
I.J. Information Technology and Computer Science, 2018, 9, 47-56
Published Online September 2018 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2018.09.06

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 9, 47-56

Consistency of UML Design

Iryna Zaretska
V.N. Karazin Kharkiv National University, Kharkiv, 61000, Ukraine

E-mail: zaretskaya@karazin.ua

Oleksandra Kulankhina
Wall Street Systems Software Company, Valbonne, 06560, France

E-mail: oleksandra.kulankhina@gmail.com

Hlib Mykhailenko
ActiveEon Software Company, Valbonne, 06560, France

E-mail: hlib.mykhailenko@gmail.com

Tamara Butenko
V.N. Karazin Kharkiv National University, Kharkiv, 61000, Ukraine

E-mail: tomabut@rambler.ru

Received: 11 November 2017; Accepted: 03 August 2018; Published: 08 September 2018

Abstract—The paper presents a method and tools for

consistency checking in UML design of an object-

oriented software system. The proposed method uses

graph representation of UML diagrams and first-order

predicate logic to specify consistency rules mostly on the

cross-diagram level. Classification of consistency rules is

presented. Two approaches to implementation of con-

sistency checking are discussed and compared.

Index Terms—Software design, object-oriented approach,

UML, design model, verification.

I. INTRODUCTION

It is well known in software development industry that

the earlier faults are detected the less expensive their

correcting and the less destructive the wave effect. Sup-

posing that the requirements specification is complete and

consistent, the earliest phase of the software life cycle to

begin the verification process is logical modeling of the

future system. This process requires some language to

communicate with users and in between the team mem-

bers. Here we suppose that UML (Unified Modeling

Language [1]) is used to represent logical and physical

architecture of a software system. The UML diagrams

allow modeling the main aspects of the system such as its

static structure, dynamic behavior including events han-

dling, message exchanges, and system state changes.

Detecting faults in the UML model of the system i.e. the

set of the diagrams reflecting its main characteristics

prevents not only improper understanding of specifica-

tions but also spreading these faults through further elab-

oration and coding processes. These faults can be of two

kinds. First ones are concerned with UML syntax and

semantics and usually are detected by UML CASE tools

such as StarUML (http://staruml.sourceforge.net/en/),

VisualParadigm (http://www.visual-paradigm.com/),

UMLLet (http://www.umlet.com/), Poseidon for UML

(http://www.gentleware.com/products.html), IBM Ra-

tional Rhapsody (http://www-

142.ibm.com/software/products/us/en/ratirhapfami),

MagicDraw (http://www.nomagic.com/), ArgoUML

(http://argouml.tigris.org/). They are mostly intra-diagram

errors. Second ones are concerned with interconnections

between diagrams so that the information presented in

one diagram does not comply with the same or related

information presented in some other diagram. These are

mostly structural-to-behavioral or behavioral-to-structural

inconsistencies. That kind of faults has nothing to do with

UML syntax but is based mostly on rules of object-

oriented approach, common sense, and domain under-

standing. These faults are crucial for the soundness of the

future system but, unfortunately, no CASE tools can de-

tect them. So formulating such faults – we call them in-

consistencies – and developing methods and tools for

their detection is of primary importance. In this paper, we

define and classify the wide range of valuable consisten-

cy rules and propose two methods of their checking. The

decision on changing the model based on the results of

such checking remains up to the designer of the system.

Many authors conduct research in this area. Well

known are works using description logic as the formal

way to represent UML meta-model, the concrete model

of the system and consistency rules [3]. Some software

tools were presented to support this approach each of

which has its own syntax of description for logic proposi-

tions and methods of consistency checking (reasoning).

Here we propose another approach using its own mod-

el for representing UML diagrams, consistency rules,

methods and tools for detecting inconsistencies. As we

consider the early phases of the software life cycle and

mostly logical modeling, we include into the analysis

https://mail.rambler.ru/#/compose/to=oleksandra.kulankhina%40gmail.com
mailto:hlib.mykhailenko@gmail.com
mailto:tomabut@rambler.ru
http://staruml.sourceforge.net/en/),%20VisualParadigm
http://staruml.sourceforge.net/en/),%20VisualParadigm
http://www.umlet.com/
http://www-142.ibm.com/software/products/us/en/ratirhapfami
http://www-142.ibm.com/software/products/us/en/ratirhapfami

48 Consistency of UML Design

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 9, 47-56

only four types of diagrams namely Class diagram, Ob-

ject diagram, Sequence diagram, and State Machine dia-

gram. One more consideration is that these diagrams have

the widest intersection of common UML components

(classes, objects, messages, etc.). We use graph represen-

tation of the UML model of the system and unified ap-

proach of the first order predicate logic to formulate the

consistency rules in terms of this representation. Two

methods and software tools for checking these rules are

proposed and compared. It is supposed that initial UML

model is created in some UML CASE tool and is export-

ed into an XMI-file. This file then is parsed into the graph

representation and submitted to the software tool (checker)

for consistency checking. So the whole process looks like

shown in Fig.1.

