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Abstract—As part of the Cognisearch project, we 

developed a general architecture dedicated to extracting, 

indexing and searching for complex Named Entities (NEs) 

in webpages. We consider complex NEs as NEs 

represented by a list of properties that can be single 

values (text, number, etc.), "elementary" NEs and/or 

other complex NEs. Before the indexing of a new 

extracted complex NE, it is important to make sure that it 

is not already indexed. Indeed, the same NE may be 

referenced on several different web platforms. Therefore, 

we need to be able to establish similarity to consolidate 

information related to similar complex NEs. This is the 

focus of this paper. Two issues mainly arise in the 

computation of similarity between complex NEs: (i) the 

same property may be expressed differently in the 

compared NEs; (ii) some properties may be missing. We 

propose several generic similarity computation 

approaches that target any type of complex NEs. The two 

issues outlined above are tackled in these proposals. We 

experiment and evaluate these approaches with two 

examples of complex NEs related to the domain of social 

events. 

 

Index Terms—Complex Named Entities, Similarity 

Computation, Machine Learning, Web Mining. 

 

I.  INTRODUCTION 

The web has become one of the main information 

sources. The number of contributors to this data source is 

increasing very rapidly and the published content is 

usually unstructured. Therefore, many tools or research 

works targeting the querying of the web content for easy 

access to this large volume of information have been 

developed. 

Indeed, the information contained on the web generally 

refers to real-world objects such as people, places, 

businesses or even events: in the state of the art, these 

objects correspond to Named Entities (NEs) [35]. A 

Named Entity (NE) is defined as a linguistic unit of a 

referential nature which refers to people, organizations, 

places, dates, etc. In other words, a NE can be defined as 

a linguistic unit (phrase), uniquely identifiable in a 

specific context and referring to a real-world object [6, 11]. 

When a NE is represented by a single phrase, it is 

consider as an elementary NE. Otherwise, a NE such as 

an event can be described by a list of properties: its title, 

its venue, its date and its category. We call this kind of 

NE a complex NE. 

As part of the Cognisearch project, our goal is to build 

information retrieval services which target complex NEs. 

These services must be fed with data from the web. We 

have developed a general architecture of services (see 

section II) for this purpose. It includes four main modules: 

(i) the web filtering module is dedicated to the 

identification of relevant webpages for the extraction of 

the processed complex NEs; (ii) the information 

extraction module focuses on the analysis of the corpus 

built in the previous module for extracting NEs; (iii) the 

indexation module integrates the extracted NEs in the 

index; (iv) and the information retrieval module takes as 

input an information need and parses the index to retrieve 

the relevant complex NEs.   

 

 

Fig.1. “Main Square Festival” description within two different web 
platforms. 

However, information about the same NE can be 

referenced on multiple platforms on the web. This is 
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illustrated by Fig. 1 where the same event is referenced 

within two distinct ticketing platforms: infoconcert.com 

and ticketmaster.com. Thus, the extraction module will 

identify two distinct NEs, one on each platform, even if 

they are the same. We do not want to index it twice. 

Therefore, before indexing, we must establish the 

similarity between the NEs in the index and the new 

extracted one. 

In this paper, we will only focus on the indexation 

module and more particularly on computation of the 

similarity between complex NEs. Using the example in 

Fig. 1, this similarity computation raises two main issues: 

 

 the same property can be expressed differently on 

both platforms. This is the case, for example, of 

the event's titles which are not identical (“Main 

Square” vs “Main Square Festival 2017”). We 

also encounter this issue for the event's venue: on 

infoconcert.com, it is given by the city name 

(“Arras”), which can be represented by a polygon, 

but on ticketmaster.com we have an address (“La 

Citadelle - Quartier de Turenne, Bvd du Général 

de Gaulle, 62000 Arras”) that can be represented 

as a point. These two places are not expressed at 

the same granularity level; 

 some properties may be missing in the extracted 

complex NEs. Indeed, the category (“Festival – 

Music”) is clearly given on ticketmaster.com, but 

not on infoconcert.com. The challenge is to be 

able to evaluate the similarity at the complex NE 

level, taking into account this lack of information. 

 

For the first issue, we propose a similarity computation 

function for two places: one represented by a point and 

the other by a polygon. For the second, we propose four 

new approaches for computing similarity between 

complex NEs. All our approaches allow similarity 

computation even when some properties are not entered. 

The paper is presented as follows. We describe our 

general architecture framework in section 2. We look at 

previous works carried out on NE similarity computation 

in section 3. Section 4 details our approaches to complex 

NE similarity computation, while section 5 focuses on 

our experimentation with these approaches on two types 

of complex NEs. Section 6 concludes the paper and 

proposes new research prospects. 

 

II.  GENERAL ARCHITECTURE FRAMEWORK 

Our generic processing architecture (Fig. 2) is 

composed of four main modules, configured according to 

the type of processed complex NEs. Therefore, it is 

important to define models for their representation. We 

have already used it to process social event and company 

NEs. 

 

Fig.2. Our generic processing chain. 

The Webpage Filtering module uses free and non-

proprietary resources to process Web content and build a 

webpage collection. Its purpose is to filter the relevant 

subset of webpages for the extraction of targeted NEs. 

For example, for social events, this module targets 

ticketing websites. The corresponding webpages are then 

classified, via supervised learning, in order to retain only 

webpages describing an event. 

