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Absract—Predicting the defects at early stage of software
development life cycle can improve the quality of end
product at lower cost. Machine learning techniques have
been proved to be an effective way for software defect
prediction however an imbalance dataset of software
defects is the main issue of lower and biased performance
of classifiers. This issue can be resolved by applying the
re-sampling methods on software defect dataset before
the classification process. This research analyzes the
performance of three widely used resampling techniques
on class imbalance issue for software defect prediction.
The resampling techniques include: “Random Under
Sampling”, “Random Over Sampling” and “Synthetic
Minority Oversampling Technique (SMOTE)”. For
experiments, 12 publically available cleaned NASA
MDP datasets are used with 10 widely used supervised
machine learning classifiers. The performance is
evaluated through various measures including: F-measure,
Accuracy, MCC and ROC. According to results, most of
the classifiers performed better with “Random Over
Sampling” technique in many datasets.

Index Terms—Software Defect predication, Imbalanced
Dataset, Resampling Methods, Random Under Sampling,

Random Oversampling, Synthetic Minority
Oversampling Technique.
I. INTRODUCTION
Developers and researchers have always been

concerned to develop high quality softwares at lower cost
[7, 8, 9]. Predicting the defects at early stage of
development life cycle can achieve this goal as the cost
of fixing the defects increases exponently at later stages
[8], [20, 21]. Software defect prediction is the problem of
binary classification in which we have to classify the
particular module as defective or non-defective [7, 8, 9].
Supervised machine learning techniques have been
widely used to solve the binary classification problems
such as Sentiment Analysis [12, 13, 14, 15], Rainfall
Prediction [16, 17], and DoS attack detection [18, 19].
The supervised machine learning techniques uses pre-
classified data (training data) in order to train the
classifier. During the training process, classification rules
are developed which are used to classify the unseen data
(test data) [10, 11]. The datasets of software defects are
usually skewed in which too many instances are related
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to one class and very less instances belong to second
class. For instance, normally less records are related to
defective class and too much records are related to non-
defective class. The class with less instances is known as
minority class and the class with the too many instances
is known as the majority class. The imbalance between
these two classes is reflected by “Imbalance ratio”, which
is the ratio of the number of instances in majority class to
that of a minority class. [1]. In software defect datasets,
the instances related to non-defective class are usually
high with respect to defective instances as shown in this
table 1. Therefore the particular classifiers trained on
such imbalanced datasets may produce the bias result and
may classify the minority instance as majority instance.
To resolve this issue, many techniques are available. This
paper uses three well known resampling techniques to
handle the class imbalance issue for software defect
prediction. The resampling techniques include: Random
Under Sampling (ROS), Random Over Sampling (RUS)
and Synthetic Minority Oversampling Technique
(SMOTE). Twelve (12) publically available cleaned
NASA MDP datasets are used for experiments along
with 10 widely used supervised machine learning
classifiers including: ‘“Naive Bayes (NB), Multi-Layer
Perceptron (MLP). Radial Basis Function (RBF), Support
Vector Machine (SVM), K Nearest Neighbor (KNN),
kStar (K*), One Rule (OneR), PART, Decision Tree
(DT), and Random Forest (RF)”. Performance evaluation
is performed by using: “F-measure, Accuracy, MCC and
ROC”. The results reflects that ROS performed better in
almost all the datasets.

The rest of the paper is organized as follows: Section 2
discusses the related work done on Class Imbalance issue.
Section 3 elaborates the materials and methods which are
used in this research. Section 4 reflects the results of
experiments. Section 5 finally concludes this research.