Fig.1. The process of consistency checking.

We developed two essentially different implementa-

tions with two different checkers. First uses Java for im-

plementation of all steps of the process. Second is the

combination of Java and Prolog to make extensive use of

the Prolog’s logic machine. The comparative analysis

was conducted and the results are presented.

To avoid misunderstanding we use the term “UML de-

sign of the system” for the set of its UML models and the

term “graph model” for the graph representation of the

UML design of the system.

II. RELATED WORK

As the analysis of literature shows the problem of de-

tecting and resolving inconsistencies in UML design

models is topical and actively researched. The most com-

plete analysis of approaches is presented in [2]. Some

authors restrict their research by only one definite type of

diagram while others offer different types of formalisms

to describe and detect inconsistencies.

The special classification of inconsistencies in UML

models is given in [15].

The closest to our approach is the research carried out

in Université de Mons and Vrije Universiteit Brussel,

Belgium by a group of authors [3-7] with the description

logic (DL) used to solve the problem. The motivation for

resorting to DL is natural: it is first-order logic with com-

plete reasoning mechanisms. The meta-model (concepts

and roles definitions) form the TBox (Terminological

Box) while the concrete model is represented by the

ABox (Assertions Box). All the consistency rules should

also be written in DL. A number of software tools were

developed to support this approach. Among them are

RacerPro(http://www.racer-systems.com/), Loom

(http://www.isi.edu/isd/LOOM/). The authors of this

approach admit that the way to present new consistency

rules is neither friendly to the designer nor much expres-

sive.

The latest research conducted by this group in the area

involves automated planning and an artificial intelligence

technique for automatically generating resolution plans

for model inconsistencies [6, 7]. This approach uses a set

of 13 structural inconsistency types based on OCL con-

straints found by authors in the UML meta-model speci-

fication.

In [8] translation from UML models to CLP (Con-

straint Logic Programming) clauses taking advantage of

meta-modeling techniques is proposed. CLP is also used

to express consistency rules. Then CLP solver used to

automatically detect inconsistencies.

The latest research in the area is presented in [11] and

it also uses an OCL approach. To carry out the verifica-

tion of UML consistency models, the following steps

were identified in [11]: 1) transformation of UML con-

sistency rules into OCL constraints, 2) generation of a

plugin in Papyrus that include the OCL constraints, 3)

importation into Papyrus of UML models, 4) execution of

the plugin with the OCL constraints against the imported

UML models.

The authors of [12] classified existing proposed tech-

niques based on the parameters identified from the re-

search literature. They performed a qualitative compari-

son of consistency management techniques in order to

identify current research trends, challenges and research

gaps in this field of study. Based on the results, they con-

cluded that researchers have not provided sufficient atten-

tion to exploring inter-model and semantic consistency

problems.

Some methods of verifying UML/OCL models are pre-

sented in [13], [14].

So the problem of detecting structural-to-behavioral or

behavioral-to-structural inconsistencies based not on

OCL rules but on principles of object-oriented design

remains open.

http://www.racer-systems.com/
http://www.isi.edu/isd/LOOM/

 Consistency of UML Design 49

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 9, 47-56

III. GRAPH MODEL OF UML DESIGN

The motivation for using the graph model is natural as

diagrams in fact are graphs and moreover those four dia-

grams considered in this chapter have common or closely

related vertices and edges. This fact is extensively used in

formulating the consistency rules. In fact, graph represen-

tation simplifies the description of diagrams comparing to

their formal specification [1] but is sufficient for verifica-

tion purposes. For a class diagram, the corresponding

graph’s vertices are classes and edges are connections

between them, which are association, dependency, gener-

alization, and interface implementation. The information

about generalization sets is stored separately to simplify

search algorithms. For an object diagram, the correspond-

ing graph’s vertices are objects and edges are links be-

tween them. For a sequence diagram, the vertices are

objects or classes and edges are messages between them.

For a state machine (or state chart) diagram the vertices

are states and edges are transitions between them. Each

type of vertex and each type of edge stores information

needed to check intra- and cross-diagram inconsistencies.

For example, an association in a class diagram as an

edge of the corresponding graph keeps the name of the

association, roles and multiplicities of its participants, etc.

