INFORMATION CHANGE THE WORLD

International Journal of Information Technology and Computer Science(IJITCS)

ISSN: 2074-9007 (Print), ISSN: 2074-9015 (Online)

Published By: MECS Press

IJITCS Vol.10, No.10, Oct. 2018

Fredkin Circuit in Nanoscale: A Multilayer Approach

Full Text (PDF, 328KB), PP.38-43


Views:24   Downloads:1

Author(s)

Abdullah-Al-Shafi, Ali Newaz Bahar

Index Terms

Quantum-dot Cellular Automata (QCA);Fredkin Gate;QCADesigner;Energy dissipation

Abstract

Nanotechnologies, exceedingly Quantum-dot Cellular Automata (QCA), presents a notable perception for upcoming nanocomputing. Feature extent of circuits is moving to sub-micron point that produces the sophisticated device intricacies. In this work, QCA is considered as an application technique for reversible logic. A multi-layer reversible Fredkin circuit is proposed with QCA nanotechnology. The accomplishment of the outlined circuit is substantiated with five existing Fredkin gate, which exhibits from 71.20% to 37.50% improvement in term of cell intricacy. The proposed design uses 55 cells concerning only 0.03 μm2 area and latency is 0.75. The power consumption by the proposed circuit is also presented in this literature. The proposed design has been realized with QCADesigner version 2.0.3.

Cite This Paper

Abdullah-Al-Shafi, Ali Newaz Bahar, "Fredkin Circuit in Nanoscale: A Multilayer Approach", International Journal of Information Technology and Computer Science(IJITCS), Vol.10, No.10, pp.38-43, 2018. DOI: 10.5815/ijitcs.2018.10.05

Reference

[1]R. R. Schaller, “Moore's law: past, present and future”, IEEE spectrum, vol. 34, no. 6, pp. 52-59, 1997.

[2]C. S. Lent, P. D. Tougaw, W. Porod and G. H. Bernstein, “Quantum cellular automata”, Nanotechnology, vol. 4, no. 1, p. 49, 1993.

[3]R. Landauer, “Irreversibility and heat generation in the computing process”, IBM J. Res. Dev, vol. 5, no. 3, pp. 183–191, 1961.

[4]C. H. Bennett, “Logical reversibility of computation”, IBM J. Res. Dev, vol. 17, no. 6, pp. 525–532, 1973.

[5]M. Mohammadi, A. Niknafs and M. shghi, “Controlled gates for multi-level quantum computation”, Quantum Inf Process, vol. 10, no. 2, pp. 241–256, 2011.

[6]I. Amlani, A. Orlov, G. Toth, G. H. Bernstein, C. S. Lent, and G. L. Snider, “Digital Logic Gate Using Quantum-dot Cellular Automata”, Science, vol. 284, no. 5412, p. 289-291, 1999.

[7]A. N. Bahar, M.S. Uddin, Md. A. A. Shafi, M. M. R. Bhuiyan and K. Ahmed, “Designing efficient QCA even parity generator circuits with power dissipation analysis”, Alexandria Engineering Journal, 2017, in press.

[8]Md. A. A. Shafi, A. N. Bahar, M. A. Habib, M. M. R. Bhuiyan, F. Ahmad, P. Z. Ahmad and K. Ahmed, “Designing Single Layer Counter in Quantum-dot Cellular Automata with Energy Dissipation Analysis”, Ain Shams Engineering Journal, 2017, in press.

[9]Md. A. A. Shafi, A.N. Bahar, M. M. R. Bhuiyan, S. M. Shamim and Kawsar Ahmed, “Average output polarization dataset for signifying the temperature influence for QCA designed reversible logic circuits”, Data in Brief, vol. 19, pp. 42-48, 2018.

[10]Md. A. A. Shafi and A. N. Bahar, “Ultra-Efficient Design of Robust RS Flip-flop in Nanoscale with Energy Dissipation Study”, Cogent Engineering, Vol. 4, No. 1, pp. 1391060, 2017.

[11]M. K. Hassan, N. M. Nahid, A. N. Bahar, M. M. R. Bhuiyan, Md. A. A. Shafi and K. Ahmed, “Dataset demonstrating the temperature effect on average output polarization for QCA based reversible logic gates”, Data in Brief, vol. 13, pp. 713-16, 2017.

[12]Md. A. A. Shafi, A. N. Bahar, F. Ahmad and K. Ahmed, “Performance Evaluation of Efficient Combinational Logic Design Using Nanomaterial Electronics”, Cogent Engineering, vol. 4, No. 1, pp. 1349539, 2017.

[13]Md. A. A. Shafi and A. N. Bahar, “A Novel Binary to Grey and Grey to Binary Code Converter in Majority Voter-Based QCA Nanocomputing”, Journal of Computational and Theoretical Nanoscience, vol. 14, no. 5, pp. 2416-2421, 2017.

[14]P. K. Biswas, A. N. Bahar, M. A. Habib and Md. A. A. Shafi, “Efficient Design of Feynman and Toffoli Gate in Quantum dot Cellular Automata (QCA) with Energy Dissipation Analysis”, Nanoscience and Nanotechnology, vol. 7, no. 2 pp. 27-33, 2017.

[15]Md. A. A. Shafi, A. N. Bahar, F. Ahmad, M. M. R. Bhuiyan and K. Ahmed, “Power analysis dataset for QCA based multiplexer circuits”, Data in Brief, vol. 11, pp. 593-96, 2017.

[16]A. N. Bahar, F. Ahmad, N. M. Nahid, K. Hasan, Md. A. A. Shafi and K. Ahmed, “An optimal design of conservative efficient reversible parity logic circuits using QCA”, International Journal of Information Technology, 2018, in press.