Il. RELATED WORK

Many researchers have worked to resolve the class
imbalance issue since the last decade. Some of the related
studies are discussed here. In [1], the authors proposed
SOS-BUS which is a hybrid resampling technique. This
approach integrated a well- known oversampling
technigue SMOTE with the newly developed Under
Sampling Technique. The proposed approach focusses on
the necessary data of majority class and avoid the
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removal stage from random under-sampling. The results
reflected that the proposed technique performed better in
Area under ROC Curve (AUC). In [2], the researchers
discussed class imbalance learning methods and
elaborated that how these methods can be used for
effective software defect prediction. They investigated
various class imbalance learning methods such as
resampling techniques, threshold moving techniques, and
ensemble algorithms. AdaBoost.NC reflected high
performance in Balance, G-mean, and Area Under the
Curve (AUC). Moreover an improvement in
AdaBoost.NC has also been proposed in which parameter
adjustment is performed automatically during the training
process. The proposed version proved to be more
effective and efficient. Researchers in [3] discussed two
resampling techniques which are the extensions of
SMOTE and RUS. They have studied and discussed an
ensemble learning method AdaBoost.R2 to resolve the
data imbalance issue for software defect prediction. The
researchers discussed that the extensions of SMOTE and
RUS, SmoteND and RusND are the effective techniques
to resolve the imbalance issue in software defect datasets.
Experiments on 6 datasets with two performance
measures have showed the effectives of these techniques.
Moreover in order to improve the performance of these
techniques, AdaBoost.R2 algorithm is integrated and
made these techniques as SmoteNDBoost and
RusNDBoost. Experiments reflected that the hybrid
approach outperformed the individual techniques
including SmoteND, RusND and AdaBoost.R2).
Researchers in [4] analyzed the performance of SMOTE
on the issue of class imbalance on software defect
prediction. They have analyzed that at which extent the
SMOTE technique can improve the classification of
defective software modules. The researchers reflected
that after applying the SMOTE technique the dataset
became more balanced and more accurate results were
noted on four benchmark datasets. In [5], the researchers
have proposed a software defect prediction system named
“Weighted Least Squares Twin Support Vector Machine”
(WLSTSVM). The proposed system works by assigning
the higher misclassification cost to the instances related
to defective class and lower cost to the instances related
to non-defective class. Experiments were performed by
using 8 software defect datasets which showed that the
proposed system performed better in non-parametric
Wilcoxon signed rank test. Researchers in [6] used three
re sampling techniques on credit card dataset in order to
overcome the class imbalance issue. The techniques
include: Random Under Sampling, Random Over
Sampling and Synthetic Minority —Oversampling
Technique. The performance was evaluated by using
Sensitivity, Specificity, Accuracy, Precision, Area Under
Curve (AUC) and Error Rate. The results reflected that
the resampled datasets brought better performance.
Researchers in [7] analyzed the performance of various
widely used supervised classifiers on software defect
prediction. For experiments, 12 publically available
NASA datasets were used. The classification techniques
included: “Naive Bayes (NB), Multi-Layer Perceptron
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(MLP). Radial Basis Function (RBF), Support Vector
Machine (SVM), K Nearest Neighbor (KNN), kStar
(K*), One Rule (OneR), PART, Decision Tree (DT), and
Random Forest (RF)”. The performance is evaluated by
using Precision, Recall, F-Measure, Accuracy, MCC, and
ROC Area. The researchers have observed that that
neither the Accuracy and nor the ROC can be used as an
effective performance measure as both of these did not
react on class imbalance issue. However, Precision,
Recall, F-Measure and MCC reacted to class imbalance
problem in the results.

I1l. MATERIALS AND METHODS

This research aims to analyze the performance of three
well known resampling technigues on class imbalance
issue for software defect prediction. For this purpose a
comparison framework (Fig. 1) is used in which
performance of each re-sampling technique is analyzed
with various well known classifiers. The framework
consists of four stages: 1) Dataset selection, 2)
Resampling, 3) Classification, and 4) reflection and
analysis of Results. First stage deals with the selection of
datasets in which 12 cleaned NASA MDP datasets are
used for experiments including: “CM1, JM1, KC1, KC3,
MC1, MC2, MW1, PC1, PC2, PC3, PC4 and PC5 (Table
I)”. Each of the used dataset represents a particular
NASA’s software system. The datasets include various
quality metrics in the form of attributes along with
known output class. The output class is also called the
target class which is predicted on behalf of other
attributes. The attribute which holds the target/output
class is known as dependent attribute and other attributes
are known as independent attributes as those are used to
predict the dependent attribute.

