
I.J. Information Technology and Computer Science, 2019, 1, 1-13
Published Online January 2019 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2019.01.01

Copyright © 2019 MECS I.J. Information Technology and Computer Science, 2019, 1, 1-13

A Task Scheduling Model for Multi-CPU and

Multi-Hard Disk Drive in Soft Real-time Systems

 ,

1Department of Computer Engineering, Science and Research Branch, Azad University, Iran
¤These authors have contributed equally to this article as co-first authors

E-mail: amohseni.vkiani@gmail.com

Amir Masoud Rahmani
Department of Computer Engineering, Science and Research Branch, Azad University, Iran

Computer Science, University of Human Development, Sulaimanyah, Iraq

E-mail: rahmani@srbiau.ac.ir

Received: 16 August 2018; Accepted: 22 September 2018; Published: 08 January 2019

Abstract—In recent years, by increasing CPU and I/O

devices demands, running multiple tasks simultaneously

becomes a crucial issue. This paper presents a new task

scheduling algorithm for multi-CPU and multi-Hard Disk

Drive (HDD) in soft Real-Time (RT) systems, which

reduces the number of missed tasks. The aim of this

paper is to execute more parallel tasks by considering an

efficient trade-off between energy consumption and total

execution time. For study purposes, we analyzed the

proposed scheduling algorithm, named HCS (Hard disk

drive and CPU Scheduling) in terms of the task set

utilization, the total execution time, the average waiting

time and the number of missed tasks from their deadlines.

The results show that HCS algorithm improves the above

mentioned criteria compared to the HCS_UE (Hard disk

drive and CPU Scheduling _Unchanged Execution time)

algorithm.

Index Terms—Non-preemptive task scheduling, soft

real-time system, Task parallelism, Multi-CPU, Multi-

device.

I. INTRODUCTION

In recent years, more energy is consumed due to the

increasing demands and the development of embedded

systems used to complicate computing devices such as

laptop and smartphone. Therefore, reducing the energy

consumption while the task set can still meet the

deadlines is an important issue. Different technologies

are proposed to reduce the CPU energy consumption,

such as Dynamic Frequency Scaling (DFS), Dynamic

Voltage Frequency Scaling (DVFS), which determine the

operating frequency of the processors [1-12]. Another

major technique for energy conservation is Dynamic

Power Management (DPM) that is used to reduce power

consumption of off-chip devices such as HDD by

switching a device from the active to the energy sleep

state [13]. In this work, the number of missed tasks is

reduced without considering energy saving. In order to

achieve energy saving, a strategy is proposed to minimize

the idle times of CPUs and hard disk drives by reducing

the frequency of CPUs and/or Revolutions Per Minute

(RPM) level of hard disk drive.

In real-time systems, a service request is responded

within a certain amount of time. A timing constraint

includes a hard real-time [3, 12-15] or a soft real-time [9]

based on the importance of the deadline in the missed

tasks. The hard real-time system offers guaranteed

services because the missed task is completely

unacceptable, whereas in a soft real-time system a

request is completed within a known finite time.

Due to the improvement of technology in the processor

design, the processor now consists of innumerable cores,

called as multi-core processor [16, 11]. The multi-core

processor can reduce the total execution time and the

number of missed tasks. Since the system demands for a

CPU and I/O devices are increased, the parallelism on

systems should be considered to design a scheduling

strategy. It is performed by composing of a CPU and

multi-device [17].

In this paper, a task scheduling model is proposed to

compose of multi-core processors and multi-hard disk

drive in soft real-time systems. This model reduces the

number of missed tasks and the execution time of task set

for CPU and hard disk drive requests.

The remainder of the paper is organized as follows.

Section II presents related works and in section III the

proposed algorithms are described. Performance

evaluation and conclusion are presented in Sections IV

and V, respectively.

II. RELATED WORK

In recent years, a significant number of studies have

been proposed in the field of special-purpose systems for

scheduling real-time tasks. DVFS technique was used to

improve energy or power consumption in these studies. A

2 A Task Scheduling Model for Multi-CPU and Multi-Hard Disk Drive in Soft Real-time Systems

Copyright © 2019 MECS I.J. Information Technology and Computer Science, 2019, 1, 1-13

mechanism was proposed to emulate a precise CPU

frequency by using the DVFS management in virtualized

environments [1]. In [14] the focus was on a scheduling

approach towards the sporadic task set in the uni-

processor system according to DVFS technique. In [5], A

DVFS-based algorithm was presented to reduce energy

consumption of processors through efficient use of the

generated tasks’ slack times by an independent scheduler.

In order to reduce the power consumption, a scheduling

algorithm for DVFS- enabled clusters for executing

multiple virtual machines was proposed in [6]. Moreover,

in order to save energy, several mechanisms for

scheduling of real-time tasks on Dynamic Voltage

Scaling (DVS) processor were introduced in [8, 18 and

12]. Additionally, a mechanism for scheduling of tasks

on a non-ideal DVS processor with shared resources in

order to obtain better energy efficiency was presented in

[8]. In [12] a pre-runtime scheduling for hard RT systems

based on time Petri nets in order to find a feasible

schedule that satisfies the timing and energy constraints

was presented. These above articles considered uni-

processor in their proposed scheduling algorithms. In

few other studies such as [16, 11, 19, 20], they presented

a CPU scheduling on multi-core and multi-processor. In

[11], the focus was on the energy-efficient scheduling of

periodic RT tasks on multi-core processors, which cores

are partitioned into multiple blocks. These blocks are

known as voltage islands. The voltage of cores in each

island is the same and it can be adjusted by DVFS

technique. Two new partitioned approaches for

scheduling real-time sporadic tasks on platform under

RMS, in order to improve the performance were

presented in [16].

Many case studies have been done on the reduction of

the energy consumption of the hard disks. A RT

scheduling was presented in [15], which was extended

for intra-task devices with multiple sleep states to further

minimize the overall device energy consumption of the

system. Here, the energy saving was achieved by

switching from active to sleep mode. In [21-23], the

mechanisms were proposed in order to reduce the power

consumption and the energy consumption of devices

without considering the scheduling algorithms for a task

set of real-time systems regardless of missed tasks.

Additionally, a scheduling algorithm for a set of real-time

tasks with I/O requests based on DPM technique in RT

systems was presented in [13].

In [17], they focused on single processor and multiple

off-chip devices. A frame-based RT task model for

minimizing the energy consumption by combining the

DVS and DPM techniques was presented. It was done

based on changing the CPU frequency and transitioning

the devices to sleep state when they are not in use [18].