Here is the formal representation of our model consisting

of graphs of four types for Class, Object, Sequence, and

State Machine diagrams respectively:

{{ } { } { } { }}cl ob seq stD D D D D    (1)

Each of these graphs consists of two sets: V stands for

vertices and E stands for edges. Their description is given

below.*

cl cl cl

cl

D {V ,E }

V {v : v

(name,isAbstract[,ATTR,MTHD,STRT,visibility])}

ATTR {attr : attr

(name,domain,scope[,visibility,multiplicity])}

MTHD {mthd : mthd

(mthdSgn,scope,visibility)}

scope instance | classifier

vi



 

 

 



cl s e

s e cl

sibility public | private | protected | package

mthdSgn (name[,PARAMS,returnDomain])

PARAMS {param :

param (num[,name],domain)}

STRT {stereotype : stereotype (name)}

E {e : e (v ,v ,type[,info]);

v ,v V ,type gen |









 

 

 

s e s e s

e s e

ob ob link

ob

link s e s e ob

seq cl o

ass | dep | impl}

info ([name,r ,r ,m ,m ,aggr ,

aggr ,navig ,navig])

D {V ,E }

V {v : v

(name,clName[, ATTRVAL,STRT)}

ATTRVAL

{attrval :attrval (name,value)}

E {e : e (v ,v ,name);v ,v V }

D {V V





 





  

  b msg

msg

s e s e cl ob

st st tr

st

,E }

E {e : e

(v ,v ,msgCall);v ,v V V }

msgCall ([guard,] seqnum,mthdCall)

mthdCall (name,ARGS[,returnValue])

ARGS {armnt : armnt (num,value)}

D {V ,E ,className}

V {v : v (name [,entry,do,exit]);

e

 

 





 



 

tr s e s e st

ntry,do,exit mthdCall}

status start | final

E {e : e (v ,v ,trCall);v ,v V }

trCall ([guard,] mthdCall).





  



 (2)

* Elements in [] are optional.

cl cl cl

cl

D {V ,E }

V {v : v

(name,isAbstract[,ATTR,MTHD,STRT,visibility])}

ATTR {attr : attr

(name,domain,scope[,visibility,multiplicity])}

MTHD {mthd : mthd

(mthdSgn,scope,visibility)}

scope instance | classifier

vi



 

 

 



cl s e

s e cl

sibility public | private | protected | package

mthdSgn (name[,PARAMS,returnDomain])

PARAMS {param :

param (num[,name],domain)}

STRT {stereotype : stereotype (name)}

E {e : e (v ,v ,type[,info]);

v ,v V ,type gen |









 

 

 

s e s e s

e s e

ob ob link

ob

link s e s e ob

seq cl o

ass | dep | impl}

info ([name,r ,r ,m ,m ,aggr ,

aggr ,navig ,navig])

D {V ,E }

V {v : v

(name,clName[, ATTRVAL,STRT)}

ATTRVAL

{attrval :attrval (name,value)}

E {e : e (v ,v ,name);v ,v V }

D {V V





 





  

  b msg

msg

s e s e cl ob

st st tr

st

,E }

E {e : e

(v ,v ,msgCall);v ,v V V }

msgCall ([guard,] seqnum,mthdCall)

mthdCall (name,ARGS[,returnValue])

ARGS {armnt : armnt (num,value)}

D {V ,E ,className}

V {v : v (name [,entry,do,exit]);

e

 

 





 



 

tr s e s e st

ntry,do,exit mthdCall}

status start | final

E {e : e (v ,v ,trCall);v ,v V }

trCall ([guard,] mthdCall).





  



Detailed examples of this model are presented in [9,

10]. In fact (2) defines the meta-model and any concrete

design is represented as a graph model compliant to it.

IV. CONSISTENCY RULES

In general, the consistency rules state that all the struc-

tural elements of the system (mainly classes and objects)

presented in the behavioral diagrams like sequence and

state machine ones should be presented in the structural

diagrams like class and object ones with proper types of

associations and links, visibility and navigation types,

multiplicities, etc. And as the messages, in fact, are the

objects’ methods calls and state transitions mean methods

invocations, these behavioral elements should have their

proper presentation in structural diagrams. And all these

rules should take into account the basics of object-

oriented design. For example, checking the presence of

some method in a class may mean checking this method

along the hierarchy path up to the base class or interface

with the generalization or implementation types of con-

necting edges. Exactly for this purpose, the following

notation is introduced:

1 1

1

1

() ... : (()

((: () ())

)) (1, 1)

(: (() ())

() ()

n cl

ob cl

Cl

s i e i

implGenPath v v v v V v v

v V cl V clName v name cl

v cl i n

e E type e gen type e impl

v e v v e v 

    

     

    

     

  

 (3)

In this section the main consistency rules are classified,

their description and unified presentation in terms of the

model (1, 2) by normal logic formulae is given. We pre-

sent here not all but the most valuable rules.

50 Consistency of UML Design

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 9, 47-56

4.1 Class diagrams vs. Sequence diagrams

This section specifies structural-to-behavior consisten-

cy rules, which cover class and sequence diagrams in the

UML design of the system.