[17]Md. A. A. Shafi and A.N. Bahar, “Optimized design and performance analysis of novel comparator and full adder in nanoscale”, Cogent Engineering, vol. 3, no. 1, pp. 1237864, 2016.

[18]Md. A. A. Shafi and A. N. Bahar, “Novel Binary to Gray Code Converters in QCA with Power Dissipation Analysis”, International Journal of Multimedia and Ubiquitous Engineering, vol. 11, no. 8, pp. 379-396, 2016.

[19]Md. A. A. Shafi, “Analysis of Fredkin Logic Circuit in Nanotechnology: An Efficient Approach”, International Journal of Hybrid Information Technology, vol. 9, no. 2, pp. 371-380, 2016.

[20]Md. A. A. Shafi, “Synthesis of Peres and R Logic Circuits in Nanoscopic Scale”, Communications on Applied Electronics, vol. 4, no. 1, pp. 20-25, 2016.

[21]Md. S. Islam, Md. A. A. Shafi and A. N. Bahar, “A New Approach of Presenting Universal Reversible Gate in Nanoscale”, International Journal of Computer Applications, vol. 134, no. 7, pp. 1-4, 2016.

[22]Md. S. Islam, Md. A. A. Shafi and A. N. Bahar, “Implementation of Binary to Gray Code Converters in Quantum Dot Cellular Automata”, Journal on Today’s Ideas -Tomorrow’s Technologies, vol. 3, no. 2, pp. 145-160, 2015.

[23]Md. A. A. Shafi and A. N. Bahar, QCA: An Effective Approach to Implement Logic Circuit in Nanoscale”, 5th International Conference on Informatics, Electronics & Vision (ICIEV), Dhaka, Bangladesh, pp. 620-624, 2016.

[24]Md. A. A. Shafi and A. N. Bahar, “Energy Optimized and Low Complexity 2-Dimensional 4 Dot 2 Electron Flip-flop and Quasi Code Generator in Nanoscale”, Journal of Nanoelectronics and Optoelectronics, vol. 13, no. 6, pp. 856-863, 2018.

[25]Md. A. A. Shafi, A. N. Bahar and Md. S. Islam, “A Quantitative Approach of Reversible Logic Gates in QCA”, Journal of Communications Technology, Electronics and Computer Science, vol. 3, pp. 22-26, 2015.

[26]Md. A. A. Shafi, Md. S. Islam and A. N. Bahar, “A Review on Reversible Logic Gates and its QCA Implementation”, International Journal of Computer Applications, vol. 128, no. 2, pp. 27-34, 2015.

[27]D. A. Antonelli, D. Z. Chen, T. J. Dysart, X. S. Hu, A. B. Kahng, P. M. Kogge, R. C. Murphy and M. T. Niemier, “Quantum-Dot Cellular Automata (QCA) Circuit Partitioning: Problem Modeling and Solutions”, Design Automation Conference (DAC), ACM, pp. 363–368, 2004.

[28]Md. A. A. Shafi, R. H. Aneek and A. N. Bahar, “Universal Reversible Gate in Quantum-Dot Cellular Automata (QCA): A Multilayer Design Paradigm”, International Journal of Grid and Distributed Computing, vol. 10, no. 1, pp. 43-50, 2017.

[29]A. Peres, “Reversible logic and quantum computers”, Phys. Rev. A, vol. 32, no. 6, pp. 3266, 1985.

[30]A. Roohi, R. Zand, S. Angizi and R. F. Demara, “A parity-preserving reversible QCA gate with selfchecking cascadable resiliency”, In: IEEE Transactions on Emerging Topics in Computing, 2016.

[31]E. Fredkin and T. Toffoli, “Conservative logic”, Int. J. Theor. Phys, vol. 21, pp. 219–253, 1982.

[32]X. Ma, J. Huang, C. Metra and F. Lombardi, “Reversible gates and testability of one dimensional arrays of molecular QCA,” J. Electron. Test, vol. 24, no. 1, pp. 297–311, 2008

[33]H. Thapliyal and N. Ranganathan, “Reversible logic-based concurrently testable latches for molecular QCA,” IEEE Trans. Nanotechnol, vol. 9, no. 1, pp. 62–69, 2010.

[34]Z. Mohammadi, M. Mohammadi and M. Hasani, “Designing of testable reversible QCA circuits using a new reversible MUX 2×1,” J. Adv. Comput. Res, vol. 3, no. 1, pp. 51–64, 2012

[35]H. Thapliyal, N. Ranganathan and S. Kotiyal, “Design of testable reversible sequential circuits,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst, vol. 21, no. 7, pp. 1201–1209, 2013

[36]Z. Mohammadi and M. Mohammadi, “Implementing a one-bit reversible full adder using quantum-dot cellular automata,” Quant. Inf. Process, vol. 13, no. 9, pp. 2127–2147, 2014

[37]J. C. Das and D. De, “User authentication based on quantum-dot cellular automata using reversible logic for secure nanocommunication,” Arabian Journal for Science and Engineering, vol. 41, no. 3, pp.773-784, 2016.

[38]J. Timler and C. S. Lent, “Power gain and dissipation in quantum-dot cellular automata,” J. Appl. Phys, vol. 91, no. 2, pp. 823-831, 2002.

[39]W. Liu, S. Srivastava, L. Lu, M. O’Neill and E. E. Swartzlander, “Are QCA cryptographic circuits resistant to power analysis attack?,” IEEE Trans. Nanotechnol, vol. 11, no. 6, pp. 1239–1251, 2012.

[40]V. Pudi and K. Sridharan, “Efficient design of a hybrid adder in quantum-dot cellular automata,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst, vol. 19, no. 9, pp. 1535–1548, 2011.