All explained works exclusively focus on reducing the

energy consumption, whereas improving the performance

(e.g. utilization and total execution time) is also a

desirable outcome. Furthermore, none of the papers

considered multi-CPU and multi-device scheduling in

combination. On the other hand, they minimized the

energy consumption of hard disk drives just by using the

DPM technique.

A memory access control framework called BWLOCK,

was designed in [24] to protect MPCSs (Memory-

Performance Critical code Sections) of soft real-time

applications. The focus of the paper was on protecting

real-time performance of the evaluated applications in the

existence of co-running memory intensive non-real-time

applications.

In this paper, a novel scheduling algorithm is presented

by using multi-CPU and multi-device to improve the

performance of system considering the energy saving.

III. PROPOSED ALGORITHMS

In this section, a summary of our previous work is

presented [25] in sub-section A. In sub-section B, the

new algorithms is extended. The system consists of soft

real-time task set, represented as { }.
A task has 3-tuple (t , t , ttask

) where t is

the ready time of the task, t is the deadline of the task

and ttask
 is the execution time of the task. In addition, all

tasks are assumed to be non-preemptive. Fig. 1 shows the

process of running algorithms.

(a)

(b)

Fig.1. The process of running the HCS algorithm (a) previous

algorithms [25] (b) new algorithms

 A Task Scheduling Model for Multi-CPU and Multi-Hard Disk Drive in Soft Real-time Systems 3

Copyright © 2019 MECS I.J. Information Technology and Computer Science, 2019, 1, 1-13

A. Energy-aware scheduling algorithm for a periodic

real-time task with CPU and hard disk requests

The main goal of our previous work was to present a

scheduling mechanism for a real-time periodic task that

can save more energy. This mechanism was based on

increasing the execution time of the CPU and/or the

Read/Write(R/W) time of the hard disk drive, as much as

possible, without passing the task deadline. Five

algorithms including the CPU Energy Consumption

(CPUEC), HDD Energy Consumption (HDDEC),

Decision, FF-LR (First Frequency-Last RPM) and FR-LF

(First RPM-Last Frequency) was presented in [25].

In Decision algorithm, according to obtained energy

consumption of CPU and HDD, FF-LR or FR-LF

algorithm was executed [25] (Fig.1.a). The execution

time of modified tasks (output) from these two

algorithms is considered as a set of input ideal tasks in

SchedulingPeriodicTasks algorithm (Fig.1.b).

The Eqs. (1) to (11) used in [25] are shown in Table 1.

The major parameters of the algorithms are described in

Table 2.

Table 1. The equations

Num. Equations

1

2 tcpu

3 umber of platters
 .
 iameter

 .
[34]

4 t

5 t t tcpu
 t

6 t
 t t t

7

 t

8 t tcpu
 t

 t

9
 tcpu

∑ i

i

10
 ideal

 min cpu tcpu

 tcpu
 t

11
 ideal

 ma cpu tcpu

 tcpu
 t

The basic idea of FF-LR and FR-LF algorithms was to

extend the execution time of CPU and/or the R/W time of

the hard disk drive up until the deadline. This was

performed by dynamically changing the CPU frequency

and/or the RPM level of HDD [25]. Fig. 2 shows a

sample of the previous work [25].

(a)

(b)

Fig.2. Samples of (a) FF-LR algorithm (b) FR-LF algorithm

Table 2. The major parameters

Parameter Definition

 CPU Energy consumption(J)

P Power consumption

 Hard Disk Drive Energy consumption(J)

 t Ready time(ms)

 t Deadline time(ms)

 t Remaining time up until the deadline(ms)

 t Extended period of time from the deadline(ms)

 Frequency of CPU(GHz)

 ideal New frequency of CPU(GHz)

 Effective capacitance

V Voltage of CPU(V)

 min cpu Minimum frequency of CPU(GHz)

 ma cpu Maximum frequency of CPU(GHz)

 tcpu
 CPU Execution time(ms)

 t
 R/W time for hard disk drive(ms)

 t Transfer time(ms)

 t Average Seek time in hard disk(ms)

RPM

Revolutions Per Minute in hard disk

Set of input ideal tasks (ttask
)

RD Rotational delay(ms)

 ttask
 The execution time of modified task(ms)

 Set of output ideal tasks (ttask
)

 cache R/W time in cache of CPU

 CPU finishing time

 t Waiting time or Idle time

CR Clock rate

D Data path internal bus (bit)

 core Number of cores

N Number of tasks

B. Scheduling algorithms for set of periodic real-time

tasks for multi-core processors and multi-HDD requests

SchedulingPeriodicTasks algorithm is based on real-

time scheduling for multi-CPU and multi-HDD

requirements-based periodic multi-tasking with the aim

of improving the performance (e.g. task set utilization).

Note that each CPU has several cores, which is known as

multi-core processor. The SchedulingPeriodicTasks

algorithm includes the PriorityScheduling-ETCPU and

PriorityScheduling-RWT algorithms which is described

in section B.a. At the end of the SchedulingPeriodicTasks

algorithm, the task set is scheduled. The

RWCPUCaching algorithm is explained in section B.b.

In this algorithm the cache time is calculated. Section B.c

presents the CPU and HDD scheduling.

4 A Task Scheduling Model for Multi-CPU and Multi-Hard Disk Drive in Soft Real-time Systems

Copyright © 2019 MECS I.J. Information Technology and Computer Science, 2019, 1, 1-13

a. SchedulingPeriodicTasks algorithm

As explained in section A, the ideal execution time of

each task (ttask
) is calculated. The

SchedulingPeriodicTasks algorithm is shown in Fig.3. As

can be seen, the execution time of each task are

considered as the input tasks of this algorithm and they

are put in . In order to run the PriorityScheduling-

ETCPU algorithm, the tasks sort in an ascending order

based on their ready time. If some tasks have the same

ready time, they sort in ascending order based on the

execution time of CPU. Then PriorityScheduling-ETCPU

algorithm executes based on the sorted tasks. In the next

stage of the algorithm, the scheduled tasks sort in

ascending order based on . If some tasks have the

same , they sort in ascending order by R/W time of

HDD. Finally, PriorityScheduling-RWT algorithm

executes.