The Named Entities Annotation module processes the 

previously selected webpages. Our annotation process is 

generic and takes as input the representation model 

describing the processed complex NE. The originality lies 

in the fact that we process webpages in three steps. An 

initial supervised learning-based tagging operation 

identifies webpage blocks potentially containing the 

properties of complex NEs. A second tagging operation is 

dedicated to the detailed analysis of these blocks using 

specific patterns, resources or learning-based approaches 

for property annotation in blocks. Finally, properties are 

aggregated in order to build the corresponding complex 

NE (e.g. social event). 

The Similarity Computing & Indexation module 

corresponds to the storage of each annotated NE in the 

index. As we have seen in Fig. 1, two different pages can 

describe the same NE. So, a preliminary check must be 

performed to make sure that an extracted NE is not 

already included in the index. If this is the case, it may be 

necessary to complete the indexed NE by adding a value 

for a property that has not yet been entered. Taking the 

example of Fig. 1, the extraction of the category on 

ticketmaster.com would help to complete the information 

extracted on infoconcert.com. The main issue in this 

point is the similarity computation. 

The Information Retrieval module corresponds to the 

querying of the index. The query may be considered as a 

complex NE, where some properties may be missing. 

Here also, the main issue is the computation of the 

similarity between the complex NE corresponding to the 

query and those contained in the index. 

The focus of this paper is how to calculate the 

similarity between two complex NEs? We propose several 

approaches for this purpose, detailed in section IV. 
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III.  RELATED WORK: NE SIMILARITY COMPUTATION 

PROCESS 

The NE similarity computation approaches differ 

depending on whether the processed NEs are elementary 

or complex. Regarding elementary NEs, these approaches 

depend on their representations: textual, semantic or 

numerical. On the other hand, regarding complex NEs, 

the similarity computation is usually achieved according 

to two steps: (i) the first one computes intermediate 

similarity scores between properties of the same position; 

(ii) and the second one aggregates these intermediate 

scores to deduce the overall similarity.  

A.  Computation Of Similarity Between Properties 

The computation of similarity between two properties, 

p1 and p2, generally consists of using metrics based on 

textual, semantic or numerical representations. With 

regard to similarity computation based on textual 

representations of the properties, there are three main 

categories of approaches. Character-based approaches 

take account of the order of characters and use the 

number of elementary operations required to obtain one 

string from the other one (Jaro [21], Jaro-Winkler [40] and 

Levenshtein [25]). Word-based approaches count the 

number of identical words present in both strings but 

without taking account of the word order (Jaccard [20], 

TFIDF [32]). Finally, Hybrid-based approaches represent 

each string of words in meta-characters and apply 

character comparison methods to them (Monge-Elkan 

[26], softTFIDF [8], LIUPPA [27]). 

As far as similarity computation based on semantic 

representations of properties is concerned, there are three 

main approaches that exploit knowledge of the domain, 

which is generally described in the form of a graph of 

concepts. Evaluating the similarity between two concepts 

consists of plotting them on the knowledge graph and 

then measuring the path between the two nodes 

representing them: the Rada measure [29], and the 

Bulskov measure [5]. Another category of approaches 

takes account of the nearest common ancestor and the 

respective depth of each of the two nodes in relation to 

the root of the graph: Wu and Palmer [41]. 

Regarding similarity computation based on numerical 

representations of properties, we consider that it is 

interesting to exploit a representation of space or time, 

respectively, on a map or a time line. Evaluating the 

similarity between two places or two dates consists of 

plotting them on a map or an axis, for example, and then 

exploiting the corresponding distance computation 

metrics. Several distances are proposed in order to 

evaluate the proximity between points (places): the 

Euclidian distance [42], the Hausdorff distance [13], and 

the Haversine distance [7]. There are other metrics based 

on the overlapping of geometric shapes: the Hill 

similarity [19], the Walker et al. similarity [38], the Beard 

and Sharma similarity [3], and the Sallaberry et al. 

similarity [31], or otherwise between time intervals: the 

Le Parc-Lacayrelle et al. similarity [23]. 

Table 1 summarizes previous works and their 

application to elementary NE similarity computation. 

Table 1. Works related to elementary NE similarity computation (social NEs stand for Persons and Organizations) 

Works 

Property Representation NEs 

Textual Semantic Numerical 
Time Place Social 

Char. Words Hybrid Path Depth Axis Plane Space 

Bahram et al. (2013)        ѵ  ѵ  

Becker et al. (2010)      ѵ   ѵ   

Bulskov et al. (2002)    ѵ        

Hill et al. (1990)       ѵ   ѵ  

Le Parc-Lacayrelle et al. (2007)      ѵ   ѵ   

Majulashenoy et al. (2012)     ѵ      ѵ 

Mckensie et al. (2014)       ѵ   ѵ  

Moreau et al. (2008) ѵ ѵ ѵ        ѵ 

Nguyen et al. (2013)   ѵ       ѵ  

Rueben et al. (2013)       ѵ   ѵ  

Sallaberry et al. (2008)       ѵ   ѵ  

Teissèdre et al. (2010)      ѵ   ѵ   

Wang et al. (2014)       ѵ   ѵ  

 

Finally, properties can also be multivalued. Each can 

be represented as a set of elements, and the challenge 

here is to evaluate the degree of similarity between two 

sets. A first approach is to use the Jaccard metric [20] to 

evaluate this similarity. Note that when the difference in 

cardinality between the two sets is large, even if one is 

included in the other, the Jaccard measure gives low 

scores. Halkidi et al. [18] proposed a metric of similarity 

dedicated to the computation of sets of ontology concepts, 

whenever the difference in cardinalities between the sets 

to be compared is large. This approach exploits the 

similarities in the pairs of concepts constructed from the 

Cartesian product of these sets. 

