algorithm to obtain reserve 
function f-1, using equation (1) and equation (2) the 
system can calculate the randomized system call numbers 
for all original system call numbers. A table can be built 
to maintain the mapping between the randomized system 
call numbers and the original system call numbers. The 
de-randomization of system call numbers can be 
accomplished quickly by looking-up the table. We also 
proposed an algorithm to keep the randomized system 
call numbers within the range, because most operating 
systems can only support limited system call numbers. 

TABLE I 
STATISTICS FOR SYSTEM CALL NUMBER TRANSMISSION INSTRUCTION

Transmission 
system call 

number 

Number of system calls in Binary Executable File 
File A 
(53) 

File B 
(58) 

File C 
(67) 

Using 
“mov x,eax” 52 57 67 

Not using 
“ mov x,eax” 1 1 0 

Ratio of using 
“mov x,eax” 

to all 
98.11% 98.28% 100% 

We employed the writing-reading trigger mechanism 
of procfs (process file system). That is, when there is a 
writing operation on a procfs file, a reading operation is 
triggered. By this means, most of the de-randomization 
work can be preprocessed. 

Besides, the target program which is protected by our 
system can be configured. Usually, the security system is 
determined by the vulnerable area. In this paper, an 
interface is designed for users to select the program 
which need to be protected  
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IV.  EXPERIMENT 

Our prototype system is named as CIAS. It is 
evaluated from two aspects. 

A.  Effectiveness  
Some real code injection attacks are utilized to 

demonstrate that CIAS can effectively thwart a wide 
variety of code injection attacks. For example, one is that 
the shellcode invokes the system call ‘execve (“/bin/sh”)’, 
attackers can start a shell and execute any system 
command. Another is that the shellcode invokes the 
system call ‘root’ directly to restart the computer. CIAS 
can defeat these attacks successfully. 

B.  Efficiency 
The physical test platform is Linux 2.4.20-8 with 

2.40GHz Intel Pentium IV processor, 256M RAM and 
GCC 3.2.2. There are three experiments as following: 

First, we measured some single system call such as 
getpid, sethostname and open. In comparison with, we 
tested the add . The results are shown in Table II 

Table II indicates that the performance of add is not 
affected by CAIS. The reason is that there is no system 
call in add. The overhead of getpid is the largest one 
which is 13.19 percent. It is because the increase in 
runtime caused by CAIS is constant for each system call. 
getpid is a lightweight system call, its runtime is less, so 
that its overhead is obvious. Even so, the 13.19 percent 
overhead is still accepted from the view of getpid . open 
is a complex system call , its runtime is longer, its 
overhead is lower.  

Second, we measured some commands which contain 
several system calls such as tar, gzip, cp and GCC 
commands. The results are shown in Table III. 

 By comparison with Table II, Table III shows that the 
overhead of commands is much low. The reason is that a 

command is more complicated than a system call. 
Besides system calls, a command also contains some 
time-consuming operations. It may explains that loading 
CIAS has a little of influence on the performance of 
applications. 

Third, we used UnixBench (Version 4.0.1) to measure 
the system performance before and after loaded CIAS. 
The results are shown in Table IV. 

Table IV shows that the majority of test items don’t 
decrease obviously except “System Call Overhead” and 
“Process Creation” which have a few decrease of 2.72% 
and 2.43% respectively. The reason is that the both items 
contain many system calls. However, according the 
FINAL SCORE, the total performance only decreases 
0.74%.  

All of these demonstrate that CIAS is high 
performance. 

V. RELATED WORK 

There are two main randomization techniques 
proposed: one is ISR [1-5], another is Address Space 
Layout Randomization (ASLR) [6-9]. ISR creates a 
randomized instruction set for each process so that 
instructions in shellcode fail to execute correctly even 
though attackers have already hijacked the control flow 
of the vulnerable process.  ASLR, instead, randomizes the 
memory address layout of a running process (including 
library, heap, stack, and relative distances between data 
and code) so that it is hard for attackers to locate injected 
shellcode or existing program code, preventing attackers 
from hijacking the control flow. Though ISR is a 
powerful technique, it incurs more performance penalty, 
because it requires the introduction of an emulator and 
the binary transformation of applications. ASLR has been 
deployed by many operating systems such as Linux 
kernel 2.6 and Windows Vista. However, ASLR suffers 
from a number attacks. Michal Bucko from HACKPL 
Security Lab [10] pointed out that some attack techniques 
such as Heap Spraying could bypass ASLR. RandSys [11] 
implemented randomization on system call level and used 
DES algorithm to encrypt important data. But lack of 
stability is the most serious disadvantage as the result of 
its modification of the kernel code of Linux. StackGuard 
[12,13] encrypts control information in a stack by XOR-
ing it with a random number. But it is not easy to use 
since the kernel of Linux need to be recompiled and the 
performance overhead is very high. According to Monica 
Chew [14], the cost of StackGuard  is up to 30%. Monica 
Chew [15] proposed several methods of mitigating buffer 
overflows by introducing randomness into the 
implementation of system software. One of their methods 
changes the mapping between system call IDs and system 
call handlers by mixing up the system call table using 
random numbers. This is achieved by recompilation of 
the kernel and binary rewriting of applications to fit them 
to the new kernel. In their method, one mapping is shared 
by all processes and does not change except when the 
kernel is recompiled. Yoshihiro Oyama [15] enhanced the 
system performance and usability by using kernel 
modules. He encrypted system call arguments with XOR 