1. Input: t, tcpu
, ttask

 , t

2. Output:

3. Get each ttask
 from either FF-LR algorithm or FR-LF

algorithm and put it in

4. Sort the set of ttask
ϵ in ascending order by the

5. If for some of tasks are equal then

6. Sort the set of ttask
 in ascending order by the tcpu

7. end if

8. Run PriorityScheduling-ETCPU algorithm

9. Get and from PriorityScheduling-ETCPU

algorithm

10. Sort the set of ttask
 in ascending order by the

11. If for some of tasks are equal then

12. sort the set of ttask
according to the t

13. end if

14. Run PriorityScheduling-RWT algorithm

Fig.3. SchedulingPeriodicTasks

b. RWCPUCaching algorithm

In order to reduce the execution time of tasks, multi-

core CPU with their own cache memory is considered.

All cache memories are located on the CPU or into a chip

on the system board. Cache stores data to accelerate the

access time of requests in the future. Cache memory has

two states, which are cache hit and cache miss. If the

requested data is found in cache, the cache hit occurs,

otherwise cache miss occurs [26]. RWCPUCaching

algorithm, which is presented in Fig. 4 is considered in

Figs. 5 and 6. Since the write-through cache is assumed,

the cache writes data to both cache and storage. The

advantage to this approach is that newly written data is

always cached thereby allowing the data to be read

quickly. Also, the values of transfer rates of CPU and

HDD are considered according to [27]. The transfer rate

of CPU is calculated from Eq. (12) where D, CR and

 core represent the data path internal bus, clock rate of

CPU, and the number of CPU cores, respectively. Also,

the transfer rate of HDD is 0.75 GB/s (Table 4).

 core (12)

In Eq. (13), X is the fraction of transfer rate of CPU to

transfer rate of HDD and t
 is the R/W time of

HDD. In other words, X represents how much CPU is

faster than the hard disk drive.

 ransfer ate of

 ransfer ate of
 (13)

According to Eqs. (12) and (13) the cache time (cache
is calculated (Eq. (14)).

 cache t
 (14)

In this algorithm, according to R/W mode and the

cache states, one of the following modes will occur.

 The execution time of task is in write mode

 The execution time of task is in read mode and

cache miss occurs

 The execution time of task is in read mode and

cache hit occur

In all cases, the cache time of CPU is calculated. In the

last case, the R/W time of HDD sets to zero and the CPU

cache reads data, whereas in the two first cases the R/W

time of HDD do not change (HDD reads and writes the

data when the execution time of task is in read mode and

write mode, respectively). This approach leads to the

reduction in the execution time of tasks remarkably.

1. Input: t
 , write_mode, read_mode, ttask

2. Output: t
, cache

3. Set cache to zero

4. Use Eq.(12) calculate X

5. Use Eq.(13) calculate cache

6. If ttask
 is in write_mode or ttask

 is read_mode and

a cache miss occur then

7. t
 is not changed

8. else if ttask
 is in read_mode and cache hit is

occurred then

9. Set t
to zero

10. end if

Fig.4. RWCPUCaching

c. CPU and HDD Scheduling

In this section, CPU and HDD scheduling is done to

improve the utilization and also reduce the execution

time of tasks, the waiting time of tasks and the number of

missed tasks as much as possible. Furthermore, the

energy consumption is considered by extending the

execution time of CPU and R/W time of HDD when the

CPU and HDD are in idle mode. So, based on the use of

this approach, increasing the energy consumption is not

significant.

 A Task Scheduling Model for Multi-CPU and Multi-Hard Disk Drive in Soft Real-time Systems 5

Copyright © 2019 MECS I.J. Information Technology and Computer Science, 2019, 1, 1-13

a) PriorityScheduling-ETCPU algorithm

In Fig.5 first, according to the number of free CPU,

RWCPUCaching algorithm is called to calculate the

execution time of CPU as follows.

 tcpu

 (15)

Then the free CPUs assigns to the sorted tasks that are

in . If the free CPU is not available to assign the

unscheduled task (current task), one of the CPUs that are

assigned to the scheduled tasks considers. So, the

scheduled task with minimum execution time of CPU

(selected task) selects. Afterward the waiting time or idle

time of the current task calculates from Eq. (16).

 t
– (16)

Where t , tcpu
 and t are the waiting time or idle time,

execution time of selected task and ready time of the

current task, respectively. Based on the calculated t,

the frequency of selected task changes from Eq. (17). If

 t is greater than zero, it means that there is waiting

time. Thus, the frequency of selected task increases in

order to reduce its execution time. This work leads to the

reduction in the waiting time of the current task. If t is

lower than zero, it means that there is an idle time of

CPU. So, the frequency of selected task decreases in

order to increase its execution time. This approach leads

the reduction in the idle time of CPU that assign to the

selected task.

 ideal

 (17)

After the calculation of the new frequency, the new

execution time of selected task obtains from Eq. (18),

where N and CPI represent the total number of

instructions and clock cycle per instruction, respectively.
In order to add the cache time to the CPU execution time

of current task, the RWCPUCaching algorithm calls and

then the execution time of current task calculates from Eq.

(15). Then the CPU assigns to the current and selected

tasks, according to their execution times. Finally the CPU

finishing time of the tasks calculate according to Eq. (19).

To calculate of current task, in case of waiting

time, the t is considered in the Eq. (19), otherwise it is

set to zero.

 tcpu ne

∑ i

i

 ideal
 (18)

{
if selected task

 if current task

 (19)

Finally, the CPUs update according to the scheduled

tasks and the same strategy is followed for scheduling the

next tasks.

1. Input: , tcpu
,

2. Output: ,

3. While there is a free CPU do

4. Call RWCPUCaching algorithm to calculate cache //

 t
 is unused

5. Use Eq. (15) to calculate tcpu

6. Schedule ttask
ϵ on one of the free CPU

7. end while

8. If there is not a free CPU and there is an unscheduled

task then

9. Select the scheduled ttask
ϵ that has the minimum

 tcpu

10. changes to ideal (from Eq. (17))

11. Use Eq.(18) to Calculate tcpu
 of selected ttask

according to new frequency

12. Call RWCPUCaching algorithm to calculate cache //

 t
 is unused

13. Use Eq. (15) to calculate tcpu

14. Schedule selected ttask
 on CPU according to

calculated tcpu

15. Schedule current ttask
 on CPU according to tcpu

16. Get the last value of ttask
 and put it in

17. Update CPU

18. end if

19. Use Eq.(16) to calculate t for ttask

20. Use Eq.(19) to calculate of ttask

Fig.5. PriorityScheduling-ETCPU

b) PriorityScheduling-RWT algorithm

In Fig.6, the PrioritySheduling-RWT algorithm is

explained. First, according to the number of free HDDs,

RWCPUCaching algorithm is called to calculate the R/W

time of hard disk drive. After running the

RWCPUCaching algorithm, the R/W time sets to zero or

it does not change. Then the free hard disk drives assigns

to the sorted tasks. If the free HDD is not available to

assign the unscheduled task, one of the scheduled tasks

with minimum R/W time of hard disk drive is selected.