Random Under-sampling

|

|

|

|

I

1 Random Oversampling

|

|

: Synthetic Minority Oversampling
|

. NB, MLP, RBF, SVM, kNN, kStar, OneR, PART,
1 DT, and RF

Results Comparison

Fig.1. Comparison Framework
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Table 1. Cleaned NASA Software Datasets [22], [23]

Dataset Attributes | Modules Defective De':‘l:(?[;ve
CM1 38 327 42 285
M1 22 7,720 1,612 6,108
KC1 22 1,162 294 868
KC3 40 194 36 158
MC1 39 1952 36 1916
MC2 40 124 44 80
MW1 38 250 25 225
PC1 38 679 55 624
PC2 37 722 16 706
PC3 38 1,053 130 923
PC4 38 1,270 176 1094
PC5 39 1694 458 1236

The dependent attribute in the used datasets have the

values of either “Y” or “N”. “Y” means that particular
instance (which represents a module) is defective and “N”
reflects that it is non-defective. Two versions of NASA
MDP cleaned datasets are provided by [22], D’ and D”.
D’ includes the duplicate and inconsistent instances
whereas D’’ do not include duplicate and inconsistent
instances. We have used D” version of cleaned datasets
(Table 1) available at [23]. This version of cleaned
dataset is already used and discussed by [7,8,9],
[24,25,26]. Table 2 reflects the cleaning criteria
implemented by [22]. Table 1 reflects some crucial
information about the datasets which are used in this
research such as: Dataset name, No of attributes each
dataset contains, No of modules (instances) in each
dataset, No of defective modules and No of non-defective
modules.

Table 2. Cleaning Criteria Applied to Noisy NASA Datasets [22], [24]

Criterion Data Quality Category Explanation
. “Instances that have identical values for all metrics
1. Identical cases . - »
including class label”.
2 Inconsistent cases Instances t]’lé?.t sailsfy all conditions of Case 1, but where
class labels differ”.
3. Cases with missing values “Instances that contain one or more missing observations”.
“Instances that have 2 or more metric values that violate
4 Cases with conflicting feature values | S°M€ referential integrity constraint. For example, LOC
' Y TOTAL is less than Commented LOC. However,
Commented LOC is a subset of LOC TOTAL”.
5. Cases with implausible values Instances that violate siyme’ ’mtegrlty constraint. For
example, value of LOC=1.1
Table 3. Comparison of Resampling Methods [6]
RUS ROS SMOTE
Removes the instances of | Increases the instances of ::Tacsrsasisythgxltr::;ac’r}gffnsf rgé?v%gz
Process ?‘;g{?crétsythglg:?as;a;ndomly and 2:1[21(2;:7?( class by duplicating preexisting  minority  instances
) y which obtained by KNN.
No information is lost and | Effective in  improving the
Strength Shorter convergence time. can improve the performance | classification accuracy of the
produce better results. minority data.
Important information is lost L Data_ synthetic still possible to
A - Overfitting issue due to | spread on both minority and
Limitation | due to the shrinkage of Itile tied i ority d h duced th
majority class multiple tied instances. majority data, hence reduced the
performance of classification.

Second stage uses 3 widely used re sampling
techniques (Table 3) to resolve the class imbalance issue
in datasets. The resampling techniques include: RUS
(Random Under-Sampling), ROS (Random Over-
Sampling), SMOTE (Synthetic Minority Over-sampling
Technique) which are discussed below:

A. RUS (Random Under-Sampling)

This technique reduces the imbalance ratio in dataset
by removing some of the instances of majority class and
makes the classes equal in terms of related instances. The
balanced dataset may lose the important information
during the removal of instances from majority class due
to which the classifier may reflect worse performance.
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B. ROS (Random Over-Sampling)

This technique reduces the imbalance ratio in dataset
by duplicating the instances in minority class. With this
approach the existing instances retains in the dataset but
the volume of the dataset increases due to duplication.
Both the classes can get balance with this technique
however over-fitting problem can occur which can
degrade the performance of classifier.