B.  Aggregation Of Intermediate Similarity Scores 

It is recalled that the computation of similarity between 

two complex NEs, ec1 and ec2, consisting of a list of 

properties, is generally carried out in two stages [37]: 

side-by-side property similarity computation and the 

combination of the obtained intermediate scores to 
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deduce the global similarity. In the multi-criteria 

Information Retrieval (IR) field, Fox and Shaw [15] 

proposed several simple and widely used combiners: 

CombMax, CombMin, CombSUM, CombANZ and 

CombMNZ. We can also mention the "Prioritized 

Aggregation" combiners proposed by Da Costa Pereira et 

al. [9]. 

Table 2 summarizes works dedicated to complex NE 

similarity computation according to the different 

approaches. 

Table 2. Works related to complex NE similarity computation (social NEs stand for Persons and Organizations) 

Works 

Aggregation Approaches Targeted NEs 

Linear Combination 
Logic 

 

Empirical Heuristic Time Place Social POI Event 

Becker et al. (2010) ѵ       ѵ 

Khrouf et al. (2014)  ѵ    ѵ   

Kim et al. (2017) ѵ      ѵ  

Railean et al. (2013) ѵ       ѵ 

Scheffler et al. (2012)   ѵ    ѵ  

Serrano et al. (2013) ѵ  ѵ ѵ  ѵ  ѵ 

Zhu et al. (2017) ѵ    ѵ    

Wongsuphasawat et al. (2012) ѵ       ѵ 

 

However, leaving aside these works relating to IR, the 

most widespread aggregation technique remains linear 

combination, which consists of computing the final score 

by calculating the weighted sum of the different 

intermediate scores. In practice, associated weights are 

generally determined empirically. This is applied to the 

proposal of Serrano et al. [36] which focuses on the 

computation of similarity between fact-type events. Zhu 

et al. [44] also used the linear combination with empiric 

weigths for computing the similarity between Geospatial 

data, represented as Complex NEs. There is another 

aggregation technique, also based on linear combination, 

but with weights determined using meta-heuristics. 

Khrouf et al. [22], for example, exploit the meta-heuristic 

by particle swarm [12] for optimizing the weights of the 

intermediate similarities in the linear combination. This is 

applied in a context of consolidation of events coming 

from different platforms. It is important to note that this 

technique is effective only when the number of NE 

properties is very large. 

A last aggregating approach is the one based on logical 

functions. Indeed, a logical expression is constructed for 

each property, and logical operators (AND, OR, NO, etc.) 

are used to merge them. Sheffer et al. [34] use such an 

approach to evaluate the similarity between POIs. If the 

two spatial properties are not in the neighborhood of each 

other (distance greater than a threshold), the non-

similarity is directly established. If they are, we also 

check that the other properties match or are close. 

Current work focuses on specific categories of 

complex NEs. Our goal is to propose a similarity 

computation approach applicable to all categories of 

complex NEs. 

 

IV.  PROPOSITIONS FOR COMPLEX NE SIMILARITY 

COMPUTATION 

In order to properly integrate the extracted NEs into the 

indexes, we have developed four approaches to compute 

similarity between complex NEs. They are organized into 

two groups. The first one is composed of three 

approaches that compute complex NE similarity in two 

steps, as in the state-of-the-art: evaluation of property 

similarities, and their aggregation. Our contribution for 

this group focuses on the second step. The second group 

includes an approach which combines clustering 

techniques with vector models. 

Consider two complex NEs, o1 and o2 defined with n 

properties (n > 1) by: 

 

o1 = < p11, p12, ..., p1n > 

o2 = < p21, p22, ..., p2n > 

 

Regarding the computation of intermediate similarities 

si(p1i, p2i), we have selected or defined new functions 

according to the type of properties (text, semantic concept, 

numeric values) and their specificities (mono or multi-

valued). We will present these functions in a first step, 

and thereafter we will detail each of our complex NE 

similarity computation approaches.  

A.  Metrics For Property Similarity Computation 

Consider that Ti is the type of the property pi. We 

denote fTi the function used to evaluate the similarity 

between elements of type Ti. fTi is formally defined by: 

 

     
       ,   -

(       )    (       )
                  (1) 

 

Similarity computation between simple type properties 

In this case, Ti may correspond to short texts, semantic 

concepts or numerical values (places, dates or times). 

fshort_text - To compare two short texts (consisting of no 

more than 15 words), we use the softTFIDF metric [8], 

for two reasons. Firstly, softTFIDF compares the words, 

but also the characters, which makes it more flexible with 

regard to spelling mistakes. Secondly, it does not take 

account of the word order and thus it leads to a high 

similarity score for two strings such as "Main Square 
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Festival" and "Festival Main Square".    

fsemantic - We use the Wu and Palmer measure [41] for 

comparing two semantic concepts. This choice is justified 

by the fact that the Wu and Palmer measure makes it 

possible to take into account the ontology taxonomy 

when computing the similarity between two concepts.     

ftemporal - Let t1 and t2 be two dates (two respective 

times). To compute their similarity, we represent them on 

a timeline or time axis. We denote by    the threshold (in 

terms of interval length on the axis) at which t1 and t2 

start to differ. Based on the proposal of Becker et al. [4], 

we define ftemporal by: 

 

         (     )  {
    |     |   

  
|     |

 
     

     (2) 

 

Note that the value of   is set according to the type of 

processed entities (dates or times).      

fplace -  The places are represented either by points 

(latitude, longitude), or by polygons (a list of points). 

Indeed, a place can be given as an address, so it is 

represented by a point. A place can also be given as a 

council name or an area that we represent by a polygon. 

