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Abstract—In recent years, by increasing CPU and I/O 

devices demands, running multiple tasks simultaneously 

becomes a crucial issue. This paper presents a new task 

scheduling algorithm for multi-CPU and multi-Hard Disk 

Drive (HDD) in soft Real-Time (RT) systems, which 

reduces the number of missed tasks. The aim of this 

paper is to execute more parallel tasks by considering an 

efficient trade-off between energy consumption and total 

execution time. For study purposes, we analyzed the 

proposed scheduling algorithm, named HCS (Hard disk 

drive and CPU Scheduling) in terms of the task set 

utilization, the total execution time, the average waiting 

time and the number of missed tasks from their deadlines. 

The results show that HCS algorithm improves the above 

mentioned criteria compared to the HCS_UE (Hard disk 

drive and CPU Scheduling _Unchanged Execution time) 

algorithm. 

 

Index Terms—Non-preemptive task scheduling, soft 

real-time system, Task parallelism, Multi-CPU, Multi-

device. 

 

I.  INTRODUCTION 

In recent years, more energy is consumed due to the 

increasing demands and the development of embedded 

systems used to complicate computing devices such as 

laptop and smartphone. Therefore, reducing the energy 

consumption while the task set can still meet the 

deadlines is an important issue. Different technologies 

are proposed to reduce the CPU energy consumption, 

such as Dynamic Frequency Scaling (DFS), Dynamic 

Voltage Frequency Scaling (DVFS), which determine the 

operating frequency of the processors [1-12]. Another 

major technique for energy conservation is Dynamic 

Power Management (DPM) that is used to reduce power 

consumption of off-chip devices such as HDD by 

switching a device from the active to the energy sleep 

state [13]. In this work, the number of missed tasks is 

reduced without considering energy saving. In order to 

achieve energy saving, a strategy is proposed to minimize 

the idle times of CPUs and hard disk drives by reducing 

the frequency of CPUs and/or Revolutions Per Minute 

(RPM) level of hard disk drive.  

In real-time systems, a service request is responded 

within a certain amount of time. A timing constraint 

includes a hard real-time [3, 12-15] or a soft real-time [9] 

based on the importance of the deadline in the missed 

tasks. The hard real-time system offers guaranteed 

services because the missed task is completely 

unacceptable, whereas in a soft real-time system a 

request is completed within a known finite time. 

Due to the improvement of technology in the processor 

design, the processor now consists of innumerable cores, 

called as multi-core processor [16, 11]. The multi-core 

processor can reduce the total execution time and the 

number of missed tasks. Since the system demands for a 

CPU and I/O devices are increased, the parallelism on 

systems should be considered to design a scheduling 

strategy. It is performed by composing of a CPU and 

multi-device [17].  

In this paper, a task scheduling model is proposed to 

compose of multi-core processors and multi-hard disk 

drive in soft real-time systems. This model reduces the 

number of missed tasks and the execution time of task set 

for CPU and hard disk drive requests.  

The remainder of the paper is organized as follows. 

Section II presents related works and in section III the 

proposed algorithms are described. Performance 

evaluation and conclusion are presented in Sections IV 

and V, respectively. 

 

II.  RELATED WORK 

In recent years, a significant number of studies have 

been proposed in the field of special-purpose systems for 

scheduling real-time tasks. DVFS technique was used to 

improve energy or power consumption in these studies. A 
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mechanism was proposed to emulate a precise CPU 

frequency by using the DVFS management in virtualized 

environments [1]. In [14] the focus was on a scheduling 

approach towards the sporadic task set in the uni-

processor system according to DVFS technique. In [5], A 

DVFS-based algorithm was presented to reduce energy 

consumption of processors through efficient use of the 

generated tasks’ slack times by an independent scheduler. 

In order to reduce the power consumption, a scheduling 

algorithm for DVFS- enabled clusters for executing 

multiple virtual machines was proposed in [6]. Moreover, 

in order to save energy, several mechanisms for 

scheduling of real-time tasks on Dynamic Voltage 

Scaling (DVS) processor were introduced in [8, 18 and 

12].  Additionally, a mechanism for scheduling of tasks 

on a non-ideal DVS processor with shared resources in 

order to obtain better energy efficiency was presented in 

[8]. In [12] a pre-runtime scheduling for hard RT systems 

based on time Petri nets in order to find a feasible 

schedule that satisfies the timing and energy constraints 

was presented. These above articles considered uni-

processor in their proposed scheduling algorithms.  In 

few other studies such as [16, 11, 19, 20], they presented 

a CPU scheduling on multi-core and multi-processor. In 

[11], the focus was on the energy-efficient scheduling of 

periodic RT tasks on multi-core processors, which cores 

are partitioned into multiple blocks. These blocks are 

known as voltage islands. The voltage of cores in each 

island is the same and it can be adjusted by DVFS 

technique. Two new partitioned approaches for 

scheduling real-time sporadic tasks on platform under 

RMS, in order to improve the performance were 

presented in [16]. 

Many case studies have been done on the reduction of 

the energy consumption of the hard disks. A RT 

scheduling was presented in [15], which was extended 

for intra-task devices with multiple sleep states to further 

minimize the overall device energy consumption of the 

system. Here, the energy saving was achieved by 

switching from active to sleep mode. In [21-23], the 

mechanisms were proposed in order to reduce the power 

consumption and the energy consumption of devices 

without considering the scheduling algorithms for a task 

set of real-time systems regardless of missed tasks. 

Additionally, a scheduling algorithm for a set of real-time 

tasks with I/O requests based on DPM technique in RT 

systems was presented in [13]. 

In [17], they focused on single processor and multiple 

off-chip devices. A frame-based RT task model for 

minimizing the energy consumption by combining the 

DVS and DPM techniques was presented. It was done 

based on changing the CPU frequency and transitioning 

the devices to sleep state when they are not in use [18]. 

All explained works exclusively focus on reducing the 

energy consumption, whereas improving the performance 

(e.g. utilization and total execution time) is also a 

desirable outcome. Furthermore, none of the papers 

considered multi-CPU and multi-device scheduling in 

combination. On the other hand, they minimized the 

energy consumption of hard disk drives just by using the 

DPM technique.  

A memory access control framework called BWLOCK, 

was designed in [24] to protect MPCSs (Memory-

Performance Critical code Sections) of soft real-time 

applications.  The focus of the paper was on protecting 

real-time performance of the evaluated applications in the 

existence of co-running memory intensive non-real-time 

applications.  

In this paper, a novel scheduling algorithm is presented 

by using multi-CPU and multi-device to improve the 

performance of system considering the energy saving. 