1. If an instance of class A sends the message to an in-

stance of class B in the Sequence diagram, the class B

should be visible for the class A in the Class diagram

with proper visibility modifier.

(: ())

((()))

((()))

(() ())

((() " ")

((() " ")

((() () (())

((())

(

msg e cl

e

s cl e s

s ob

e E v e V

v implGenPath v e

mthd MTHD v e

msgCall e mthdSgn mthd

visibility mthd public

visibility mthd protected

v e V v e implGenPath v e

v e V

c

  

 

 



 

 

   

 

 : () (()))

(() ())

(: ())()

((()))

((())) : ()

()((() " ")

((() "

cl s

e

msg e ob cl

e

l V name cl clName v e

v e implGenPath cl

e E v e V cl V

v implGenPath v e

mthd MTHD v e msgCall e

mthdSgn mthd visibility mthd public

visibility mthd pro

  

 

    

 

  

 

 ")

((() () (())

((())

(: () (()))

(() ())

s cl e s

s ob

cl s

e

tected

v e V v e implGenPath v e

v e V

cl V name cl clName v e

v e implGenPath cl



   

 

   



(4)

2. If an instance of class A sends the message to an in-

stance of class B in the Sequence diagram there should be

the corresponding method in the class B.

(: ())

((()))

(())

(() ())

(: ())

(: () (()))

((()))

(())

(() ())

msg e cl

e

msg e ob

cl e

e

e E v e V

v implGenPath v e

mthd MTHD v

msgCall e mthdSgn mthd

e E v e V

cl V name cl clName v e

v implGenPath v e

mthd MTHD v

msgCall e mthdSgn mthd

  

 

 

 

  

  

 

 



 (5)

3. If an instance of class A sends the message to the

class B in the Sequence diagram the invoked method

should be declared as static.

(:((()))

((()))

(() ()

() ")

msg ee E v implGenPath v e

mthd MTHD v e

msgCall e mthdSgn mthd

scope mthd classifier

   

 

 



 (6)

4. In the Sequence diagrams there should not be pre-

sent objects of the class with the “utility” stereotype spec-

ified in the Class diagram.

()

(: () ())

(())

(() " ")

ob seq

Cl

o E D

c V name c clName o

str STRT c

name str utility

  

  

 



 (7)

5. If some class has the multiplicity of its association

end equal to 1 in the Class diagram then the message can

be sent only to one instance of this class in the Sequence

diagram.

()

(: ()

1)

(1 : (1) : ()

((1)))

(())

((1) ())

(((2 : (2) :

() ((2)))

(())

(

Cl

Cl

e

msg e ob

e

msg e ob

e

cl E

e E type e ass

multiplicity

e E v e V name cl

clName v e

mthd MTHD cl

msgCall e mthdSgn mthd

e E v e V

name cl clName v e

mthd MTHD cl

m

 

   



   

 

 

   



 

(2) ())))sgCall e mthdSgn mthd

 (8)

6. Navigation parameters of the associations defined in

the Class diagram should comply with Navigation pa-

rameters used in the Sequence diagram.

(:)

((: ())

((()))

(() ()))

(:)

((: ())

((()))

(() ()))

Cl e

msg s Cl

s

Cl s

msg e Cl

e

e E navigation true

e E v e V

mthd MTHD v e

msgCall e mthdSgn mthd

e E navigation true

e E v e V

mthd MTHD v e

msgCall e mthdSgn mthd

  

   

 

 

  

   

 



 (9)

4.2 Class diagrams vs. Object diagrams

This section specifies structural consistency rules,

which cover class and object diagrams in the UML design

of the system. We use here

(,)

{ : (()

(() : ()

(())) (()

(() : ()

(()))}

ob cl

link s ob

cl

e e ob

cl

s

LINKS v v

e E v e v

v children v name v

clName v e v e v

v children v name v

clName v e



  

  

  

  

 (10)

 Consistency of UML Design 51

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 9, 47-56

to denote the set of edges connecting some vertex-object

with vertices-instances of definite class or its generaliza-

tions and

() { :

() : }

clchildren v ch V path

implGenPath ch v path

   


 (11)

to denote all possible implementations or generalizations

of the class.

1. In case of composite aggregation the “part”-object

can belong to only one “whole”-object.

(: ()

())

(_ (()))

(_ : (_)

(_))

(| (_ , () | 1)

(: ()

())

(_ (()))

cl

s

e

ob

s

cl

e

s

e E type e ass

aggr e composite

part cl children v e

part ob V clName part ob

name part cl

LINKS part ob v e

e E type e ass

aggr e composite

part cl children v e

   



 

  

 

   



 

(_ : (_)

(_))

(| (_ , () | 1)

ob

e

part ob V clName part ob

name part cl

LINKS part ob v e

  



 (12)

2. In the Object diagram, there should not be present

objects of the class with the “utility” stereotype specified

in the Class diagram.