So, the comparison of places l1 and l2 corresponds to one 

of the following three scenarios: (1) comparison of two 

points, (2) comparison of two polygons, (3) comparison 

of a point with a polygon. Let H be the Haversine 

function [7] used for measuring the distance between two 

points on the surface of the Earth. 

 

 Comparing two points - Let   be the threshold 

distance from which two points are considered to 

be totally different. Based on Becker et al. [4], we 

define fplace by: 

 

      (     )  {
      (     )   

  
 (     )

 
     

       (3) 

 

 Comparing two polygons - Consider area the 

function that helps to evaluate the area of a 

polygon. We define fplace based on the overlapping 

area between l1 and l2 and their union. 

 

      (     )  
    (     )

    (     )
                  (4) 

 

 Comparing a point l1 and a polygon l2 - For this 

scenario, we want to evaluate the similarity by 

integrating the fact that the point may be contained 

in the outskirts of the polygon. The proposal of 

Rueben et al. [30] does not tackle this issue, so we 

propose a new similarity function. We defined a 

buffering polygon P which is the extension of l2 

(Fig. 3) and we denote by CP its centroid. P is 

obtained by applying a translational movement to 

the vertices of l2 according to a given distance d (d 

is a parameter of the process). Let    be the 

maximal distance between cP and P's vertices. 

 

       ( (        )          )             (5) 

 

fplace is defined by: 

 

      (     )  {
          

    
 (     )

  
     

          (6) 

 

  (0 <   < 1) is a coefficient which makes it possible 

to take into account the stretch (in height or width) 

of P in the similarity computation. This coefficient 

is computed based on the enclosing rectangle RP of 

P (see Fig. 3). RP is selected so that the residual 

area between RP and P is minimal. Consider height 

and width to be respectively the height and the 

width of RP (width ≤ height). We calculate   based 

on the following formula: 
 

   .
     

      
/
 

                              (7) 

 

 

Fig.3. Buffering polygon and bounding box for polygon l2. 

Similarity computation between set type properties 

Some properties of a complex NE may be multi-valued, 

therefore they are represented as sets. There may be sets 

of texts, sets of semantic concepts, sets of places, sets of 

temporal entities or sets of complex NEs. To compute the 

similarity between two sets, we use the function proposed 

by Halkidi et al. [18].  We choose this function (defined in 

section III.B.) because it takes into account the 

cardinalities of the sets in the computation, unlike other 

functions (Jaccard). In fact, the Halkidi function was 

initially defined to compare sets of semantic concepts 

based on the Wu and Palmer measure. In our case, we 

replace the Wu and Palmer measure by a similarity 

function adapted for the elements of sets [14]. 

Finally, for the computation of si(p1i, p2i), we re-used 

existing measures (softTFIDF, Wu-Palmer, etc.). We also 

adapted some existing measures (Halkidi) or proposed 

new ones (fplace between a point and polygon). We will 

now detail each of our proposals for computing the 

similarity between complex NEs according to score 

aggregation or clustering approaches. 

B.  Complex NE similarity computation: score 

aggregation approaches (group 1) 

We recall that for two complex NEs o1 and o2 with n 

properties each, we denote si(p1i, p2i) the similarity score 

between their properties at position i. si(p1i, p2i) is 
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computed using functions listed in section IV.A. For the 

approaches in this group, the challenge is to properly 

aggregate the different intermediate similarities (si(p1i, 

p2i), i   [1, n]). We propose three approaches for this 

purpose: 

 

 the first one, which is called the calibration 

approach, is based on linear combination; 

 the second, which is called the logistic regression 

approach, is also based on linear combination. 

Differently to the previous one, the weights in the 

combination are determined using a learning 

method; 

 the third approach is called the tree-based 

approach, it is based on logical functions, those 

described in decision trees. 

Calibration approach 

Given the different intermediate similarities, the 

similarity score between o1 and o2 is literally defined as: 

 

1 2 1 2

1

( , ) ( , )

n

i i i i

i

s o o w s p p



                  (8) 

 

wi is the weight of the property at the position i in the 

complex NEs (o1 and o2) and w1, w2, ..., wn are defined so 

that:  

 

1

1 , 0

n

i i

i

w i w



                        (9) 

 

Unlike in the state of the art, the wi are not defined 

empirically. We experiment with different combinations 

of weights generated while respecting the constraint fixed 

by equation (9) for defining the implementation weights. 

In fact, a validation set of complex NE pairs is built, so as 

to cover a large number of property expressions. Then, 

for each pair in this set, an expert associates a similarity 

score. Thereafter, each of the combinations of weights 

generated is used to compute similarity scores on the 

validation set pairs by applying formula (8). The 

combination which best reproduces the expert scores on 

the validation set is selected for the implementation of the 

approach. 

When a property is not entered, the weight of the 

corresponding similarity is equitably distributed among 

the properties present in the two NEs. 

Logistical regression approach 

In this second approach, we also want to process the 

similarity computation as a linear combination (equation 

(8)). Unlike with the calibration approach, we no longer 

want to experiment on all the possible weights. In fact, 

the number of generated combinations can become 

exponential when the complex NEs have a large number 

of properties or when the variation step is small. We opt 

for logistic regression instead of linear regression in order 

to avoid edge effects [1]. 

Indeed, we evaluate the similarity score between o1 and 

o2 as the conditional probability that the two NEs are 

similar, given the similarity scores between properties. 

This literally translates as:    

 

 (     )   (    )

       (  (       )     (        ))
          (10) 

 

To calculate this probability, logistic regression uses 

the logit function, which is defined as a linear 

combination of the elements of the vector X. 