 

III.  PROPOSED ALGORITHMS 

In this section, a summary of our previous work is 

presented [25] in sub-section A. In sub-section B, the 

new algorithms is extended. The system consists of soft 

real-time task set, represented as     {               }. 
A task        has 3-tuple (  t ,  t ,  ttask

) where   t  is 

the ready time of the task,  t  is the deadline of the task 

and  ttask
 is the execution time of the task.  In addition, all 

tasks are assumed to be non-preemptive. Fig. 1 shows the 

process of running algorithms. 

 

 
(a) 

 
(b) 

Fig.1. The process of running the HCS algorithm (a) previous 

algorithms [25] (b) new algorithms
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A.  Energy-aware scheduling algorithm for a periodic 

real-time task with CPU and hard disk requests 

The main goal of our previous work was to present a 

scheduling mechanism for a real-time periodic task that 

can save more energy. This mechanism was based on 

increasing the execution time of the CPU and/or the 

Read/Write(R/W) time of the hard disk drive, as much as 

possible, without passing the task deadline. Five 

algorithms including the CPU Energy Consumption 

(CPUEC), HDD Energy Consumption (HDDEC), 

Decision, FF-LR (First Frequency-Last RPM) and FR-LF 

(First RPM-Last Frequency) was presented in [25]. 

In Decision algorithm, according to obtained energy 

consumption of CPU and HDD, FF-LR or FR-LF 

algorithm was executed [25] (Fig.1.a). The execution 

time of modified tasks (output) from these two 

algorithms is considered as a set of input ideal tasks in 

SchedulingPeriodicTasks algorithm (Fig.1.b). 

The Eqs. (1) to (11) used in [25] are shown in Table 1. 

The major parameters of the algorithms are described in 

Table 2. 

Table 1. The equations 

Num. Equations 

1             
   

2            tcpu
 

3      umber of platters       
 . 
   iameter 

 . 
[34] 

4             t 

5   t    t    tcpu
   t   

  

6   t   
    t    t  t 

7        
 

 
         t 

8   t     tcpu
   t   

    t 

9 
 tcpu

  
∑    i

 
i  

    
 

10 
 ideal   

 min cpu  tcpu

 tcpu
   t

 

11 
 ideal   

 ma  cpu  tcpu

 tcpu
   t

 

 

The basic idea of FF-LR and FR-LF algorithms was to 

extend the execution time of CPU and/or the R/W time of 

the hard disk drive up until the deadline. This was 

performed by dynamically changing the CPU frequency 

and/or the RPM level of HDD [25]. Fig. 2 shows a 

sample of the previous work [25]. 

 

 
(a) 

 
(b) 

Fig.2. Samples of (a) FF-LR algorithm (b) FR-LF algorithm 

Table 2. The major parameters 

Parameter Definition 

     CPU Energy consumption(J) 

P Power consumption 

     Hard Disk Drive Energy consumption(J) 

 t Ready time(ms) 

 t Deadline time(ms) 

  t Remaining time up until the deadline(ms) 

  t Extended period of time from the deadline(ms) 

     Frequency of CPU(GHz) 

 ideal New frequency of CPU(GHz) 

  Effective capacitance 

V Voltage of CPU(V) 

 min cpu Minimum frequency of CPU(GHz) 

 ma  cpu Maximum frequency of CPU(GHz) 

 tcpu
 CPU Execution time(ms) 

  t   
 R/W time for hard disk drive(ms) 

 t Transfer time(ms) 

  t Average Seek time in hard disk(ms) 

RPM 

    

Revolutions Per Minute in hard disk 

Set of input ideal tasks ( ttask
) 

RD Rotational delay(ms) 

 ttask
 The execution time of modified task(ms) 

    Set of output ideal tasks ( ttask
) 

 cache R/W time in cache of CPU 

      CPU finishing time  

  t Waiting time or Idle time  

CR Clock rate 

D Data path internal bus (bit) 

 core Number of cores 

N Number of tasks  

B.  Scheduling algorithms for set of periodic real-time 

tasks for multi-core processors and multi-HDD requests 

SchedulingPeriodicTasks algorithm is based on real-

time scheduling for multi-CPU and multi-HDD 

requirements-based periodic multi-tasking with the aim 

of improving the performance (e.g. task set utilization). 

Note that each CPU has several cores, which is known as 

multi-core processor. The SchedulingPeriodicTasks 

algorithm includes the PriorityScheduling-ETCPU and 

PriorityScheduling-RWT algorithms which is described 

in section B.a. At the end of the SchedulingPeriodicTasks 

algorithm, the task set is scheduled. The 

RWCPUCaching algorithm is explained in section B.b. 

In this algorithm the cache time is calculated. Section B.c 

presents the CPU and HDD scheduling. 
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a.  SchedulingPeriodicTasks algorithm  

As explained in section A, the ideal execution time of 

each task (  ttask
) is calculated. The 

SchedulingPeriodicTasks algorithm is shown in Fig.3. As 

can be seen, the execution time of each task are 

considered as the input tasks of this algorithm and they 

are put in    . In order to run the PriorityScheduling-

ETCPU algorithm, the tasks sort in an ascending order 

based on their ready time. If some tasks have the same 

ready time, they sort in ascending order based on the 

execution time of CPU. Then PriorityScheduling-ETCPU 

algorithm executes based on the sorted tasks. In the next 

stage of the algorithm, the scheduled tasks sort in 

ascending order based on      . If some tasks have the 

same      , they sort in ascending order by R/W time of 

HDD. Finally, PriorityScheduling-RWT algorithm 

executes. 

 

1. Input:  t,  tcpu
,  ttask

 ,   t   
  

2. Output:     

3. Get each  ttask
 from either FF-LR algorithm or FR-LF 

algorithm and put it in     

4. Sort the set of   ttask
ϵ     in ascending order by the    

5. If    for some of tasks are equal then 

6.      Sort the set of  ttask
 in ascending order by the  tcpu

 

7. end if 

8. Run PriorityScheduling-ETCPU algorithm 

9. Get     and        from PriorityScheduling-ETCPU 

algorithm 

10. Sort the set of   ttask
 in ascending order by the       

11. If       for some of tasks are equal then 

12.      sort the set of  ttask
according to the   t   

 

13. end if 

14. Run PriorityScheduling-RWT algorithm 

Fig.3. SchedulingPeriodicTasks 

b.  RWCPUCaching algorithm 

In order to reduce the execution time of tasks, multi-

core CPU with their own cache memory is considered. 