Then the waiting time of the current task or idle time of

the hard disk drive is calculated from Eq. (20).

 t
 (20)

Where t
 and are the R/W time of selected

task and the CPU finishing time of the current task,

respectively. If there is a waiting time and a RPM level

that is greater than the RPM level of selected task, the

R/W time of selected task is calculated according to the

new selected RPM level from Eq. (6). The calculated

R/W time of hard disk drive is compared to the CPU

finishing time of the current task. If the R/W time is

greater than the CPU finishing time, the RPM level

increases and the R/W time is calculated again. If there is

an idle time of HDD and the task is not missed, the RPM

level is decreased by prolonging the R/W time of selected

task. Decreasing RPM level continues until the R/W time

6 A Task Scheduling Model for Multi-CPU and Multi-Hard Disk Drive in Soft Real-time Systems

Copyright © 2019 MECS I.J. Information Technology and Computer Science, 2019, 1, 1-13

is lower than the CPU finishing time of the current task.

In order to decrease the changed RPM level of hard disk

drive that is assigned to selected task, the R/W time of

current task is calculated according to the RPM level of

selected task (t
 -ne

). Then the calculated R/W time

is compared to the R/W time based on its RPM level

(t
). According to this comparison and the deadline

of current task, one of the if-else clauses executes. The

process descriptions is explained in detail from line 27-

40 with the aim of not changing the RPM level, as much

as possible. Increasing the number of change in the RPM

level leads to increasing in the energy consumption.

1. Input: t
 , , ,

2. Output:

3. While there is a free HDD do

4. Call RWCPUCaching algorithm to

calculate t
 // cache is unused

5. Schedule ttask
ϵ on one of the free HDD

6. end while

7. If there is not a free HDD and there is an

unscheduled task then

8. Select the scheduled ttask
ϵ that has the

minimum t

9. Use Eq.(20) to calculate t for selected ttask

10. If t>0 then

11. While there is RPM level is

greater than the RPM of selected ttask
 do

12. Use Eq.(6) to Calculate

 t
of selected ttask

 according to this RPM level

13. If t
 <= then

14. Consider t
 of selected ttask

 with

this RPM level

15. break

16. end if

17. end while

18. else if t< 0 and t
- t > 0 then

19. While there is RPM level is lower than the RPM

of selected ttask
 do

20. Use Eq.(6) to calculate t
of selected

 ttask
 according to this RPM level

21. If t
 <= then

22. Consider

 t
 of selected ttask

 with this RPM level

23. end if

24. end while

25. end if

26. Use Eq.(6) to calculate t
 -ne

 according to

RPM level of selected ttask

27. If (t
 -ne

 < t and t
< t) or

(t
 -ne

 < t and t
 > t) then

28. Replace t
 in ttask

 with t
 -ne

 and

Call RWCPUCaching algorithm

29. else if t
 -ne

 > t and t
 > t then

30. If the current RPM is the maximum

level then

31. t
 is missed

32. else

33. Select the first RPM level is

greater than RPM of current and selected ttask
 up until

 the ttask
 is not missed

34. Use Eq.(6) to calculate t
 with this

RPM level and Call RWCPUCaching algorithm

35. end if

36. else if t
 -ne

 > t and t
 < t then

37. Call RWCPUCaching algorithm

38. end if

39. Schedule selected ttask
 on HDD according to

calculated t

40. Schedule current ttask
 on HDD according to

 t

41. Get the last value of ttask
 and put it in

42. Update HDD

end if

Fig.6. PriorityScheduling-RWT

(a)

(b)

Fig.7. Sample of task scheduling for two tasks (Increasing the

frequency of CPU and RPM level of HDD) in (a) HCS_UE algorithm,

(b) HCS algorithm

(a)

(b)

Fig.8. Sample of task scheduling for two tasks (Decreasing the

frequency of CPU and increasing the RPM level of HDD) in (a)

HCS_UE algorithm, (b) HCS algorithm

In the next stage of the algorithm, the HDD assigns to

the current and selected tasks, according to their R/W

times. Finally the HDDs updates and the same strategy is

followed for the next tasks scheduling.

Figs.7 and 8 show two samples of two scheduled tasks

by applying the HCS_UE and HCS algorithms. Fig 7. (b)

shows that to reduce the waiting time of T2 (current task),

the execution time of T1 (selected task) is reduced by

increasing the CPU frequency and the RPM level of

HHD. As a result, the waiting time and the number of

missed tasks in HCS algorithm are reduced compared to

the HCS_UE algorithm (Fig.7. (a)). In Fig.8. (b), the

CPU execution time of T1 is extended (decrease the CPU

 A Task Scheduling Model for Multi-CPU and Multi-Hard Disk Drive in Soft Real-time Systems 7

Copyright © 2019 MECS I.J. Information Technology and Computer Science, 2019, 1, 1-13

frequency) with the aim of reducing the idle time of CPU

and also the R/W time of T1 is reduced by increasing the

RPM level of HHD. So, T2 is not missed in HCS

algorithm compared to the HCS_UE algorithm (Fig.8.

(a)). In Figs.7, 8 and 9, the values are considered for a

better understanding of the algorithms.

Fig.9 is a sample of task scheduling in HCS and

HCS_UE algorithms for two CPUs, two hard disk drives

and four tasks. This figure shows all of the states

including the reduction of waiting time of tasks, idle time

of CPUs and hard disk drives. As a result, the number of

missed tasks is reduced and the performance is improved.

(a)

(b)

Fig.9. Sample of task scheduling for 4 tasks in (a) HCS_UE algorithm,

(b) HCS algorithm

IV. PERFORMANCE EVALUATION

In this section, the simulation results are provided to

demonstrate the effectiveness of HCS algorithm. Since

the focus is on scheduling the real-time multi-task with

multi-CPU and multi-HDD requests and previous works

were merely focused on task scheduling algorithm to

reduce the energy consumption, this work incorporates

novel approach in improving the performance of system

with both multi-CPU and multi-HDD requests. This

improvement is based on reducing the waiting times of

tasks that leads to the reduction in average execution time,

total execution time, number of missed task and average

waiting time. It should be mentioned that increasing of

the frequency of CPUs and/or the RPM level of hard disk

drives reduces the waiting time. In order to reduce the

loss of energy, we try to remove, as much as possible, the

idle times of resources by reducing the frequency of

CPUs and/or the RPM level of hard disk drives.