C. SMOTE  (Synthetic
Technique)

Minority Over-sampling

Synthetic  Minority  Over-sampling  Technique
(SMOTE) is the widely used sampling techniques which
creates additional synthetic instances in the minority
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class instead of duplication. The steps of this technique
are discussed below:

1. A random number is generated between 0 and 1.

2. The difference between the feature vector of
minority class sample and its nearest neighbor is
calculated.

3. The difference calculated in step 2 is multiplied with
the random number generated in step 1.

4. The result achieved in step 3 is added to the feature
vector of minority class sample.

5. The result of step 4 identifies the newly generated
sample.

Third stage deals with the classification by using
various widely used supervised learning techniques
including: Nawe Bayes (NB), Multi-Layer Perceptron
(MLP). Radial Basis Function (RBF), Support Vector
Machine (SVM), K Nearest Neighbor (KNN), kStar (K*),
One Rule (OneR), PART, Decision Tree (DT), and
Random Forest (RF).

Fourth and final stage of the comparison framework
deals with the extraction and reflection of results and is
discussed in next section (Section 4).

IV. RESULTS AND DISCUSSION

The datasets after re sampling are given to
classification techniques as input with 70:30 ratio (70 %
training data and 30% test data). Performance is
evaluated through various measures generated from
confusion matrix including: Precision, Recall, F-measure,
Accuracy, MCC and ROC.

The confusion matrix is shown in (Fig. 2) and consists
of following parameters [7].

True Positive (TP): “Instances which are actually
positive and also classified as positive”.

False Positive (FP): “Instances which are actually
negative but classified as positive”.

False Negative (FN): “Instances which are actually
positive but classified as negative”.

True Negative (TN): “Instances which are actually
negative and also classified as negative”.

Performance measures are based on the parameters of
confusion matrix and are discussed below [7,8,9].

Actual Values
Defective (Y) Non-defective (N)

Defective (Y) TP FP

Non-defective (N) FN TN

Predicted Values

Fig.2. Confusion Matrix

Precision = _TP Q
(TP +FP)
Recall = —1 = @
(TP+FN)

Precision* Recall *2
F —measure = — 3)
(Precision + Recall)

Accuracy = TP+TN 4)
TP+TN + FP+FN

1+TP. —FP,

AUC = (5)

o TN *TP— FN*FP (
J(FPTP)(FN +TP)(TN + FP)(TN + FN)

6)