All cache memories are located on the CPU or into a chip 

on the system board. Cache stores data to accelerate the 

access time of requests in the future. Cache memory has 

two states, which are cache hit and cache miss. If the 

requested data is found in cache, the cache hit occurs, 

otherwise cache miss occurs [26]. RWCPUCaching 

algorithm, which is presented in Fig. 4 is considered in 

Figs. 5 and 6. Since the write-through cache is assumed, 

the cache writes data to both cache and storage.  The 

advantage to this approach is that newly written data is 

always cached thereby allowing the data to be read 

quickly. Also, the values of transfer rates of CPU and 

HDD are considered according to [27]. The transfer rate 

of CPU is calculated from Eq. (12) where D, CR and 

 core represent the data path internal bus, clock rate of 

CPU, and the number of CPU cores, respectively. Also, 

the transfer rate of HDD is 0.75 GB/s (Table 4).  

                                    core     (12) 

 

In Eq. (13), X is the fraction of transfer rate of CPU to 

transfer rate of HDD and   t   
 is the R/W time of 

HDD. In other words, X represents how much CPU is 

faster than the hard disk drive.  

 

    
 ransfer  ate of    

 ransfer  ate of    
                        (13) 

 

According to Eqs. (12) and (13) the cache time ( cache  
is calculated (Eq. (14)).  

 

 cache     t   
                           (14) 

 

In this algorithm, according to R/W mode and the 

cache states, one of the following modes will occur. 

 

 The execution time of task is in write mode 

 The execution time of task is in read mode and 

cache miss occurs 

 The execution time of task is in read mode and 

cache hit occur 

 

In all cases, the cache time of CPU is calculated. In the 

last case, the R/W time of HDD sets to zero and the CPU 

cache reads data, whereas in the two first cases the R/W 

time of HDD do not change (HDD reads and writes the 

data when the execution time of task is in read mode and 

write mode, respectively). This approach leads to the 

reduction in the execution time of tasks remarkably. 

 

1. Input:   t   
 , write_mode, read_mode,  ttask

 

2. Output:   t   
,  cache  

3. Set  cache to zero 

4. Use Eq.(12) calculate X  

5. Use Eq.(13) calculate  cache  

6. If   ttask
 is in write_mode or  ttask

 is read_mode and 

a cache miss occur then      

7.           t   
  is not changed 

8. else if   ttask
 is in read_mode and cache hit is 

occurred  then 

9.         Set   t   
to zero 

10. end if 

Fig.4. RWCPUCaching 

c.  CPU and HDD Scheduling 

In this section, CPU and HDD scheduling is done to 

improve the utilization and also reduce the execution 

time of tasks, the waiting time of tasks and the number of 

missed tasks as much as possible. Furthermore, the 

energy consumption is considered by extending the 

execution time of CPU and R/W time of HDD when the 

CPU and HDD are in idle mode. So, based on the use of 

this approach, increasing the energy consumption is not 

significant. 
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a)  PriorityScheduling-ETCPU algorithm 

In Fig.5 first, according to the number of free CPU, 

RWCPUCaching algorithm is called to calculate the 

execution time of CPU as follows. 

 

 tcpu
       

                           (15) 

 

Then the free CPUs assigns to the sorted tasks that are 

in    . If the free CPU is not available to assign the 

unscheduled task (current task), one of the CPUs that are 

assigned to the scheduled tasks considers. So, the 

scheduled task with minimum execution time of CPU 

(selected task) selects. Afterward the waiting time or idle 

time of the current task calculates from Eq. (16).   

 

  t        
–                             (16) 

 

Where   t ,  tcpu
 and  t are the waiting time or idle time,  

execution time of selected task and ready time of the 

current task, respectively.  Based on the calculated   t, 

the frequency of selected task changes from Eq. (17). If 

  t is greater than zero, it means that there is waiting 

time. Thus, the frequency of selected task increases in 

order to reduce its execution time. This work leads to the 

reduction in the waiting time of the current task. If   t is 

lower than zero, it means that there is an idle time of 

CPU. So, the frequency of selected task decreases in 

order to increase its execution time. This approach leads 

the reduction in the idle time of CPU that assign to the 

selected task. 

 

 ideal   
           

   
                        (17) 

 

After the calculation of the new frequency, the new 

execution time of selected task obtains from Eq. (18), 

where N and CPI represent the total number of 

instructions and clock cycle per instruction, respectively. 
In order to add the cache time to the CPU execution time 

of current task, the RWCPUCaching algorithm calls and 

then the execution time of current task calculates from Eq. 

(15). Then the CPU assigns to the current and selected 

tasks, according to their execution times. Finally the CPU 

finishing time of the tasks calculate according to Eq. (19). 

To calculate       of current task, in case of waiting 

time, the   t is considered in the Eq. (19), otherwise it is 

set to zero. 

 

 tcpu ne 
  

∑    i
 
i  

 ideal
                          (18) 

 

{
if  selected task                     

    

    if current task                 
            

   (19) 

 

Finally, the CPUs update according to the scheduled 

tasks and the same strategy is followed for scheduling the 

next tasks. 

 

1. Input:   ,  tcpu
,     

2. Output:    ,       

3. While there is a free CPU do 

4.     Call  RWCPUCaching algorithm to calculate  cache  // 

  t   
 is unused 

5.     Use Eq. (15) to calculate  tcpu
  

6.     Schedule  ttask
ϵ      on one of the free CPU 

7. end while   

8. If there is not a free CPU and there is an unscheduled 

task then   

9.     Select the scheduled  ttask
ϵ      that has the minimum 

 tcpu
  

10.          changes to  ideal (from Eq. (17))  

11.     Use Eq.(18) to Calculate  tcpu
 of selected  ttask

 

according to new frequency 

12.     Call  RWCPUCaching algorithm to calculate  cache  // 

  t   
 is unused 

13.     Use Eq. (15) to calculate  tcpu
 

14.     Schedule selected  ttask
 on CPU according to 

calculated  tcpu
 

15.     Schedule current  ttask
 on CPU according to  tcpu

 

16.     Get the last value of   ttask
 and put it in     

17.     Update CPU 

18. end if 

19. Use Eq.(16) to calculate   t for  ttask
  

20. Use Eq.(19) to calculate       of   ttask
  

Fig.5. PriorityScheduling-ETCPU 

b)  PriorityScheduling-RWT algorithm 

In Fig.6, the PrioritySheduling-RWT algorithm is 

explained. First, according to the number of free HDDs, 

RWCPUCaching algorithm is called to calculate the R/W 

time of hard disk drive. After running the 

RWCPUCaching algorithm, the R/W time sets to zero or 

it does not change. Then the free hard disk drives assigns 

to the sorted tasks. If the free HDD is not available to 

assign the unscheduled task, one of the scheduled tasks 

with minimum R/W time of hard disk drive is selected. 