As explained in section II, all the papers were focused

on multi-CPU scheduling or multi-device scheduling.

Whereas, this paper is the combination of both multi-

CPU and multi-device scheduling. Therefore, HCS

algorithm is compared with HCS_UE algorithm. In

HCS_UE algorithm the execution time of tasks is not

changed and the tasks are scheduled according to the

ready time and the execution time for CPU requests and

also the tasks are scheduled by CPU finishing time and

R/W time for HDD requests. In the simulation, we

assume that the tasks are scheduled by higher priority

CPU requests in comparison with HDD requests.

The proposed algorithm is evaluated by using 50, 100

and 200 tasks. Furthermore, multi-CPU and multi-HDD

are represented as and H, respectively. C is the number

of CPU and H is the number of HDD that are varied from

4 to 64. Table3 summarizes the specifications of CPU

and HDD that are used in the simulation. MATLAB [28-

30] is used to develop the simulation using Intel® Xeon®

Processor E5-2670 (30M Cache, 2.30 GHz) [31-32] and

HP 300GB-6G-SAS 15k RPM-SFF (2.5inch) [33].

Table 3. Specification of CPU and hard disk drive

HP 300GB-6G-SAS 15k RPM-SFF(2.5inch)

Name Value

Capacity 300,000MB

Interface SAS

Transfer Rate

Synchronous(Maximum)
6 Gb/sec

Physical Configuration

Bytes/Sector 512

Logical Blocks

585,937,500

Rotational Speed:

5400(Min), 7200,

10,000 and

15,000(Max)rpm

Operating Temperature(System

Inlet Air Temperature)

50° to 95° F (10° to 35°

C)

Number of Platters 2

Intel® Xeon® Processor E5-2670 (30M Cache, 2.30 GHz)

Name Value

High Frequency Mode(HFM)

Frequency 3.1 GHz

Voltage 1.3V

TDP(Thermal Design

Power)

Low Frequency Mode(LFM)

Frequency 2.3 GHz

Voltage 0.65V

TDP(Thermal Design

Power)

The parameters of the simulation are shown in Table4.

As can be seen ready time (t), deadline time (), are

the main characteristics for each task, transfer time ()

and Average Seek time () are the main characteristics

for hard disk drive and CPU Execution time (
) is the

main characteristic for the processor. In the simulation,

the HDD and CPU characteristics are randomly

generated within the specific ranges that are obtained

from [31-33]. Also, the ready time and deadline time are

generated randomly. However, I should be mentioned

that this work can be applied on any kind of CPUs and

hard disk drives.

8 A Task Scheduling Model for Multi-CPU and Multi-Hard Disk Drive in Soft Real-time Systems

Copyright © 2019 MECS I.J. Information Technology and Computer Science, 2019, 1, 1-13

Table 4. Simulation parameters

Parameter Value

 t [0,5] (ms)

 t [5,10] (ms)

 tcpu
 [0. 0002,0.5] (ms)

 t [0,0.136] (ms)

 t 2.9 (ms)

D 64 bit

CR 500 MHz[32]

 core 12

Transfer rate of HDD 0.75 GB/s

Number of tasks 50, 100, 200

Number of CPU and HDD 4, 16, 32, 64

A. Utilization

In the task set utilization, U is the fraction of to W,

where is the sum of the execution times of CPU and

R/W is the times of hard disk drive, and is the sum of

six times including the ready time, the waiting time, the

idle time, the context switch time, the execution time of

CPU, and the R/W time of HDD, which is given by:

∑ i

i

∑ i

i

 (21)

Due to the reduction of the waiting times of tasks, the

task set utilization is increased. Ci_Hj which is used in

the following analysis, i and j are the number of CPUs

and HDDs, respectively. As shown in Fig. 10, the

utilization of HCS algorithm is improved in comparison

with HCS_UE algorithm. The percentage of

improvements is shown in Table5. The key observation is

that improvement of the utilization is most visible when

HDD number is minimum. In addition, by considering

the same number of HDDs more improvement is

achieved by reducing the number of CPUs.

In general, the best improvement is achieved when the

HDDs and CPUs have the least number.

Table 5. Percentage improvements of utilization

50 tasks

No. of CPU No. of Hard Improvement (%)

4 4 84.98

4 16 33.59

16 4 81.93

16 16 31.44

Total Avg.: 57.98

100 tasks

No. of CPU No. of Hard Improvement (%)

16 16 53.99

16 32 22.57

32 16 47.28

32 32 13.88

Total Avg.: 34.43

200 tasks

No. of CPU No. of Hard Improvement (%)

16 16 88.30

16 32 56.25

16 64 30.67

32 16 88.48

32 32 62.65

32 64 31.73

64 16 87.87

64 32 51.80

64 64 26.76

Total Avg.: 58.28

(a)

(b)

(c)

Fig.10. The utilization of tasks (a) 50 tasks, (b) 100 tasks, (c) 200 tasks

B. Total and average execution times

In various numbers of CPUs and HDDs, the total

execution time is the time taken to finish the execution of

all the tasks. Therefore, the maximum execution time of

tasks will be considered as the total execution time. The

total execution time improvements in HCS algorithm in

comparison with HCS_UE algorithm in 50, 100 and 200

tasks are shown in Fig. 11. The percentage of

improvements is shown in Table 6.

The results show that the total execution times are

considerably decreased up to about 2x for 50 and 100

tasks when the HDDs have the minimum number. Also,

it is observed that the total execution time for the least

number of HDD is improved up to about 2x and 3x

compared to 32 and 64 HDDs for 200 tasks.

As shown in Fig. 12, the average execution time of tasks

in HCS algorithm is improved in comparison with

HCS_UE algorithm. The percentage improvements is

reported in Table 7.