()

(: () ())

(())

(() " ")

ob

Cl

o E

c V name c clName o

str STRT c

name str utility

 

  

 



 (13)

3. The objects in the Object diagram should have rela-

tionship only if:

 there is a relationship between corresponding clas-

ses or any of their parent classes in the Class dia-

gram and this relationship is association;

 one of the corresponding classes or any its parent

has an attribute with the type of other class or of

any its parent in the Class diagram.

()

(_ : (_) (()))

(_ : (_)

(()))((_))

((_))

((: ()

(() ()

(()) () (()) ()))

(()

link

cl s

cl

e

cl

s e

s s e e

e

l E

cl s E name cl s clName v l

cl e E name cl e

clName v l v genPATH cl s

u genPATH cl e

e E type e ass

v e v v e u

name v l r e name v l r e

v e

 

  

  

 

 

   

   

   

()

(()) ()

(()) ()))))

(1 () : (1) ()

(1) (()))

(2 () : (2) ()

(2) (()))

s

s e

e s

e

s

v v e u

name v l r e

name v l r e

at ATTR v domain at name u

name at name v l

at ATTR u domain at name v

name at name v l

   

 

 

   

 

   



 (14)

4. The value of the object attribute in the Object dia-

gram should not contradict to its type specified in the

Class diagram.



(() (())

(: () ())

(())((())

(() ()

() ())

ob

Cl

ob V attrval ATTRVAL ob

cl V ClName ob name cl

v genPATH cl attr ATTR v

name attr name attrval

domain attrval domain attr

   

   

   

 



 (15)

5. For each attribute of the object in the Object dia-

gram:

 the corresponding class should have the attribute

with the same name;

 there should be association between corresponding

class or any its parent and other class, and associa-

tion role should not contradict to the attribute

name.



()(())

(: () ())

(())

((): ()

())

(: ())

(() (() ()

(() (() ()))

ob

Cl

Cl

s e

e s

ob V attrval ATTRVAL ob

cl V ClName ob name cl

v genPATH cl

attr ATTR v name attrval

name attr

e E type e ass

v e v r e name attrval

v e v r e name attrval

   

  

 

  



  

   

  

 (16)

52 Consistency of UML Design

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 9, 47-56

6. In an association relationship, the number of in-

stances associated with corresponding instances in the

Object diagram should not contradict to multiplicities of

the association ends in the Class diagram.

(: () : ())

(: () (()))

(| | ())

(: () : ())

(: () (()))

(| | ())

cl s Cl

ob s

s

cl e Cl

ob e

s

e E v e V type e ass

o V clName o name v e

o multiplicity e

e E v e V type e ass

o V clName o name v e

o multiplicity e

   

  

  

   

  

 

 (17)

7. An object of the class with the “implementation-

Class” stereotype should not be an instance of more than

one class.

1 1

1

2 2

Ob

Cl

Cl

(o V)

(cl V : name(cl) clName(o))

((str STRT(cl))

(name(str) "implementationClass"))

(((cl V : name(cl) clName(o))))

 

  

  

 

   

 (18)

4.3 Class diagrams vs. State Machine diagrams

This section specifies structural-to-behavior consisten-

cy rules, which cover class and state machine diagrams in

the UML design of the system.

1. As transition from one state of the class A to another

one in the State Machine diagram takes place by the class

A method invocation there should be such method in the

class A in the Class diagram.

()

(: () ())

((()))

(())

(() ())

tr

cl st

e

e E A

cl V name cl clName D

v implGenPath v e

mthd MTHD v

trCall e mthdSgn mthd

 

  

 

 



 (19)

4.4 Sequence diagrams vs. State Machine diagrams

This section specifies behavior consistency rules,

which cover sequence and state machine diagrams in the

UML design of the system.

1. The order of the messages sent in the Sequence dia-

gram should not contradict to the order of the correspond-

ing transitions from one state of the class to another one

in the State Machine diagram.

1

1 1

1

()

((: (())

(()))

tr tr

msg msg tr

msg

e E

e E mthdCall trCall e

mthdCall msgCall e

 

  

1

2 2 1

(1 (())

(: () ())

msg

tr tr s tr e tr

num seqnum msgCall e

e E v e v e

 

  
 (20)

2 2

2

(: (())

(()))

msg msg tr

msg

e E mthdCall trCall e

mthdCall msgCall e

  

2(2 (())

(1 2))

msgnum seqnum msgCall e

num num





4.5 Class diagrams (intra-diagram rules)

This section specifies structural consistency rules,

which cover only class diagrams in the UML design of

the system.