 

     ( (     ))     (
 (     )

   (     )
)

          (       )   
        (       )

 (11) 

 

As a result, we get:  

 

 (     )  
 

     (        (       )        (       ))
  (12) 

 

The challenge with this approach is to determine the 

weights that serve to calculate the logit. Since the logit 

function makes it possible to define a bijection from [0, 1] 

to   the conditions of implementation of the linear 

regression are present. Therefore, we use the learning-

based method called gradient descent [16] for optimal 

weight estimation. In this method, we start with a training 

set consisting of complex NE pairs for which an expert 

has given similarity scores. Thereafter, the weights are 

randomly initialized and a process by iteration is set up. 

At each iteration, weights are varied following the 

gradient of the overall estimation error on the training set. 

The maximum number of iterations, the permissible error 

and the variation step are the parameters of the process. 

When a property is not entered, the associated 

similarity is set to -0.5. This helps to train the logistic 

regression model whilst taking into account the 

information about non-entered properties. 

Tree-based approach 

The linear combination does not take into account 

eventual dependencies between intermediate similarities. 

This is why we propose a new approach for aggregating 

intermediate similarities. This approach is based on a 

supervised learning method used in predictive analysis: 

decision trees [39]. The advantage of this approach is that 

it remains valid in all cases (correlation between 

properties or not). 

The choice of decision trees rather than other learning 

algorithms such as neural networks is justified by the fact 

that decision trees are built according to a boolean logic. 

As a result, it is possible to simply interpret and adjust the 

obtained tree for efficiency. In addition, neural networks 

require a large quantity of training data to work properly. 

As with the logistic regression approach, the 

constitution of a training set containing complex NE pairs 

is necessary to build the decision tree. Indeed, the 

complex NE pairs in this training set are grouped into 

homogeneous subsets. Each of these subsets contains 
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complex NE pairs whose similarity scores between 

properties at the same position satisfy the same 

conditions. The similarity score between pairs of NEs that 

are in the same homogeneous subset is deduced from 

those given by the expert. In this proposal, we use the 

average of these scores. Fig. 4 illustrates an excerpt of a 

decision tree. The subset SE1 contains pairs of NEs for 

which the similarity scores of the properties at positions 1, 

2 and 3 are respectively less than 0.8, less than 0.5 and 

greater than 0.5. The similarity score of the complex NE 

pairs in this subset will be 0.6. 

 

 

Fig.4. Example of a decision tree for similarity computation. 

Once constructed, the tree is then used to estimate the 

similarity score for a pair of complex NEs for which we 

already know intermediate similarities. We start by going 

through the tree in order to determine the homogeneous 

subset to which it belongs. Then we associate the 

corresponding score as the similarity between NEs 

constituting the pair. 

Regarding the segmentation of the training set's pairs 

in homogeneous subsets, we use the algorithm ID3 [28]. 

The only parameter of the algorithm is the maximum 

number of complex NE pairs in each homogeneous 

subset. As with logistic regression, we associate a score 

of -0.5 to intermediate similarities when we have non-

entered properties. 

C.  Complex NE similarity computation: clustering-based 

approach (group 2) 

We called the only approach in this group the 

clustering approach. Unlike the first group, the similarity 

computation process does not consist of comparing the 

property values side-by-side and then aggregating the 

scores obtained to deduce the overall similarity. Here, the 

process is organized into three main steps: 

 

 the first step is dedicated to the partitioning of the 

complex NE set into clusters according to the 

different properties; 

 the second step focuses on the representation of 

each complex NE as a vector of all clusters built 

previously; 

 the last step makes it possible to evaluate the 

similarity score between two complex NEs as the 

cosine of the angle formed by the vectors 

representing them. 

 

 

 

We consider that we are dealing with a set O consisting 

of four complex NEs corresponding to events. Each event 

is defined by a title, a date and a place. Events in O are 

defined as follows: 

 

e1 = < Main Square, 06:30:2017, Arras >  

e2 = < Main Square Festival 2017, 07:02:2017, Citadelle Arras >  

e3 = < FRANCE vs AUSTRALIA, 06:16:2018, Kazan City >  

e4 = < FRANCE - AUSTRALIA, 06:16:2018, Kazan Arena >  

Partitioning step 

This first step draws on Becker et al.'s work [4]. The 

cluster constitution is based on the Single Pass algorithm 

[17]. For each property pi of a complex NE      , we 

built mi clusters     
    
       

 . Each cluster contains the 

complex NEs for which pis are similar. The cluster   
  

corresponds to the j's cluster for the i's property, it is 

formally defined as follows: 

 

  
  *                           ⁄

         (         )    +
     (13) 

 

      is the similarity threshold for property pi. It is set 

so as to optimize the partitioning of O.  

For the n properties of each complex NE of O, we 

obtain dim clusters: 

 

1

dim

n

i

i

m



                               (14) 

 

For the example of a set comprising e1, e2, e3 and e4, 

we consider that two events are in the same title's cluster 

if and only if the similarity score between their titles is 

greater than 0.7. For date and place, we fix the thresholds 

to 1.0 and 0.8 respectively. Finally, we obtain 7 clusters, 

as shown in Fig. 5: 2 for titles, 3 for dates and 2 for 

places.       

 

 

Fig.5. Partitioning of the set of events. 