 A Task Scheduling Model for Multi-CPU and Multi-Hard Disk Drive in Soft Real-time Systems 9

Copyright © 2019 MECS I.J. Information Technology and Computer Science, 2019, 1, 1-13

Table 6. Percentage improvements of total execution time

50 tasks

No. of CPU No. of Hard Improvement (%)

4 4 69.94

4 16 34

16 4 70.25

16 16 29.97

Total Avg.: 51.04

100 tasks

No. of CPU No. of Hard Improvement (%)

16 16 46.47

16 32 15.97

32 16 44.75

32 32 15.11

Total Avg.: 30.57

200 tasks

No. of CPU No. of Hard Improvement (%)

16 16 68.62

16 32 44.24

16 64 16.10

32 16 69.39

32 32 44.60

32 64 15.25

64 16 69.06

64 32 44.26

64 64 16.41

Total Avg.: 43.10

(a)

(b)

(c)

Fig.11. The total execution time (a) 50 tasks,

(b) 100 tasks, (c) 200 tasks

The results show that the average execution times are

considerably decreased up to about 3x and 2x for 50 and

100 tasks when the HDDs have the least number. Also, it

is observed that the average execution time for the least

number of HDD is improved up to about 2x and 3x

compared to 32 and 64 HDDs for 200 tasks.

Table 7. Percentage improvements of Avg. execution time

50 tasks

No. of CPU No. of Hard Improvement (%)

4 4 67.80

4 16 19.60

16 4 68.04

16 16 19.45

Total Avg.: 43.72

100 tasks

No. of CPU No. of Hard Improvement (%)

16 16 43.65

16 32 18.55

32 16 41.46

32 32 15.03

Total Avg.: 29.67

200 tasks

No. of CPU No. of Hard Improvement (%)

16 16 65.61

16 32 41

16 64 16.89

32 16 66.12

32 32 41.40

32 64 15.80

64 16 66.15

64 32 41.53

64 64 15.84

Total Avg.: 41.15

(a)

(b)

10 A Task Scheduling Model for Multi-CPU and Multi-Hard Disk Drive in Soft Real-time Systems

Copyright © 2019 MECS I.J. Information Technology and Computer Science, 2019, 1, 1-13

(c)

Fig.12. The average execution time(a) 50 tasks,

(b) 100 tasks, (c) 200 tasks

C. Average waiting time

In order to reduce the waiting time of unscheduled

tasks, the execution time of scheduled tasks is decreased.

As illustrated in Fig. 13, the average waiting time of

tasks in HCS algorithm is improved in comparison with

HCS_UE algorithm The percentage improvements is

reported in Table 8. Generally, the best improvement is

achieved when the HDDs have the least number.

(a)

(b)

(c)

Fig.13. The average waiting time (a) 50 tasks,

(b) 100 tasks, (c) 200 tasks

D. Number of missed tasks

In order to reduce, as much as possible, the number of

missed tasks, we attempt to reduce the waiting time of

unscheduled tasks by decreasing the execution time of

tasks. In other words, the number of missed tasks is

decreased by increasing the frequency of CPUs and/or

the RPM level of HDDs. Fig. 14 shows the numbers of

missed tasks in HCS_UE and HCS algorithms. The

percentage improvements is reported in Table 9.

Table 8. Percentage improvements of Avg. waiting time

50 tasks

No. of CPU No. of Hard Improvement (%)

4 4 87.98

4 16 74.62

16 4 88.44

16 16 76.09

Total Avg.: 81.78

100 tasks

No. of CPU No. of Hard Improvement (%)

16 16 77.51

16 32 69

32 16 76.10

32 32 63.79

Total Avg.: 71.6

200 tasks

No. of CPU No. of Hard Improvement (%)

16 16 86.61

16 32 74.13

16 64 65.28

32 16 87.10

32 32 74.89

32 64 65.77

64 16 87.13

64 32 74.98

64 64 65.88

Total Avg.: 75.75

Table 9. Percentage improvements of missed tasks

50 tasks

No. of CPU No. of Hard Improvement (%)

4 4 42.31

4 16 15.79

16 4 40

16 16 14.28

Total Avg.: 28.1

100 tasks

No. of CPU No. of Hard Improvement (%)

16 16 20.83

16 32 7.14

32 16 19.15

32 32 2.63

Total Avg.: 12.44

200 tasks

No. of CPU No. of Hard Improvement (%)

16 16 41.82

16 32 23.96

16 64 16.67

32 16 40.37

32 32 24.49

32 64 13.25

64 16 41.28

64 32 20

64 64 12.5

Total Avg.: 26.04

 A Task Scheduling Model for Multi-CPU and Multi-Hard Disk Drive in Soft Real-time Systems 11

Copyright © 2019 MECS I.J. Information Technology and Computer Science, 2019, 1, 1-13

The results show that the number of missed tasks are

considerably decreased more than 2x for 50 and 100

tasks when the HDDs have the least number. Also, the

result of simulation shows that the number of missed

tasks for the least number of HDD is improved less than

2x and more than 2x compared to 32 and 64 HDDs for

200 tasks.

(a)

(b)

(c)

Fig.14. The number of missed tasks (a) 50 tasks,

(b) 100 tasks, (c) 200 tasks

V. CONCLUSION

In this paper a new scheduling algorithm is proposed

for real-time periodic tasks called Hard disk drive and

CPU Scheduling (HCS), which is applicable in multi-

HDD and multi-CPU with multi-core. The tasks are

prioritized according to the ready time, execution time of

CPU, finishing time of CPU and R/W time of HDD.

Furthermore, the execution time of tasks is changed

based on the variations of CPU frequency and RPM

levels of hard disk drive. HCS is significantly reduced

the number of missed tasks, the average and total

execution time and average waiting time of tasks for task

sets of size ranging from 50 tasks to 200 tasks. Moreover,

result of simulation shows that the approach has been

successful in obtaining satisfactory result in the

improvement of the task set utilization.

The experimental results show that on the average

50.22% improvement in the task set utilization, 41.57%

improvement in the total execution time, 38.18%

improvement in the average execution time, 75.63%

improvement in the average execution time and 22.18 %

improvement in the number of missed tasks are achieved

in comparison with the Hard disk drive and CPU

Scheduling _Unchanged Execution time (HCS_UE)

algorithm.

In the future, we plan to modify the proposed

algorithms in order to apply it on real environment and

also extract actual data on real environments to evaluate

the performance of the algorithms by considering the

memory effects like memory-wall effects, bandwidth and

latency of multi-core systems. Also, we would like to

perform the simulations by using more complex and

complete simulator like SPICE.