Then the waiting time of the current task or idle time of 

the hard disk drive is calculated from Eq. (20).   

 

  t         
                            (20) 

 

Where   t   
 and       are the R/W time of selected 

task and the CPU finishing time of the current task, 

respectively. If there is a waiting time and a RPM level 

that is greater than the RPM level of selected task, the 

R/W time of selected task is calculated according to the 

new selected RPM level from Eq. (6).  The calculated 

R/W time of hard disk drive is compared to the CPU 

finishing time of the current task. If the R/W time is 

greater than the CPU finishing time, the RPM level 

increases and the R/W time is calculated again. If there is 

an idle time of HDD and the task is not missed, the RPM 

level is decreased by prolonging the R/W time of selected 

task. Decreasing RPM level continues until the R/W time
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is lower than the CPU finishing time of the current task. 

In order to decrease the changed RPM level of hard disk 

drive that is assigned to selected task, the R/W time of 

current task is calculated according to the RPM level of 

selected task (  t
   -ne 

). Then the calculated R/W time 

is compared to the R/W time based on its RPM level 

(  t   
). According to this comparison and the deadline 

of current task, one of the if-else clauses executes. The 

process descriptions is explained in detail from line 27-

40 with the aim of not changing the RPM level, as much 

as possible. Increasing the number of change in the RPM 

level leads to increasing in the energy consumption.  

 

1. Input:   t   
 ,    ,   ,        

2. Output:     

3. While there is a free HDD do 

4.      Call RWCPUCaching algorithm to 

calculate   t   
 //   cache is unused 

5.      Schedule  ttask
ϵ        on one of the free HDD 

6. end while 

7. If there is not a free HDD and there is an 

unscheduled task then   

8.      Select the scheduled  ttask
ϵ       that has the 

minimum   t   
 

9.      Use Eq.(20) to calculate   t for selected  ttask
  

10.      If   t>0 then 

11.           While there is RPM level is 

greater than the RPM of selected  ttask
 do  

12.                Use Eq.(6) to Calculate 

  t   
of selected  ttask

 according to this RPM level 

13.                 If    t   
 <=       then  

14.                      Consider    t   
 of selected  ttask

 with 

this RPM level 

15.                       break 

16.                  end if 

17.           end while 

18.      else if    t< 0 and    t   
-  t > 0  then  

19.           While there is RPM level is lower than the RPM 

of selected  ttask
 do  

20.                Use Eq.(6) to calculate   t   
of selected 

 ttask
 according to  this RPM level                       

21.                If    t   
 <=         then 

22.                     Consider  

  t   
 of selected  ttask

 with this RPM level 

23.                 end if 

24.           end while 

25.      end if 

26.      Use Eq.(6) to calculate   t
   -ne 

 according to 

RPM level of selected  ttask
 

27.      If  (   t
   -ne 

 <  t and   t   
<   t ) or 

(  t
   -ne 

  <  t and   t   
 >  t) then  

28.           Replace   t   
 in  ttask

  with   t
   -ne 

 and 

Call RWCPUCaching algorithm 

29.      else if    t
   -ne 

 >  t  and    t   
 >  t  then 

30.            If  the current RPM is the maximum 

level then 

31.                    t   
 is missed 

32.            else 

33.                  Select the first RPM level is 

greater than RPM of  current  and selected  ttask
 up until  

                 the  ttask
 is not missed 

34.                  Use Eq.(6) to calculate   t   
  with this 

RPM level and Call RWCPUCaching algorithm 

35.            end if 

36.      else if    t
   -ne 

 >  t and   t   
 <  t then 

37.            Call RWCPUCaching algorithm 

38.      end if 

39.      Schedule selected  ttask
 on HDD according to 

calculated   t   
  

40.      Schedule current  ttask
 on HDD according to 

  t   
  

41.      Get the last value of   ttask
 and put it in     

42.      Update HDD 

end if 

Fig.6. PriorityScheduling-RWT 

 
(a) 

 
(b) 

Fig.7. Sample of task scheduling for two tasks (Increasing the 

frequency of CPU and RPM level of HDD) in (a) HCS_UE algorithm, 

(b) HCS algorithm 

 
(a) 

 
(b) 

Fig.8. Sample of task scheduling for two tasks (Decreasing the 

frequency of CPU and increasing the RPM level of HDD) in (a) 

HCS_UE algorithm, (b) HCS algorithm 

In the next stage of the algorithm, the HDD assigns to 

the current and selected tasks, according to their R/W 

times. Finally the HDDs updates and the same strategy is 

followed for the next tasks scheduling.  

Figs.7 and 8 show two samples of two scheduled tasks 

by applying the HCS_UE and HCS algorithms. Fig 7. (b) 

shows that to reduce the waiting time of T2 (current task), 

the execution time of T1 (selected task) is reduced by 

increasing the CPU frequency and the RPM level of 

HHD. As a result, the waiting time and the number of 

missed tasks in HCS algorithm are reduced compared to 

the HCS_UE algorithm (Fig.7. (a)). In Fig.8. (b), the 

CPU execution time of T1 is extended (decrease the CPU 
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frequency) with the aim of reducing the idle time of CPU 

and also the R/W time of T1 is reduced by increasing the 

RPM level of HHD. So, T2 is not missed in HCS 

algorithm compared to the HCS_UE algorithm (Fig.8. 

(a)). In Figs.7, 8 and 9, the values are considered for a 

better understanding of the algorithms. 

Fig.9 is a sample of task scheduling in HCS and 

HCS_UE algorithms for two CPUs, two hard disk drives 

and four tasks. This figure shows all of the states 

including the reduction of waiting time of tasks, idle time 

of CPUs and hard disk drives. As a result, the number of 

missed tasks is reduced and the performance is improved. 

 

 
(a) 

 
(b) 

Fig.9. Sample of task scheduling for 4 tasks in (a) HCS_UE algorithm, 

(b) HCS algorithm 

 

IV.  PERFORMANCE EVALUATION 

In this section, the simulation results are provided to 

demonstrate the effectiveness of HCS algorithm. Since 

the focus is on scheduling the real-time multi-task with 

multi-CPU and multi-HDD requests and previous works 

were merely focused on task scheduling algorithm to 

reduce the energy consumption, this work incorporates 

novel approach in improving the performance of system 

with both multi-CPU and multi-HDD requests. This 

improvement is based on reducing the waiting times of 

tasks that leads to the reduction in average execution time, 

total execution time, number of missed task and average 

waiting time. It should be mentioned that increasing of 

the frequency of CPUs and/or the RPM level of hard disk 

drives reduces the waiting time. In order to reduce the 

loss of energy, we try to remove, as much as possible, the 

idle times of resources by reducing the frequency of 

CPUs and/or the RPM level of hard disk drives.  