1. In case of composite aggregation the “part”-object

can belong to only one “whole”-object at a time.

(: ()

())

(() 1)

(: ()

())

(() 1)

Cl

s

s

Cl

e

e

e E type e ass

aggr e composite

multiplicity e

e E type e ass

aggr e composite

multiplicity e

   



 

   





 (21)

2. The class with the “utility” stereotype should have

only static members.

(: ():

() " ")

((())

(() " "))

((())

(() " "))

Clv V strt STRT v

name strt utility

mthd MTHD v

scope mthd classifier

attr ATTR v

scope attr classifier

   



 

 

 



 (22)

3. The class stereotypes should be compatible (for in-

stance “enum” and “interface” stereotypes are incompati-

ble).

() ((1 :

(1) " "))

((2 :

(2) "int "))

Clv V st STRT

name st enum

st STRT

name st erface

    

 

  



 (23)

4. At least one end of the association should have true

value for the Navigability parameter.

(())

(() ())

Cl

s e

e E : type e ass

navig e false navig e false

  

  
 (24)

5. Only the binary association can be of the aggrega-

tion or composition type.

 Consistency of UML Design 53

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 9, 47-56

(

((

(

(

((

(

(()

))

((1()))(2()))

((3()))))

(()

))

((1()))(2()))

((3()))))

Cl

s

s e

e

Cl

e

e s

s

E

E

e : type e ass

aggr e composite

cl v e cl v e

cl v e

e : type e ass

aggrv e composite

cl v e cl v e

cl v e

   



  

  

   



  

 

 (25)

4.6 State Machine diagram (intra-diagram rules)

This section specifies behavioral consistency rules,

which cover only state machine diagrams in the UML

design of the system.

1. Any state should be reachable from the start state.

1 1

1

()

(, , : ((())

((1, 1)

(: (() ())))

st

k

tr s i e i

v V

v v v start v true

i k

e E v e v v e v 

 

   

  

    

 (26)

2. The final state should be always reachable.

1

()

(, , : ((())

((, 1)

(: (() ())))

st

k n n

tr s i e i

v V

v v v final v true

i k n

e E v e v v e v 

 

   

  

    

 (27)

V. IMPLEMENTATION OF CONSISTENCY RULES CHECKING

Two approaches to consistency rules checking were

implemented. Both suppose the input to be an XMI-file

containing UML design of the system.

The first approach uses Java classes to implement all

components of the verification process: graph meta-

model of UML design, graph model of the UML design

under checking, and consistency rules (criteria). The spe-

cial converter parses XMI-file into Java classes of the

concrete graph model. Then Java checker verifies it ac-

cording to the criteria. The workflow of this process in

the IDEF0 notation is shown in Fig. 2. The class diagram

for consistency criteria structure is shown in Fig. 3.

Fig.2. The process of consistency checking with java checker.

Fig.3. Class diagram for consistency criteria structure.

54 Consistency of UML Design

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 9, 47-56

The second approach delegates checking responsibili-

ties to the Prolog reasoning engine and uses Java as the

framework for preparatory tasks such as converting initial

XMI-file into the text file with Prolog facts. The JPI (Ja-

va-Prolog Interface) is used as a bridge between Java and

SWI-Prolog implementation. In this approach the graph

meta-model, as well as consistency rules, are represented

as Prolog facts and rules respectively in text files in ad-

vance. The workflow of this process in the IDEF0 nota-

tion is shown in Fig. 4.

Fig.4. The process of consistency checking with prolog reasoning engine.

Fig.5. Fragment of the UML design.

For the small fragment of UML design given in Fig. 5

the XMI-file is converted into the following Prolog facts:

 vclass(a, false, public)

 vclass(b, false, public)

 eclass(eclid1, a, b, as)

 mthd(mthdid1, b, method1, public , instance, long)

 mthd(mthdid2, b, method2, public , instance, long)

 param(mthdid2, 0, s, string)

vseq(vseqid1, undefined , a, object)

vseq(vseqid2, undefined, b, object)

eseq(eseqid1, vseqid1, vseqid2)

eseq(eseqid2, vseqid1, vseqid2)

msgCall(msgcallid1, eseqid1, 1, method1, unde-

fined)

msgCall(msgcallid2, eseqid2, 2, method2, unde-

fined).

Fig.6. Fragment of the UML design.

To check the consistency criteria (12) for the fragment

given in Fig.6 the following Prolog facts and rules are

used:

vclass(a, false, public)

vclass(b, false, public).

eclass(eclassSurrogateID0,a, b, as)

 Consistency of UML Design 55

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 9, 47-56

info(eclassSurrogateID0, undefined, undefined,

undefined, undefined, undefined, composite, none, un-

defined, undefined)

vobject(a1, a)

vobject(b, b)

vobject(a2, a)

link(a1,b, undefined)

link(a2,b, undefined)

link(X,Y) :- link(Y,X)

p1(B):-vclass(CA,_,_), vclass(CB,_,_), composi-

tion(CA,CB), vobject(A,CA), vobject(B,CB),

vobject(C,CA), link(A,B,_), link(C,B,_).