REFERENCES

[1] Kamga, C.M., 2012. CPU Frequency Emulation Based on

DVFS, In: Utility and Cloud Computing (UCC), pp: 367–

374. DOI: 10.1109/UCC.2012.34.

[2] Cho, S.J., S.H. Yun and J.W. Jean, 2015. A power saving

DVFS algorithm based on Operational Intensity for

embedded systems, In: IEICE Electronics Express, vol. 12,

no. 3, Jan., pp: 1–7. DOI:

http://doi.org/10.1587/elex.12.20141128.

[3] Da-Ren, Ch., Ch. Young-Long and Ch. You-Shyang,

2014. Time and Energy Efficient DVS Scheduling for

Real-Time Pinwheel Tasks. In: Journal of Applied

Research and Technology, vol. 12, issue. 6, Dec., pp:

1025–1039. DOI: 10.1016/S1665-6423(14)71663-3.

[4] Tang, Z., L. Qi, Z. Cheng, K. Li, S.U. Khan and K. Li,

2015. An Energy-Efficient Task Scheduling Algorithm in

DVFS-enabled Cloud Environment. In: Journal of Grid

Computing, April. DOI: 10.1007/s10723-015-9334-y.

[5] Babaii, N., Rizvandi, J. Taheri and A.Y. Zomaya, 2011.

Some observations on optimal frequency selection in

DVFS-based energy consumption minimization. In:

Journal of Parallel and Distributed Computing, vol. 71,

issue 8, pp: 1154–1164. DOI: 10.1016/j.jpdc.2011.01.004.

[6] Laszewski, G.V., L. Wang, A.J. Younge and X. He, 2009.

Power-Aware Scheduling of Virtual Machines in DVFS-

enabled Clusters. In: Cluster Computing and Workshops,

pp: 1–10. DOI: 10.1109/CLUSTR.2009.5289182.

[7] Tchamgoue, G.M., J. Seo, K.H. Kim and Y.K. Jun, 2015.

Compositional Power-Aware Real-Time Scheduling with

Discrete Frequency Levels. In: Journal of Systems

Architecture. DOI:10.1016/j.sysarc.2015.05.003.

[8] Wu, J., 2015. Energy-Efficient Scheduling of Real-Time

Tasks with Shared Resources. In: Future Generation

Computer Systems, May. DOI:

10.1016/j.future.2015.05.012.

[9] Zhu, X., C. He, K. Li and X. Qin, 2012. Adaptive energy-

efficient scheduling for real-time tasks on DVS-enabled

heterogeneous clusters. In: Journal of Parallel and

Distributed Computing, pp: 751–763. DOI:

10.1016/j.jpdc.2012.03.005.

[10] Pedram, M. and K. Choi, 2005. Dynamic Voltage and

Frequency Scaling for Energy-Efficient System Design.

In: the Association for Computing Machinery. ISBN: 0-

542-20387-1.

[11] Liu, J. and J. Guo, 2015. Energy efficient scheduling of

real-time tasks on multi-core processors with voltage

http://doi.org/10.1587/elex.12.20141128

12 A Task Scheduling Model for Multi-CPU and Multi-Hard Disk Drive in Soft Real-time Systems

Copyright © 2019 MECS I.J. Information Technology and Computer Science, 2019, 1, 1-13

islands. In: Future Generation Computer Systems, Jun.

DOI: 10.1016/j.future.2015.06.003.

[12] Tavares, E., P. Maciel, B. Silva and M.N. Oliveira, 2008.

Hard real-time tasks' scheduling considering voltage

scaling, precedence and exclusion relations. In:

Information Processing Letters, vol. 108, issue. 2, Sept.,

pp: 50–59. DOI: 10.1016/j.ipl.2008.03.020.

[13] Swaminathan, V., K. Chakrabarty and S.S. Iyengar, 2001.

Dynamic I/O Power Management for Hard Real-time

Systems. In: Hardware/Software Codesign, pp: 237–242.

DOI: 10.1145/371636.371742.

[14] Zhang, Y. and R. Guo, 2014. Power-aware fixed priority

scheduling for sporadic tasks in hard real-time systems. In:

Journal of Systems and Software, vol. 90, pp: 128–137.

DOI:10.1016/j.jss.2013.12.032.

[15] Awan, M.A. and S.M. Petters, 2015. Intra-task device

scheduling for real-time embedded systems. In: Journal of

Systems Architecture, vol. 61, issue. 8, Sep., pp: 321–340.

DOI: 10.1016/j.sysarc.2015.07.001.

[16] Fan, M., Q. Han, S. Liu, S. Ren, G. Quan and S.Ren, 2015.

Enhanced fixed-priority real-time scheduling on multi-

core platforms by exploiting task period relationship. In:

Journal of Systems and Software, vol. 99, Jan., pp: 85–96.

DOI:10.1016/j.jss.2014.09.010.

[17] Kong, F., Y. Wang, Q. Deng and W. Yi, 2010.

Minimizing Multi-Resource Energy for Real-Time

Systems with Discrete Operation Modes. In: Real-Time

Systems (ECRTS), 2010 22nd Euromicro Conference on,

pp: 113–122. DOI: 10.1109/ECRTS.2010.18.

[18] Zhang, Y-W. and R-f. Guo, 2013. Power-aware

scheduling algorithms for sporadic tasks in real-time

systems. In: Journal of Systems and Software, vol. 86,

issue. 10, Oct., pp: 2611–2619.

DOI:10.1016/j.jss.2013.04.075.

[19] Jianjun, L., LihChyun, S. and Jian-Jia, C., 2013 Energy-

Efficient Scheduling in Non preemptive Systems With

Real-Time Constraints. In: IEEE Transactions on Systems,

Man, and Cybernetics: Systems, vol. 43, issue. 2, March.,

pp: 332-344. DOI: 10.1109/TSMCA.2012.2199305.

[20] Mihai, P. and Tulika, M., 2014. Task Scheduling on

Adaptive Multi-Core. In: IEEE Transactions on

Computers, vol. 63, issue. 10, Oct., pp: 2590-2603. DOI:

10.1109/TC.2013.115.

[21] Inoue, T., A. Aikebaier, T. Enokido and M. Takizawa,

2011. A Power Consumption Model of a Storage Server.

In: Network-Based Information Systems (NBiS), pp:

382–387. DOI 10.1109/NBiS.2011.64.

[22] Hylick, A., R. Sohan, A. Rice and B. Jones, 2008. An

Analysis of Hard Drive Energy Consumption. In:

Modeling, Analysis and Simulation of Computers and

Telecommunication Systems, pp: 1–10. DOI:

10.1109/MASCOT.2008.4770567.