As explained in section II, all the papers were focused 

on multi-CPU scheduling or multi-device scheduling. 

Whereas, this paper is the combination of both multi-

CPU and multi-device scheduling. Therefore, HCS 

algorithm is compared with HCS_UE algorithm. In 

HCS_UE algorithm the execution time of tasks is not 

 

 

changed and the tasks are scheduled according to the 

ready time and the execution time for CPU requests and 

also the tasks are scheduled by CPU finishing time and 

R/W time for HDD requests. In the simulation, we 

assume that the tasks are scheduled by higher priority 

CPU requests in comparison with HDD requests.  

The proposed algorithm is evaluated by using 50, 100 

and 200 tasks. Furthermore, multi-CPU and multi-HDD 

are represented as   and H, respectively. C is the number 

of CPU and H is the number of HDD that are varied from 

4 to 64. Table3 summarizes the specifications of CPU 

and HDD that are used in the simulation. MATLAB [28-

30] is used to develop the simulation using Intel® Xeon® 

Processor E5-2670 (30M Cache, 2.30 GHz) [31-32] and 

HP 300GB-6G-SAS 15k RPM-SFF (2.5inch) [33]. 

Table 3. Specification of CPU and hard disk drive 

HP 300GB-6G-SAS 15k RPM-SFF(2.5inch)  

Name Value 

Capacity 300,000MB 

Interface SAS  

Transfer Rate 

Synchronous(Maximum) 
6 Gb/sec 

Physical Configuration 

Bytes/Sector 512 

Logical Blocks 

585,937,500 

Rotational Speed: 

5400(Min), 7200, 

10,000 and 

15,000(Max)rpm 

Operating Temperature(System 

Inlet Air Temperature) 

50° to 95° F (10° to 35° 

C) 

 

Number of Platters 2 

Intel® Xeon® Processor E5-2670 (30M Cache, 2.30 GHz) 

Name Value 

High Frequency Mode(HFM) 

 

Frequency 3.1 GHz 

Voltage 1.3V 

TDP(Thermal Design 

Power)  

Low Frequency Mode(LFM) 

Frequency 2.3 GHz 

Voltage 0.65V 

TDP(Thermal Design 

Power) 

 

The parameters of the simulation are shown in Table4. 

As can be seen ready time ( t), deadline time (  ), are 

the main characteristics for each task, transfer time ( ) 

and Average Seek time (   ) are the main characteristics 

for hard disk drive and CPU Execution time (     
) is the 

main characteristic for the processor. In the simulation, 

the HDD and CPU characteristics are randomly 

generated within the specific ranges that are obtained 

from [31-33]. Also, the ready time and deadline time are 

generated randomly. However, I should be mentioned 

that this work can be applied on any kind of CPUs and 

hard disk drives.  
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Table 4. Simulation parameters 

Parameter Value 

 t [0,5] (ms) 

 t [5,10] (ms) 

 tcpu
 [0. 0002,0.5] (ms) 

 t [0,0.136] (ms) 

  t 2.9 (ms) 

D 64 bit 

CR 500 MHz[32] 

 core 12 

Transfer rate of HDD 0.75 GB/s 

Number of tasks 50, 100, 200 

Number of CPU and HDD 4, 16, 32, 64 

A.  Utilization 

In the task set utilization, U is the fraction of   to W, 

where   is the sum of the execution times of CPU and 

R/W is the times of hard disk drive, and   is the sum of 

six times including the ready time, the waiting time, the 

idle time, the context switch time, the execution time of 

CPU, and the R/W time of HDD, which is given by: 

 

    
∑  i
 
i  

∑  i
 
i  

                               (21) 

 

Due to the reduction of the waiting times of tasks, the 

task set utilization is increased. Ci_Hj which is used in 

the following analysis, i and j are the number of CPUs 

and HDDs, respectively. As shown in Fig. 10, the 

utilization of HCS algorithm is improved in comparison 

with HCS_UE algorithm. The percentage of 

improvements is shown in Table5. The key observation is 

that improvement of the utilization is most visible when 

HDD number is minimum. In addition, by considering 

the same number of HDDs more improvement is 

achieved by reducing the number of CPUs.  

In general, the best improvement is achieved when the 

HDDs and CPUs have the least number.  

Table 5. Percentage improvements of utilization 

50 tasks 

No. of CPU No. of Hard Improvement (%) 

4 4 84.98 

4 16 33.59 

16 4 81.93 

16 16 31.44 

Total Avg.:  57.98 

100 tasks 

No. of CPU No. of Hard Improvement (%) 

16 16 53.99 

16 32 22.57 

32 16 47.28 

32 32 13.88 

Total Avg.:  34.43 

200 tasks 

No. of CPU No. of Hard Improvement (%) 

16 16 88.30 

16 32 56.25 

16 64 30.67 

32 16 88.48 

32 32 62.65 

32 64 31.73 

64 16 87.87 

64 32 51.80 

64 64 26.76 

Total Avg.:  58.28 

 

 
(a) 

 
(b) 

(c) 

Fig.10. The utilization of tasks (a) 50 tasks, (b) 100 tasks, (c) 200 tasks 

B.  Total and average execution times 

In various numbers of CPUs and HDDs, the total 

execution time is the time taken to finish the execution of 

all the tasks.  Therefore, the maximum execution time of 

tasks will be considered as the total execution time. The 

total execution time improvements in HCS algorithm in 

comparison with HCS_UE algorithm in 50, 100 and 200 

tasks are shown in Fig. 11. The percentage of 

improvements is shown in Table 6.  

The results show that the total execution times are 

considerably decreased up to about 2x for 50 and 100 

tasks when the HDDs have the minimum number. Also, 

it is observed that the total execution time for the least 

number of HDD is improved up to about 2x and 3x 

compared to 32 and 64 HDDs for 200 tasks.  