Vectorial representation step 

The idea here is to represent each complex NE      

as a vector of dim length. Let   
   be the weight of cluster 

  
  in o. Therefore, o can be represented as: 

 

    
 

  (   
 

     
     

 

     
     

 

      
  

       
  

     
  

     
 )

 

 

Regarding the computation of   
    we define a function 

which is an adaptation of TFIDF [33]. Let N and    
  be 
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respectively the cardinalities of O and   
   We denote by 

  
  the centroid of   

     
  is computed using the following 

formula: 

 

  
     (

 

 
  
 
)    (     

 )                 (15) 

 

  
  for short texts is the union of all the texts. The 

cluster C1 in our example contains e1 and e2, therefore its 

centroid is “Main Square Festival 2017”. For semantic 

concepts,   
  is the nearest common ancestor. For dates 

and times, it is the centroid of the different points on the 

timeline.   
  for places is the centroid of points 

representing the processed property. Indeed, for polygons, 

we use their centroid for   
  computation. And last,   

  for 

sets is their union. 

Taking our example of e1, e2, e3 and e4, the 

corresponding vectors are given below:  

 

 
 

Similarity computation 

Consider a pair of complex NEs (     )      

represented respectively by the following vectors: 

 

   (  
       

      
       

 )

   (  
       

      
       

 )
 

 

Their similarity score is computed as the cosine of the 

oriented angle they formed. Literally, it is the ratio 

between the scalar product of the vectors and the product 

of their respective Euclidean norms. 

 

 (     )     (     )   
     

‖  ‖ ‖  ‖

  
∑.  
    
 /

√∑  
   √∑  

  

            (16) 

 

Applying this to compute s(e1, e3) and s(e3, e4), we 

obtained the following results : s(e1, e3) = 0.014 and s(e3, 

e4) = 0.999. 

 

V.  EXPERIMENTATIONS 

In this section, we experiment with our different 

similarity computation approaches. These experiments 

are carried out in the indexing stage of our general 

architecture, when we want to store a new extracted 

complex NE. We recall that in this context, we have two 

possible cases. If there is a complex NE in the index 

which is similar to the one extracted, we merge 

information in order to enrich the NE in the index. 

Otherwise, we simply index the new complex NE. For 

this decision-making purpose, we apply our similarity 

computation approaches to social events. We start this 

section by defining what an event complex NE is. 

A.  Event Model  

According to [43], an event is "something that happens 

somewhere, at a given time and involves a certain 

number of actors". Two types of events are generally 

distinguished in the state of the art: facts and social 

events. Facts correspond to historical events, current 

topics, or even the episodes of a story. Social events refer 

to events such as to concerts, festivals, conferences, sport 

events, etc., with which a schedule and an audience are 

associated. In these experiments we deal with social 

events. 

The UML class diagram of our social event model is 

described in [14]. In our experiments, we compute the 

similarity between two event NEs based only on three 

properties: the title t, the set of categories Cate and the set 

of main performers APe. Furthermore, we will use the 

venue v, the date d and the time t for the similarity 

computation between two performances of an event. 

As a result, an event e and a performance pr in our 

experiments are formally represented by: 

 

                and             

B.  Setting of the property similarity computation    

We consider that two places represented by points 

which are more than 20 km apart are necessarily not 

similar (       ). Moreover, for the comparison of two 

places, one represented by a point and the other by a 

polygon (l2), we define d (polygon extension) 

proportionally to the largest distance between the centroid 

of the polygon and its vertices (   ). For our experiments, 

we set the coefficient of proportionality to 2/5, like [31] 

(  
     
 

, where     is the centroid of the polygon l2). For 

temporal NE similarity computation, we consider that 

two dates are identical if and only if they correspond to 

the same day (       ). We also consider that two 

times with more than 60 minutes difference are distinct 

(            ). 

C.  Evaluation protocol 

The objective of our experiment is to compare our 

similarity computation approaches with each other, but 

also with one of the most widely used approaches in the 

state of the art as baseline: CombMNZ. More precisely, 

we use the normalized CombMNZ [24] to ensure 

similarity scores between 0 and 1. We also want to 

compare our approaches according to whether the 

processed NEs contain non-entered properties. Indeed, an 

analysis of the 8000 events extracted by a first prototype 

implementing our general architecture shows that 75% of 

the extracted NEs have missing information. This is 

either because they have not been filled in on the 

analyzed webpages, or because they have not all been 

detected by our extraction system. 
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Scenarios 

The two main scenarios in our evaluation process are 

the following cases: 

 

 scenario 1: all properties are fully entered in the 

compared NEs; 

 scenario 2: at least one of the compared NEs has 

missing properties. 

 

We make assumptions as prerequisites for the 

computation of the similarity between events and between 

event performances. For events, it is the title which is 

required, and for performances, it is the venue. As a result, 

if the required property is not entered in a complex NE, it 

is not similar to any other. From these assumptions, we 

have formed families of complex NE pairs. For the events, 

we have the following families. 

 

 Family 1: all properties are fully entered in both 

NEs  

 
                                     

 

 Family 2: a property is not entered in one of the 

NEs 

 
                                

                                 
 

 

 Family 3: the same property is not entered in each 

of the two NEs 

 
                            

                              
 

 

 Family 4: a property is not entered in each of the 

two NEs, but it is not the same 

 
                              

 

 Family 5: two properties are not entered in at least 

one of the compared Nes 

 
                             

                         
 

                          

                      
 

 

Scenario 1 corresponds to Family 1 and scenario 2 to 

the others (2, 3, 4 and 5). In the case of event 

performances, we also have three properties and the 

families remain the same. We just need to replace the title 

by the venue, as well as the set of performers and 

categories by the date and time respectively. 

Evaluation metrics 

To compare the different approaches and according to 

the different scenarios, we will use four metrics: precision 

P, recall R, F1-measure and accuracy E [10]. 

Threshold selection 

We need to define thresholds in order to decide on the 

similarity or not of two complex NEs. Therefore, we have 

defined a process in two stages: 

 

 the first stage represents, on a graph, the similarity 

scores of the expert and those of each approach for 

all pairs in the evaluation corpus. These pairs are 

ranked in ascending order of the expert's scores. 