[23] Mountrouidou, X., Riska, A. and Smirni, E. 2011. Saving

power without compromising disk drive reliability. In:

Green Computing Conference and Workshops (IGCC), pp:

1–6. DOI bookmark:

http://doi.ieeecomputersociety.org/10.1109/IGCC.2011.6

008570

[24] Yun, H., A., Waqar and S., Gondi, 2016. BWLOCK: A

Dynamic Memory Access Control Framework for Soft

Real-Time Applications on Multicore Platforms. In: IEEE

Transactions on Computers, vol. 66, issue. 7, Dec., pp:

1247-1252. DOI: 10.1109/TC.2016.2640961.

[25] Kiani, V., Z. Mohseni and A.M. Rahmani, 2015. Real

Time Scheduling for CPU and Hard Disk Requirements-

Based Periodic Task with the Aim of Minimizing Energy

Consumption. In: International Journal of Information

Technology and Computer Science (IJITCS). DOI:

10.5815/ijitcs.2015.10.07.

[26] Jacob,B. and Wang, D. 2007 Memory systems, Cache,

DRAM, Disk eBook ISBN: 978-0-12-379751-3, Release

date: Sep. 2007,

http://store.elsevier.com/product.jsp?isbn=978012379751

3. eBook ISBN: 9780080553849.

[27] Torres, G., 2007. How The Memory Cache Works. In:

Hardware secrets, Sep.

http://www.hardwaresecrets.com/how-the-cache-memory-

works/.

[28] Anjum, M.D.M. and H., Wang, 2016. Dynamic

scheduling and analysis of real time systems with

multiprocessors. In: Digital Communications and

Networks, vol. 2, issue. 3, Aug., pp: 130-138. DOI:

https://doi.org/10.1016/j.dcan.2016.06.004.

[29] Konar, D., S. Bhattacharyya, K. Sharma and S. Sharma,

2017. An improved Hybrid Quantum-Inspired Genetic

Algorithm (HQIGA) for scheduling of real-time task in

multiprocessor system. In: Applied Soft Computing, vol.

53, pp: 296-307. DOI:

https://doi.org/10.1016/j.asoc.2016.12.051.

[30] Kumar Samal, A., R. Mall and C. Tripathy, 2014. Fault

tolerant scheduling of hard real-time tasks on

multiprocessor system using a hybrid genetic algorithm.

In: Swarm and Evolutionary Computation, vol.14, pp: 92-

105. DOI: https://doi.org/10.1016/j.swevo.2013.10.002.

[31] Intel® Xeon® Processor E5-2670 v3.

http://ark.intel.com/products/81709/Intel-Xeon Processor-

E5-2670-v3-30M-Cache-2_30-GHz, (Accessed on

09/25/2015).

[32] Intel® Xeon® Processor E5 v2 Product Family,

Datasheet, vol. 2, March. 2014.

http://www.intel.com/content/www/us/en/processors/xeon

/xeon-e5-v2-datasheet-vol-2.html.

[33] HP SAS Hard Drives, c04311358 – DA – 12244 North

America – Version 50 – June 1, 2015.

http://www8.hp.com/us/en/products/oas/product-

detail.html?oid=5163353.

[34] Grochowski, E. and R.D. Halem, 2003. Technological

impact of magnetic hard disk drives on storage systems.

In: IBM SYSTEMSJOURNAL, vol. 42, no. 2. DOI:

10.1147/sj.422.0338.

Authors’ Profiles

Zeynab Mohseni received her Associates

Degree in Software Computer from Sabzevar

Technical and Vocational Collage, Khorasan,

Iran in 2007, the B.S. in Computer

Engineering from khorasan Institute of Higher

Education, Mashhad, Khorasan, Iran in 2009

and the M.S. in Computer Engineering from

Science and Research Branch, Islamic Azad University, Tehran,

Iran in 2015. Her research interests are in the areas of Fault-

tolerance and Reliability, embedded and real-time systems,

scheduling algorithms and Network on Chip.

http://doi.ieeecomputersociety.org/10.1109/IGCC.2011.6008570
http://doi.ieeecomputersociety.org/10.1109/IGCC.2011.6008570
http://www.hardwaresecrets.com/how-the-cache-memory-works/
http://www.hardwaresecrets.com/how-the-cache-memory-works/
https://doi.org/10.1016/j.dcan.2016.06.004
https://doi.org/10.1016/j.asoc.2016.12.051
https://doi.org/10.1016/j.swevo.2013.10.002
http://www.intel.com/content/www/us/en/processors/xeon/xeon-e5-v2-datasheet-vol-2.html
http://www.intel.com/content/www/us/en/processors/xeon/xeon-e5-v2-datasheet-vol-2.html
http://www8.hp.com/us/en/products/oas/product-detail.html?oid=5163353
http://www8.hp.com/us/en/products/oas/product-detail.html?oid=5163353

 A Task Scheduling Model for Multi-CPU and Multi-Hard Disk Drive in Soft Real-time Systems 13

Copyright © 2019 MECS I.J. Information Technology and Computer Science, 2019, 1, 1-13

Vahdaneh Kiani received her B.S. in

Computer Engineering from South Tehran

Branch, Islamic Azad University, Tehran, Iran

in 2011 and the M.S. in Computer

Engineering form Department of Computer

Engineering, Science and Research Branch,

Islamic Azad University, Tehran, Iran in 2015.

Her research interests are in the areas of embedded and real-

time systems, scheduling algorithms, digital circuit design,

memory systems and fault tolerance in Microprocessors and

Network on Chip.

Amir Masoud Rahmani received his B.S. in

Computer Engineering from Amir Kabir

University, Tehran, in 1996, the M.S. in

Computer Engineering from Sharif

University of technology, Tehran, in 1998

and the Ph.D. degree in Computer

Engineering from IAU University, Tehran, in

2005. He is an assistant professor in the Department of

Computer and Mechatronics Engineering at the IAU University.

He is the author/co-author of more than 80 publications in

technical journals and conferences. He served on the program

committees of several national and international conferences.

His research interests are in the areas of distributed systems, ad

hoc and sensor wireless networks, scheduling algorithms and

evolutionary computing.

How to cite this paper: Zeynab Mohseni, Vahdaneh Kiani,

Amir Masoud Rahmani, "A Task Scheduling Model for Multi-

CPU and Multi-Hard Disk Drive in Soft Real-time Systems",

International Journal of Information Technology and Computer

Science(IJITCS), Vol.11, No.1, pp.1-13, 2019. DOI:

10.5815/ijitcs.2019.01.01