As shown in Fig. 12, the average execution time of tasks 

in HCS algorithm is improved in comparison with 

HCS_UE algorithm. The percentage improvements is 

reported in Table 7.   
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Table 6. Percentage improvements of total execution time 

50 tasks 

No. of CPU No. of Hard Improvement (%) 

4 4 69.94 

4 16 34 

16 4 70.25 

16 16 29.97 

Total Avg.:  51.04 

100 tasks 

No. of CPU No. of Hard Improvement (%) 

16 16 46.47 

16 32 15.97 

32 16 44.75 

32 32 15.11 

Total Avg.:  30.57 

200 tasks 

No. of CPU No. of Hard Improvement (%) 

16 16 68.62 

16 32 44.24 

16 64 16.10 

32 16 69.39 

32 32 44.60 

32 64 15.25 

64 16 69.06 

64 32 44.26 

64 64 16.41 

Total Avg.:  43.10 

 

 
(a) 

 
(b) 

 
(c) 

Fig.11. The total execution time (a) 50 tasks,  

(b) 100 tasks, (c) 200 tasks 

The results show that the average execution times are 

considerably decreased up to about 3x and 2x for 50 and 

100 tasks when the HDDs have the least number. Also, it 

is observed that the average execution time for the least 

number of HDD is improved up to about 2x and 3x 

compared to 32 and 64 HDDs for 200 tasks. 

Table 7. Percentage improvements of Avg. execution time 

50 tasks 

No. of CPU No. of Hard Improvement (%) 

4 4 67.80 

4 16 19.60 

16 4 68.04 

16 16 19.45 

Total Avg.:  43.72 

100 tasks 

No. of CPU No. of Hard Improvement (%) 

16 16 43.65 

16 32 18.55 

32 16 41.46 

32 32 15.03 

Total Avg.:  29.67 

200 tasks 

No. of CPU No. of Hard Improvement (%) 

16 16 65.61 

16 32 41 

16 64 16.89 

32 16 66.12 

32 32 41.40 

32 64 15.80 

64 16 66.15 

64 32 41.53 

64 64 15.84 

Total Avg.:  41.15 

 

 
(a) 

 
(b)
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(c) 

Fig.12. The average execution time(a) 50 tasks,  

(b) 100 tasks, (c) 200 tasks 

C.  Average waiting time 

In order to reduce the waiting time of unscheduled 

tasks, the execution time of scheduled tasks is decreased. 

As illustrated in Fig. 13, the average waiting time of 

tasks in HCS algorithm is improved in comparison with 

HCS_UE algorithm The percentage improvements is 

reported in Table 8. Generally, the best improvement is 

achieved when the HDDs have the least number. 

 

 
(a) 

 
(b) 

 
(c) 

Fig.13. The average waiting time (a) 50 tasks,  

(b) 100 tasks, (c) 200 tasks 

D.  Number of missed tasks 

In order to reduce, as much as possible, the number of 

missed tasks, we attempt to reduce the waiting time of 

unscheduled tasks by decreasing the execution time of 

tasks. In other words, the number of missed tasks is 

decreased by increasing the frequency of CPUs and/or 

the RPM level of HDDs. Fig. 14 shows the numbers of 

missed tasks in HCS_UE and HCS algorithms. The 

percentage improvements is reported in Table 9. 

Table 8. Percentage improvements of Avg. waiting time 

50 tasks 

No. of CPU No. of Hard Improvement (%) 

4 4 87.98 

4 16 74.62 

16 4 88.44 

16 16 76.09 

Total Avg.:  81.78 

100 tasks 

No. of CPU No. of Hard Improvement (%) 

16 16 77.51 

16 32 69 

32 16 76.10 

32 32 63.79 

Total Avg.:  71.6 

200 tasks 

No. of CPU No. of Hard Improvement (%) 

16 16 86.61 

16 32 74.13 

16 64 65.28 

32 16 87.10 

32 32 74.89 

32 64 65.77 

64 16 87.13 

64 32 74.98 

64 64 65.88 

Total Avg.:  75.75 

Table 9. Percentage improvements of missed tasks 

50 tasks 

No. of CPU No. of Hard Improvement (%) 

4 4 42.31 

4 16 15.79 

16 4 40 

16 16 14.28 

Total Avg.:  28.1 

100 tasks 

No. of CPU No. of Hard Improvement (%) 

16 16 20.83 

16 32 7.14 

32 16 19.15 

32 32 2.63 

Total Avg.:  12.44 

200 tasks 

No. of CPU No. of Hard Improvement (%) 

16 16 41.82 

16 32 23.96 

16 64 16.67 

32 16 40.37 

32 32 24.49 

32 64 13.25 

64 16 41.28 

64 32 20 

64 64 12.5 

Total Avg.:  26.04 
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The results show that the number of missed tasks are 

considerably decreased more than 2x for 50 and 100 

tasks when the HDDs have the least number. Also, the 

result of simulation shows that the number of missed 

tasks for the least number of HDD is improved less than 

2x and more than 2x compared to 32 and 64 HDDs for 

200 tasks. 

 

 
(a) 

 
(b) 

 
(c) 

Fig.14. The number of missed tasks (a) 50 tasks, 

(b) 100 tasks, (c) 200 tasks 

 

V.  CONCLUSION 

In this paper a new scheduling algorithm is proposed 

for real-time periodic tasks called Hard disk drive and 

CPU Scheduling (HCS), which is applicable in multi-

HDD and multi-CPU with multi-core.  The tasks are 

prioritized according to the ready time, execution time of 

CPU, finishing time of CPU and R/W time of HDD.  

Furthermore, the execution time of tasks is changed 

based on the variations of CPU frequency and RPM 

levels of hard disk drive. HCS is significantly reduced 

the number of missed tasks, the average and total 

execution time and average waiting time of tasks for task 

sets of size ranging from 50 tasks to 200 tasks. Moreover, 

result of simulation shows that the approach has been 

successful in obtaining satisfactory result in the 

improvement of the task set utilization. 

The experimental results show that on the average 

50.22% improvement in the task set utilization, 41.57% 

improvement in the total execution time, 38.18% 

improvement in the average execution time, 75.63% 

improvement in the average execution time and 22.18 % 

improvement in the number of missed tasks are achieved 

in comparison with the Hard disk drive and CPU 

Scheduling _Unchanged Execution time (HCS_UE) 

algorithm. 

In the future, we plan to modify the proposed 

algorithms in order to apply it on real environment and 

also extract actual data on real environments to evaluate 

the performance of the algorithms by considering the 

memory effects like memory-wall effects, bandwidth and 

latency of multi-core systems. Also, we would like to 

perform the simulations by using more complex and 

complete simulator like SPICE. 

REFERENCES 

[1] Kamga, C.M., 2012. CPU Frequency Emulation Based on 

DVFS, In: Utility and Cloud Computing (UCC), pp: 367– 

374. DOI: 10.1109/UCC.2012.34. 

[2] Cho, S.J., S.H. Yun and J.W. Jean, 2015. A power saving 

DVFS algorithm based on Operational Intensity for 

embedded systems, In: IEICE Electronics Express, vol. 12, 

no. 3, Jan., pp: 1–7. DOI: 

http://doi.org/10.1587/elex.12.20141128. 