VI. EVALUATION RESULTS

As the part of the research, we checked inconsistencies

in a number of real projects of different scope using both

developed tools.

As results show the second approach proved to be

more efficient as it uses verified reasoning mechanisms

and text files are much simpler than corresponding Java

objects. The only disadvantage of the second way is the

necessity to install Prolog software.

The analysis of results shows that the most common

inconsistencies found by the developed tools are of three

types: a message call for a nonexistent method, sending a

message to an instance of a nonexistent class and a mes-

sage call for a method with an unaccepted visibility modi-

fier.

The results have been compared with experts’ evalua-

tion of these projects. For small to middle-size projects,

an expert can find less than a half of inconsistencies

found by the proposed tools while for bigger projects

(with more than 100 classes and more 200 messages) an

expert can find only 10%-15% of inconsistencies found

by the proposed tools.

So the developed tools could assist a designer to avoid

not only misprints but also an inaccurate assignment of

responsibilities between classes.

VII. CONCLUSIONS

The paper offers a general method for checking con-

sistency in UML design of an object-oriented system. It

uses the unified model with graph representation of the

design components and formulae of the first order predi-

cate logic to represent consistency criteria. The main

cross-diagrams and intra-diagrams criteria are presented

and classified.

Two approaches to consistency checking implementa-

tion are offered: Java framework with its own reasoning

engine and Java framework with the bridge to Prolog

reasoning engine. The second approach proved to be

better in several ways as it uses verified software in its

most critical part and simple text files for facts and rules

representation.

Both approaches can be used to evaluate the quality of

a design and make recommendations on its improvement

due to the better use of main principles of the object-

oriented design.

REFERENCES

[1] Object Management Group: UML 2.0 Superstructure

Specification (2005), http://www.uml.org/

[2] Francisco J. Lucas, Fernando Molina, Ambrosio Toval: A

systematic review of UML model consistency manage-

ment. In: In Information and Software Technology, Vol.

51, p 1631—1645, (2009)

[3] R. V. D. Straeten, T. Mens, J. Simmonds, and V. Jonckers:

Using Description Logic to Maintain Consistency be-

tween UML Models. In: Proc. UML 2003 - The Unified

Modeling Language, Modeling Languages and Applica-

tions, 6th International Conference, San Francisco, CA,

USA, October 20-24, 2003, Proceedings, 2003, pp. 326--

340., (2003)

[4] Ragnhild Van Der Straeten: Description of UML Model

Inconsistencies. Vrije Universiteit Brussel, Department of

Computer Science, SOFT-TR-2011.01.15 (2011)

[5] Jorge Pinna Puissant, Tom Mens, Ragnhild Van Der

Straeten: Comparing Automated Planning Approaches for

Model Inconsistency Resolution. Technical report, Uni-

versity of Mons, 2011-04-10, Travail sans promo-

teur/Rapport de recherche (2011)

[6] Jorge Pinna Puissant, Tom Mens: Resolving Inconsisten-

cies in Model-Driven Engineering using Automated Plan-

ning. In: Seminar on Advanced Tools & Techniques for

Software Evolution (SATToSE), Koblenz, Germany,

2012 (2012)

[7] Jorge Pinna Puissant, Ragnhild Van Der Straeten, Tom

Mens: Badger: A Regression Planner to Resolve Design

Model Inconsistencies. In: Modelling Foundations and

Applications, Lecture Notes in Computer Sci-

ence, Volume 7349 , pp 146--161 (2012)

[8] H. Malgouyres, G. Motet: A UML model consistency

verification approach based on meta-modeling formaliza-

tion. In: Proceedings of the 2006 ACM symposium on

Applied computing, pp 1804--1809 (2006)

[9] Iryna Zaretska, Roman Kovalenko, Oleksandra Ku-

lankhina, and Hlib Mykhailenko: Checking inconsisten-

cies in UML design. In: http://ceur-ws.org/Vol-

848/ICTERI-2012-CEUR-WS-paper-4-p-33-43.pdf

[10] Iryna Zaretska, Oleksandra Kulankhina, and Hlib Mykhai-

lenko: Cross-Diagram UML Design Verification. In: V.

Ermolayev et. al. (eds.) ICT in Education, Research and

Industrial Applications. CCIS, Vol. 347, pp. 165--176.