TABLE III 
OVERHEAD ON SINGLE SYSTEM CALL  

 tar gzip cp gcc 

Time without CIAS 
(sec) 1.61 8.57 0.58 11.48 

Time with CIAS (sec) 1.67 8.60 0.62 11.51 

Overhead 3.73% 0.35% 6.90% 0.26% 

TABLE II 
OVERHEAD ON SINGLE SYSTEM CALL  

 add getpid sethostname open

Time without 
CIAS (μ sec) 0.00255 0.470 0.516 1.879

Time with CIAS 
( μ sec) 0.00255 0.532 0.579 1.984

Overhead 0.00% 13.19% 12.21% 5.59
% 
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operation and random numbers which are not security. In 
additional, his approach can’t deal with some situations 

such as system calls directly appeared in source code and 
in binary executable files without source code. 

 

TABLE IV 
UNIXBENCH RESULTS 

Unload CIAS 

TEST BASELINE RESULT INDEX

Arithmetic Test 
(type = double) 29820.0 529258.9 177.5

Dhrystone 2 
using register 

variables 
116700.0 3472143.9 297.5

Execl 
Throughput 43.0 3241.4 753.8

File Copy 1024 
bufsize 2000 
maxblocks 

3960.0 207819.0 524.8

File Copy 256 
bufsize 500 
maxblocks 

1655.0 82188.0 496.6

File Copy 4096 
bufsize 8000 
maxblocks 

5800.0 278457.0 480.1

Pipe Throughput 12440.0 668401.1 537.3

Process Creation 126.0 10498.9 833.2

Shell Scripts 
(8 concurrent) 6.0 101.0 168.3

System Call 
Overhead 15000.0 384542.1 256.4

FINAL SCORE   396.6

Loaded CIAS 

TEST BASELINE RESULT INDEX

Arithmetic Test 
(type = double) 29820.0 529350.7 177.5

Dhrystone 2 
using register 

variables 
116700.0 3472105.8 297.5

Execl 
Throughput 43.0 3270.3 760.5

File Copy 1024 
bufsize 2000 
maxblocks 

3960.0 206669.0 521.9

File Copy 256 
bufsize 500 
maxblocks 

1655.0 82612.0 499.2

File Copy 4096 
bufsize 8000 
maxblocks 

5800.0 277449.0 478.4

Pipe Throughput 12440.0 650828.4 523.2

Process Creation 126.0 10249.1 813.4

Shell Scripts 
(8 concurrent) 6.0 101.0 168.3

System Call 
Overhead 15000.0 374340.5 249.6

FINAL SCORE   393.7

VI. CONCLUSION  

We described our randomization scheme on the level 
of OS kernel to counter code injection attacks. We 
randomize only the system call numbers rather than the 
entire instruction set, hence effectively solve the 
performance problem of ISR. We have also developed 
some techniques to enhance the system performance.  
Firstly, the preprocessing is introduced. A majority of 
tasks of the randomization and de-randomization were 
pre-processed when the system started to run. The table 
was built to store the mapping between the original 
system call numbers and the randomized ones. The de-
randomization can be accomplished quickly by looking-
up the table. So that the performance cost of our system is 
very low. Secondly, the target program is configurable by 
users. The security of a system is usually determined by 
the vulnerable area which should be protected firstly. In 
our system, users can configure the target program 
according to their own demand. It is more flexible during 
deploying the system and reduces the system overhead 
greatly. Thirdly, a complete protecting tool set is 
achieved, which can provide full protection against code 
injection attacks. We implement source code 
randomization by extended GCC and GLIBC and binary 
executable files randomization by matching the system 
call instructions in the ELF files. Finally, a dynamic 
randomization policy is employed. Traditional 
randomization policy is static, such as random numbers 
and encryption algorithms (AES, XOR) which are 
restricted in security and robustness. The dynamic 
randomization policy isn’t dependent on the random 
numbers and the encryption algorithms and is 
configurable by users. So that it is more secure from 
attack. 

The experiments show that our prototype system can 
effectively thwart a great deal of code injection attacks 
with low overhead. 
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