[3] Da-Ren, Ch., Ch. Young-Long and Ch. You-Shyang, 

2014. Time and Energy Efficient DVS Scheduling for 

Real-Time   Pinwheel Tasks. In: Journal of Applied 

Research and Technology, vol. 12, issue. 6, Dec., pp: 

1025–1039. DOI: 10.1016/S1665-6423(14)71663-3. 

[4] Tang, Z., L. Qi, Z. Cheng, K. Li, S.U. Khan and K. Li, 

2015. An Energy-Efficient Task Scheduling Algorithm in 

DVFS-enabled Cloud Environment. In: Journal of Grid 

Computing, April. DOI: 10.1007/s10723-015-9334-y. 

[5] Babaii, N., Rizvandi, J. Taheri and A.Y. Zomaya, 2011. 

Some observations on optimal frequency selection in 

DVFS-based energy consumption minimization. In: 

Journal of Parallel and Distributed Computing, vol. 71, 

issue 8, pp: 1154–1164. DOI: 10.1016/j.jpdc.2011.01.004. 

[6] Laszewski, G.V., L. Wang, A.J. Younge and X. He, 2009. 

Power-Aware Scheduling of Virtual Machines in DVFS-

enabled Clusters. In: Cluster Computing and Workshops, 

pp: 1–10.  DOI: 10.1109/CLUSTR.2009.5289182. 

[7] Tchamgoue, G.M., J. Seo, K.H. Kim and Y.K. Jun, 2015. 

Compositional Power-Aware Real-Time Scheduling with 

Discrete Frequency Levels. In: Journal of Systems 

Architecture. DOI:10.1016/j.sysarc.2015.05.003. 

[8] Wu, J., 2015. Energy-Efficient Scheduling of Real-Time 

Tasks with Shared Resources. In: Future Generation 

Computer Systems, May. DOI: 

10.1016/j.future.2015.05.012. 

[9] Zhu, X., C. He, K. Li and X. Qin, 2012. Adaptive energy-

efficient scheduling for real-time tasks on DVS-enabled 

heterogeneous clusters. In: Journal of Parallel and 

Distributed Computing, pp: 751–763. DOI: 

10.1016/j.jpdc.2012.03.005. 

[10] Pedram, M. and K. Choi, 2005. Dynamic Voltage and 

Frequency Scaling for Energy-Efficient System Design. 

In: the Association for Computing Machinery. ISBN: 0-

542-20387-1. 

[11] Liu, J. and J. Guo, 2015. Energy efficient scheduling of 

real-time tasks on multi-core processors with voltage 

http://doi.org/10.1587/elex.12.20141128


12 A Task Scheduling Model for Multi-CPU and Multi-Hard Disk Drive in Soft Real-time Systems  

Copyright © 2019 MECS                                              I.J. Information Technology and Computer Science, 2019, 1, 1-13 

islands. In: Future Generation Computer Systems, Jun.  

DOI: 10.1016/j.future.2015.06.003. 

[12] Tavares, E., P. Maciel, B. Silva and M.N. Oliveira, 2008. 

Hard real-time tasks' scheduling considering voltage 

scaling, precedence and exclusion relations. In: 

Information Processing Letters, vol. 108, issue. 2, Sept., 

pp: 50–59. DOI: 10.1016/j.ipl.2008.03.020. 

[13] Swaminathan, V., K. Chakrabarty and S.S. Iyengar, 2001. 

Dynamic I/O Power Management for Hard Real-time 

Systems. In: Hardware/Software Codesign, pp: 237–242. 

DOI: 10.1145/371636.371742. 

[14] Zhang, Y. and R. Guo, 2014. Power-aware fixed priority 

scheduling for sporadic tasks in hard real-time systems. In: 

Journal of Systems and Software, vol. 90, pp: 128–137. 

DOI:10.1016/j.jss.2013.12.032. 

[15] Awan, M.A. and S.M. Petters, 2015. Intra-task device 

scheduling for real-time embedded systems. In: Journal of 

Systems Architecture, vol. 61, issue. 8, Sep., pp: 321–340. 

DOI: 10.1016/j.sysarc.2015.07.001. 

[16] Fan, M., Q. Han, S. Liu, S. Ren, G. Quan and S.Ren, 2015. 

Enhanced fixed-priority real-time scheduling on multi-

core   platforms by exploiting task period relationship. In: 

Journal of Systems and Software, vol. 99, Jan., pp: 85–96. 

DOI:10.1016/j.jss.2014.09.010. 

[17] Kong, F., Y. Wang, Q. Deng and W. Yi, 2010. 

Minimizing Multi-Resource Energy for Real-Time 

Systems with Discrete Operation Modes. In: Real-Time 

Systems (ECRTS), 2010 22nd Euromicro Conference on, 

pp: 113–122. DOI: 10.1109/ECRTS.2010.18. 

[18] Zhang, Y-W. and R-f. Guo, 2013. Power-aware 

scheduling algorithms for sporadic tasks in real-time 

systems. In: Journal of Systems and Software, vol. 86, 

issue. 10, Oct., pp: 2611–2619. 

DOI:10.1016/j.jss.2013.04.075. 

[19] Jianjun, L., LihChyun, S. and Jian-Jia, C., 2013 Energy-

Efficient Scheduling in Non preemptive Systems With 

Real-Time Constraints. In: IEEE Transactions on Systems, 

Man, and Cybernetics: Systems, vol. 43, issue. 2, March., 

pp: 332-344. DOI: 10.1109/TSMCA.2012.2199305. 

[20] Mihai, P. and Tulika, M., 2014. Task Scheduling on 

Adaptive Multi-Core. In: IEEE Transactions on 

Computers, vol. 63, issue. 10, Oct., pp: 2590-2603. DOI: 

10.1109/TC.2013.115. 

[21] Inoue, T., A. Aikebaier, T. Enokido and M. Takizawa, 

2011. A Power Consumption Model of a Storage Server. 

In: Network-Based Information Systems (NBiS), pp: 

382–387. DOI 10.1109/NBiS.2011.64. 

[22] Hylick, A., R. Sohan, A. Rice and B. Jones, 2008. An 

Analysis of Hard Drive Energy Consumption. In: 

Modeling, Analysis and Simulation of Computers and 

Telecommunication Systems, pp: 1–10. DOI: 

10.1109/MASCOT.2008.4770567. 