Springer-Verlag, Berlin Heidelberg (2013)

[11] Damiano Torre: Verifying the Consistency of UML Mod-

els. In: 2016 IEEE International Symposium on Software

Reliability Engineering Workshops (ISSREW),

IEEE Xplore (2016)

[12] Raja Sehrab Bashir, Sai Peck Lee, Saif Ur Rehman Khan,

Victor Chang, Shahid Farid: UML models consistency

management. In: International Journal of Information

Management: The Journal for Information Professionals,

Volume 36, Issue 6, December 2016

pp 883--899 (2016)

[13] N. Przigoda, M. Soeken, R. Wille and R. Drechsler: Veri-

fying the structure and behavoir in UML/OCL models us-

ing satisfiability solvers. In: IET Cyber-Physical Systems:

Theory and Applications, Vol. 1, Issue 1, pp 49--59

(2016).

[14] N. Przigoda, J.G. Filho, Ph. Niemann, R. Wille and R.

Drechsler: Frame conditions in symbolic representation of

UML/ OCL models. In: 2016 ACM/ IEEE International

Conference on Formal Methods and System Design, pp

http://link.springer.com/search?facet-author=%22Jorge+Pinna+Puissant%22
http://link.springer.com/search?facet-author=%22Ragnhild+Van+Der+Straeten%22
http://link.springer.com/search?facet-author=%22Tom+Mens%22
http://link.springer.com/search?facet-author=%22Tom+Mens%22
http://link.springer.com/book/10.1007/978-3-642-31491-9
http://link.springer.com/book/10.1007/978-3-642-31491-9
http://link.springer.com/bookseries/558
http://link.springer.com/bookseries/558
http://link.springer.com/search?facet-author=%22Iryna+Zaretska%22
http://link.springer.com/search?facet-author=%22Oleksandra+Kulankhina%22
http://link.springer.com/search?facet-author=%22Oleksandra+Kulankhina%22
http://link.springer.com/search?facet-author=%22Hlib+Mykhailenko%22
http://link.springer.com/search?facet-author=%22Iryna+Zaretska%22
http://link.springer.com/search?facet-author=%22Oleksandra+Kulankhina%22
http://link.springer.com/search?facet-author=%22Hlib+Mykhailenko%22
http://link.springer.com/search?facet-author=%22Hlib+Mykhailenko%22
https://dl.acm.org/author_page.cfm?id=99659076999&coll=DL&dl=ACM&trk=0
https://dl.acm.org/author_page.cfm?id=82858881757&coll=DL&dl=ACM&trk=0
https://dl.acm.org/author_page.cfm?id=99658727288&coll=DL&dl=ACM&trk=0
https://dl.acm.org/author_page.cfm?id=81467648540&coll=DL&dl=ACM&trk=0
https://dl.acm.org/author_page.cfm?id=99658733339&coll=DL&dl=ACM&trk=0

56 Consistency of UML Design

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 9, 47-56

178--185 (2016)

[15] D. Allaki, M. Dahchour, A. Nouaary: A new taxonomy of

inconsistencies in UML models: with their detection

methods for better MDE. In: International Journal of

Computer Science and Applications, Vol. 12, No. 1, pp

48--65 (2015)

Authors’ Profiles

Iryna Zaretska obtained her PhD degree in

Mathematics from the V. N. Karazin

Kharkiv National University, Ukraine, in

1990.

Currently, she works as a professor of V.

N. Karazin Kharkiv National Universi-

ty, School of Mathematics and Informatics,

Department of Theoretical and Applied Computer Science.

Her research interests include software design, formal verifi-

cation, and model-driven engineering.

Oleksandra Kulankhina obtained her PhD

degree in Computer Science from the Uni-

versity of Nice-Sophia Antipolis, Nice,

France, in 2016.

Currently, she works as a Research and

Developement Software Engineer at Wall

Street Systems, Valbonne, France.

Her research interests include distributed systems, formal ver-

ification, and model-driven engineering.

Hlib Mykhailenko obtained his PhD degree

in computer science from the University of

Nice-Sophia Antipolis, Nice, France, in 2017.

Currently, he works as a Research and

Developement Software Engineer at Ac-

tiveEon, Valbonne, France. His research

interests include large-scale distributed pro-

gramming, graph partitioning algorithms, and functional pro-

gramming.

Tamara Butenko obtained her post-

diploma education in mechanical engineer-

ing from the Kharkiv Institute of Mechani-

cal Engineering Problems, Ukraine, in 2008.

Currently, she works as a senior teaching

staff member at V. N. Karazin Kharkiv

National University, School of Physics,

Department of Higher Mathematics.

How to cite this paper: Iryna Zaretska, Oleksandra Kulankhina,

Hlib Mykhailenko, Tamara Butenko, "Consistency of UML

Design", International Journal of Information Technology and

Computer Science(IJITCS), Vol.10, No.9, pp.47-56, 2018. DOI:

10.5815/ijitcs.2018.09.06