The obtained graphs can be used to glimpse 

visually in which intervals the thresholds of each 

of the approaches are; 

 the second stage explores the intervals supposed to 

contain the thresholds to determine the value that 

optimizes the results on a validation set (F1-

measure and accuracy). The exploration step of 

each interval is set to 0.01. 

D.  Experiments with the similarity computation between 

events 

Evaluation corpus 

This consists of 100 pairs of complex NEs covering the 

5 families observed. Table 3 gives the proportions of each 

family in the evaluation corpus. For each of them, we 

have couples whose complex NEs are similar as well as 

those that are not, in fairly equivalent proportion. 

Table 3. Proportion of the different families throughout the entire 

evaluation corpus 

Families 
Family 

1 
Family 

2 
Family 

3 
Family 

4 
Family 

5 

Number 

of pairs 
23 22 23 13 19 

 

We also implemented Barlett's sphericity test [2] to 

verify the overall independence among the property 

similarities across the evaluation corpus. This test 

confirmed to 95\% this independence, which legitimizes 

the experimentation with the approaches based on the 

linear combination. 

Settings of approaches and threshold determination 

Concerning the calibration approach, the optimal 

weights are as follows:       ,          and      

   . For logistic regression and tree-based approaches, we 

trained our models using a corpus of 85 pairs with 50 of 

them similar. We took just 85 pairs because they were 

representative of all the cases, due to the fact that we only 

have 3 properties in our complex NEs. For the clustering 

approach, we built the clusters from a set of 300 event 

NEs. The optimal partitioning thresholds are the 

following:       ,          and         . We 

obtained 102 clusters for titles, 18 and 41 for categories 

and main performers respectively. 

Fig. 6, 7, 8, 9 and 10 present the graphs of the expert's 

scores and those obtained by each of the evaluated 

approaches.
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Fig.6. Variations in expert's scores and those of CombMNZ. 

 

Fig.7. Variations in expert's scores and those of the calibration approach. 

 

Fig.8. Variations in expert's scores and those of the logistic regression 
approach 

 

Fig.9. Variations in expert's scores and those of the tree-based approach. 

 

Fig.10. Variations in expert's scores and those of the clustering approach. 

From these different graphs, we can glimpse a 

similarity threshold between 0.6 and 0.8 for all the 

approaches. After exploring the interval [0.6, 0.8], the 

optimal thresholds for each of the approaches are given in 

Table 4. 

Results and analysis 

The results concerning scenario 1 are given in the 

upper part of Table 5.  

Table 4. Thresholds for similarity or non-similarity decision: event case 

Approaches CombMNZ Calibration 
Logistical 

Reg. 

Tree-

based 
Clustering 

Threshold 0.64 0.62 0.75 0.77 0.64 

Table 5. Results for the two evaluation scenarios 

  CombMNZ Calibration Logistical Reg. Tree-based Clustering 

Scenario 1 

P 92.86 86.67 100 92.86 93.33 

R 92.86 92.86 85.71 92.86 100 

F1 92.86 89.66 92.31 92.86 96.55 

E 91.30 86.96 91.30 91.30 95.65 

Scenario 2 

P 75.00 77.08 86.05 81.82 81.85 

R 81.82 84.09 84.09 81.82 68.89 

F1 78.26 80.43 85.06 81.82 74.70 

E 74.03 76.62 83.12 79.22 72.73 

 

We can observe that the clustering approach leads to 

the best results. This is explained by the fact that when 

two complex NEs are similar, the vectors representing 

them are close to one another and therefore the angle 

between them is small. The CombMNZ and calibration 

approaches lead to the same recall. Indeed, CombMNZ is 

a special case of the calibration approach where all 

weights are equal. On the other hand, the calibration 

weights are calculated on all validation sets, 

independently of the fact that some properties may be 

missing. In addition, the approach setting gives higher 

weights for title and category (0.5 and 0.3 respectively). 

Therefore, if two non-similar events have close titles 

(“F1 Grand Prix De France” and “Grand Prix De 

France Moto”) and the same category (“Motor sports”) 

but different main actors, then the calibration approach 

will tend to compute a similarity score above the 

threshold. Additionally, the results of the logistic 

regression and tree-based approaches are quite similar to 

those of the baseline. 
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Table 6. Results for the pair families of scenario 2: event case 

  CombMNZ Calibratio

n 

Logistical 

Reg. 
Tree-based Clusterin

g 

Family 2 

P 85.71 92.31 86.67 91.67 85.71 

R 85.71 85.71 92.86 78.57 80.00 

F1 85.71 88.89 89.66 84.62 82.76 

E 81.81 86.36 86.36 81.81 77.27 

Family 3 

P 80.00 85.71 85.71 76.47 86.67 

R 85.71 85.71 85.71 92.86 92.86 

F1 82.76 85.71 85.71 83.87 89.66 

E 78.26 82.61 82.61 78.26 86.96 

Family 4 

P 62.50 62.50 83.33 83.33 75.00 

R 83.33 83.33 83.33 83.33 50.00 

F1 71.43 71.43 83.33 83.33 60.00 

E 69.23 69.23 84.62 84.62 69.23 

Family 5 

P 63.64 61.54 87.50 77.78 60.00 

R 70.00 80.00 70.00 70.00 30.00 

F1 66.67 69.57 77.78 73.68 40.00 

E 63.16 63.16 78.95 73.68 52.63 

 

For scenario 2 (at least one missing property), the 

corresponding results are given in the lower part of Table 

5. The logistic regression gives the best results in this 

case, and is directly followed by the tree-based approach. 