[23] Mountrouidou, X., Riska, A. and Smirni, E. 2011. Saving 

power without compromising disk drive reliability. In: 

Green Computing Conference and Workshops (IGCC), pp: 

1–6. DOI bookmark: 

http://doi.ieeecomputersociety.org/10.1109/IGCC.2011.6

008570 

[24] Yun, H., A., Waqar and S., Gondi, 2016. BWLOCK: A 

Dynamic Memory Access Control Framework for Soft 

Real-Time Applications on Multicore Platforms. In: IEEE 

Transactions on Computers, vol. 66, issue. 7, Dec., pp: 

1247-1252. DOI: 10.1109/TC.2016.2640961. 

 

 

 

 

[25] Kiani, V., Z. Mohseni and A.M. Rahmani, 2015. Real 

Time Scheduling for CPU and Hard Disk Requirements-

Based Periodic Task with the Aim of Minimizing Energy 

Consumption. In: International Journal of Information 

Technology and Computer Science (IJITCS).  DOI: 

10.5815/ijitcs.2015.10.07. 

[26] Jacob,B.  and Wang, D. 2007 Memory systems, Cache, 

DRAM, Disk eBook ISBN: 978-0-12-379751-3, Release 

date: Sep. 2007, 

http://store.elsevier.com/product.jsp?isbn=978012379751

3. eBook ISBN: 9780080553849. 

[27] Torres, G., 2007. How The Memory Cache Works. In: 

Hardware secrets, Sep. 

http://www.hardwaresecrets.com/how-the-cache-memory-

works/. 

[28] Anjum, M.D.M. and H., Wang, 2016. Dynamic 

scheduling and analysis of real time systems with 

multiprocessors. In: Digital Communications and 

Networks, vol. 2, issue. 3, Aug., pp: 130-138. DOI: 

https://doi.org/10.1016/j.dcan.2016.06.004. 

[29] Konar, D., S. Bhattacharyya, K. Sharma and S. Sharma, 

2017. An improved Hybrid Quantum-Inspired Genetic 

Algorithm (HQIGA) for scheduling of real-time task in 

multiprocessor system. In: Applied Soft Computing, vol. 

53, pp: 296-307. DOI: 

https://doi.org/10.1016/j.asoc.2016.12.051. 

[30] Kumar Samal, A., R. Mall and C. Tripathy, 2014. Fault 

tolerant scheduling of hard real-time tasks on 

multiprocessor system using a hybrid genetic algorithm. 

In: Swarm and Evolutionary Computation, vol.14, pp: 92-

105. DOI: https://doi.org/10.1016/j.swevo.2013.10.002. 

[31] Intel® Xeon® Processor E5-2670 v3. 

http://ark.intel.com/products/81709/Intel-Xeon Processor-

E5-2670-v3-30M-Cache-2_30-GHz, (Accessed on 

09/25/2015). 

[32] Intel® Xeon® Processor E5 v2 Product Family, 

Datasheet, vol. 2, March. 2014. 

http://www.intel.com/content/www/us/en/processors/xeon

/xeon-e5-v2-datasheet-vol-2.html. 

[33] HP SAS Hard Drives, c04311358 – DA – 12244 North 

America – Version 50 – June 1, 2015. 

http://www8.hp.com/us/en/products/oas/product-

detail.html?oid=5163353. 

[34] Grochowski, E. and R.D. Halem, 2003. Technological 

impact of magnetic hard disk drives on storage systems. 

In: IBM SYSTEMSJOURNAL, vol. 42, no. 2. DOI: 

10.1147/sj.422.0338. 

 

 

 

Authors’ Profiles 
 

Zeynab Mohseni received her Associates 

Degree in Software Computer from Sabzevar 

Technical and Vocational Collage, Khorasan, 

Iran in 2007, the B.S. in Computer 

Engineering from khorasan Institute of Higher 

Education, Mashhad, Khorasan, Iran in 2009 

and the M.S. in Computer Engineering from 

Science and Research Branch, Islamic Azad University, Tehran, 

Iran in 2015. Her research interests are in the areas of Fault-

tolerance and Reliability, embedded and real-time systems, 

scheduling algorithms and Network on Chip. 

 

 

 

http://doi.ieeecomputersociety.org/10.1109/IGCC.2011.6008570
http://doi.ieeecomputersociety.org/10.1109/IGCC.2011.6008570
http://www.hardwaresecrets.com/how-the-cache-memory-works/
http://www.hardwaresecrets.com/how-the-cache-memory-works/
https://doi.org/10.1016/j.dcan.2016.06.004
https://doi.org/10.1016/j.asoc.2016.12.051
https://doi.org/10.1016/j.swevo.2013.10.002
http://www.intel.com/content/www/us/en/processors/xeon/xeon-e5-v2-datasheet-vol-2.html
http://www.intel.com/content/www/us/en/processors/xeon/xeon-e5-v2-datasheet-vol-2.html
http://www8.hp.com/us/en/products/oas/product-detail.html?oid=5163353
http://www8.hp.com/us/en/products/oas/product-detail.html?oid=5163353


 A Task Scheduling Model for Multi-CPU and Multi-Hard Disk Drive in Soft Real-time Systems 13 

Copyright © 2019 MECS                                              I.J. Information Technology and Computer Science, 2019, 1, 1-13 

Vahdaneh Kiani received her B.S. in 

Computer Engineering from South Tehran 

Branch, Islamic Azad University, Tehran, Iran 

in 2011 and the M.S. in Computer 

Engineering form Department of Computer 

Engineering, Science and Research Branch, 

Islamic Azad University, Tehran, Iran in 2015. 

Her research interests are in the areas of embedded and real-

time systems, scheduling algorithms, digital circuit design, 

memory systems and fault tolerance in Microprocessors and 

Network on Chip. 

 

 

Amir Masoud Rahmani received his B.S. in 

Computer Engineering from Amir Kabir 

University, Tehran, in 1996, the M.S. in 

Computer Engineering from Sharif 

University of technology, Tehran, in 1998 

and the Ph.D. degree in Computer 

Engineering from IAU University, Tehran, in 

2005. He is an assistant professor in the Department of 

Computer and Mechatronics Engineering at the IAU University. 

He is the author/co-author of more than 80 publications in 

technical journals and conferences. He served on the program 

committees of several national and international conferences. 

His research interests are in the areas of distributed systems, ad 

hoc and sensor wireless networks, scheduling algorithms and 

evolutionary computing. 

 

 

 

How to cite this paper: Zeynab Mohseni, Vahdaneh Kiani, 

Amir Masoud Rahmani, "A Task Scheduling Model for Multi-

CPU and Multi-Hard Disk Drive in Soft Real-time Systems", 

International Journal of Information Technology and Computer 

Science(IJITCS), Vol.11, No.1, pp.1-13, 2019. DOI: 

10.5815/ijitcs.2019.01.01 