These good results for learning-based approaches can be 

explained by the fact that they use the information about 

missing properties in addition to the intermediate 

similarities for the training of the models. The Clustering 

approach that was the best for the previous scenario is the 

one that gives the worst results for scenario 2. Indeed, 

when a property is absent, all associated clusters have a 

weight of 0 in the vector representing the complex NE. 

As a result, the scalar product is weak compared to the 

product of the vector norms: hence the score below the 

threshold. 

We did further analyses according to the different 

families of scenario 2. The corresponding results are 

presented in Table 6. When we have only one missing 

property that is the same in both events (Family 3), the 

clustering approach gives the best results. In all other 

cases, the logistic regression approach is the best. It is 

closely followed by the tree-based approach. We also 

observe that when the number of non-entered properties 

increases, the results of approaches which are not 

learning-based deteriorate quickly. 

E.  Experiments with the computation of similarity 

between event performances 

When the similarity between an event in the index and 

the one extracted is established, we then need to compare 

the performance sets in order to merge them or to append 

new ones to the existing event. 

As with events, the evaluation corpus consists of 100 

performance pairs covering the 5 families observed. The 

particularity of the performances is that all the properties 

are numerical. Barlett’s test served to legitimize the 

experimentation with the approaches based on the linear 

combination. The different approach settings and 

threshold determination are carried out exactly as for 

events. 

Results and analysis 

Table 7 presents the results obtained for each of the 

two scenarios. We can observe that the CombMNZ, 

calibration and clustering approaches lead to the same 

results for scenario 1. Indeed, as all the properties are 

numerical, when two performances with all the properties 

entered are identical, their values coincide or are very 

close. This explains the ability of these approaches to 

clearly establish similarity (100% recall). 

Table 7. Results for the two evaluation scenarios: performance case 

  CombMNZ Calibration Logistical Reg. Tree-based Clustering 

Scenario 1 

P 91.67 91.67 91.67 91.67 91.67 

R 100 100 91.67 91.67 100 

F1 95.56 95.56 91.67 91.67 95.56 

E 95.24 95.24 90.48 90.48 95.24 

Scenario 2 

P 80.43 73.91 84.78 82.61 84.62 

R 80.43 85 84.78 84.44 63.46 

F1 80.43 79.07 84.78 83.52 72.53 

E 77.22 77.22 82.28 81.01 68.35 

 

For scenario 2, the observed trends are similar to those 

in the experiments with event NEs. The two learning-

based approaches stand out from the others and the 

clustering approach is the poorer of the two. We can also 

observe that, as with events, when both of the compared 

NEs have the same property not entered, the clustering 

approach always gives a good recall. However, when the 

number of non-entered properties increases, the results of 



12 Retrieval of Complex Named Entities on the Web: Proposals for Similarity Computation  

Copyright © 2019 MECS                                            I.J. Information Technology and Computer Science, 2019, 11, 1-14 

approaches which are not learning-based deteriorate 

quickly.  

At the end of these two experiments, we can formulate 

the following conclusions: 

 

 the experiments with event performance similarity 

computation confirm the trends observed for event 

NEs; 

 depending on the case, some approaches are more 

appropriate than others: (i) when all properties are 

entered, the clustering approach is more 

appropriate; (ii) when some properties may be 

missing, learning-based approaches are the most 

suitable. However, if the dependency between 

intermediate similarities is guaranteed, we 

recommend using logistic regression; otherwise, it 

is preferable to use the tree-based approach. 

 

VI.  CONCLUSION 

As part of the Cognisearch project, we developed a 

general service architecture dedicated to the extraction of 

complex NEs on the web to supply information retrieval 

services. One of the main issues in this architecture is 

related to the consolidation of extracted information. The 

main problem raised by this is the computation of 

similarity between complex NEs. 

This similarity computation usually consists in two 

stages: (i) the first one computes the similarity between 

property values side-by-side; (ii) the second aggregates 

the obtained scores. Our contribution targets mainly this 

second stage.  

We propose three aggregation techniques: the first uses 

the linear combination for which the weights of the 

intermediate similarities were determined by calibration; 

the second implements logistic regression on a learning 

set to build a model to evaluate overall similarity from 

similarity scores between properties; the third uses 

decision trees to infer a learning model, making it 

possible to determine the overall similarity score from 

those of the different properties. 

We also propose a new approach which exploits the 

work of [4], to partition all the NEs into clusters. Each 

complex NE is then represented as a vector in the basis 

constituted by all the clusters. Finally, the vectorial model 

of [32] is used to calculate the similarity between these 

entities, by evaluating the cosine of the angle formed by 

their vectors. 

We experimented on all these approaches for the 

computation of similarity between events and between 

event performances in the indexing phase. In these two 

different contexts, the obtained results show that our 

approaches perform better than the state-of-the-art one 

used as a baseline (CombMNZ), and more specifically in 

the case where these Complex NEs may have missing 

properties. Therefore, this result presents a real impact in 

the information consolidation domain. As a matter of fact, 

the consolidated information often have missing 

properties. This is notably the case of the events extracted 

with our general architecture where 75% of them have 

non-entered properties. 

One short-term prospect will be to experiment these 

different approaches on larger datasets in order to 

confirm the observed trends and evaluate the approaches 

in terms of performances (computing resources).  

Another prospect will be the experimentation of 

similarity computation approaches in an information 

retrieval context. In particular, we will observe the 

behavior of these approaches when the number of non-

entered search criteria is high, as well as the time needed 

to match the query to the NEs of the index in real use. 
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