Table 4. CM1 Results

F-Measure Accuracy

ROC Area MCC

Classifiers

No Tec| RUS | ROS [SMOTE|No Tec| RUS | ROS

SMOTE RUS | ROS

No smoTe| N° | Rrus | Ros

Tec Tec SMOTE

NB 0.190 | 0.316 | 0.444 | 0.462 | 82.653 | 48.000 | 59.183

74.774 |0.703| 0.535 | 0.685 | 0.806 |[0.097| -0.06 | 0.217 | 0.308

MLP | 0.000 | 0.690 | 0.907 | 0.244 | 86.734 | 64.000 | 89.795

72.072 |0.634| 0.622 | 0.923 | 0.638

-0.060| 0.316 | 0.813 | 0.138

RBF ? 0.667 | 0.736 | 0.171 | 90.816 | 60.000 | 71.428

73.873 |0.702| 0.532 | 0.741 | 0.686 ? 0.243 | 0434 | 0.161

SVM ? 0.667 | 0.684 | 0.065 | 90.816 | 60.000 | 63.265

73.873 |0.500| 0.609 | 0.633 | 0.517 ? 0.243 | 0.281 | 0.157

kNN | 0.083 | 0.667 | 0.867 | 0.517 | 77.551 | 60.000 | 84.693

74774 |0.477| 0.609 | 0.855 | 0.670

-0.037| 0.243 | 0.729 | 0.347

kStar | 0.083 | 0.348 | 0.899 | 0.571 | 77.551 | 40.000 | 88.775

78.378 |0.538| 0.417 | 0.946 | 0.761

-0.037| -0.20 | 0.796 | 0.430

OneR | 0.000 | 0.667 | 0.759 | 0.273 | 85.714 | 60.000 | 73.469

71.171 |0.472| 0.609 | 0.735 | 0.551

-0.074| 0.243 | 0479 | 0.135

PART ? 0.444 | 0.913 | 0.600 | 90.816 | 40.000 | 90.816

78.378 |0.610| 0.413 | 0912 | 0.684 ? -0.19 | 0.821 | 0.452

DT 0.154 | 0.581 | 0.846 | 0.458 | 77.551 | 48.000 | 83.673

76.576 |0.378| 0.439 | 0.850 | 0.595 |[0.041| -0.02 | 0.679 | 0.338

RF 0.000 | 0.571 | 0.899 | 0.462 | 89.795 | 52.000 | 88.775

81.081 |0.761| 0.465 | 0.991 | 0.924

-0.032| 0.053 | 0.796 | 0.488
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Table 5. IM1 Results

F-Measure Accuracy ROC Area MCC

e | No Tec | RUS | ROS | SMOTE |No Tec| RUS | ROS | SMOTE |No Tec| RUS | ROS |SMOTE ?‘e"c RUS | ROS |SMOTE

NB 0.318 | 0.307 | 0.310 | 0.290 |79.835|57.600| 56.217 | 68.035 | 0.663 | 0.650 | 0.652 | 0.629 |0.251| 0.210 | 0.199 | 0.188
MLP | 0.146 | 0.639 | 0.525 | 0.483 |80.354|59.152| 61.312 | 67.750 | 0.702 | 0.671 | 0.673 | 0.666 |0.206| 0.197 | 0.250 | 0.253
RBF | 0.181 | 0.601 | 0.605 | 0.403 |80.397 [62.771| 63.385 | 69.000 | 0.713 | 0.667 | 0.675 | 0.675 |0.215| 0.225 | 0.273 | 0.241
SVM ? 0.497 | 0.504 | 0.217 |79.188(62.771| 61.053 | 67.750 | 0.500 | 0.623 | 0.613 | 0.545 ? 0.284 | 0.252 | 0.167
kNN | 0.348 | 0.594 | 0.867 | 0.565 |73.963|59.565|85.751| 71.035 | 0.591 | 0.596 | 0.850 | 0.672 [0.186| 0.192 | 0.720 | 0.348
kStar | 0.355 | 0.567 | 0.869 | 0.646 |75.993(59.462| 85.794 | 76.071 | 0.572 | 0.634 | 0.934 | 0.794 [0.212| 0.188 | 0.723 | 0.465
OneR | 0.216 | 0.560 | 0.672 | 0.607 |77.158|56.256| 67.055 | 77.678 | 0.543 | 0.563 | 0.671 | 0.711 |0.126| 0.125 | 0.341 | 0.478
PART | 0.037 | 0.678 | 0.658 | 0.606 |79.490 |65.563|66.968 | 76.142 | 0.714 | 0.697 | 0.738 | 0.786 |0.104| 0.319 | 0.342 | 0.446
DT 0.348 | 0.619 | 0.834 | 0.623 |79.101|63.909| 82.728 | 76.821 | 0.671 | 0.654 | 0.855 | 0.777 |0.252| 0.278 | 0.655 | 0.464
RF 0.284 | 0.671 | 0.885 | 0.690 |80.181 (66.597|87.953 | 81.071 | 0.738 | 0.715 | 0.960 | 0.840 |0.244| 0.334 | 0.761 | 0.564

Table 6. KC1 Results

F-Measure Accuracy ROC Area MCC

No Tec| RUS | ROS |[SMOTE|NoTec| RUS | ROS |SMOTE 'I’:‘e(:: RUS | ROS |SMOTE "I}‘e% RUS | ROS |SMOTE

NB 0.400 | 0.516 | 0.498 | 0.468 | 74.212 | 64.772 |61.318 | 66.132 [0.694| 0.719 | 0.669 | 0.692 |[0.250| 0.300 | 0.253 | 0.280
MLP | 0.358 | 0.504 | 0.692 | 0.480 | 77.363 |67.613 | 69.627 | 67.734 |0.736| 0.755 | 0.744 | 0.714 |0.296| 0.398 | 0.393 | 0.322
RBF | 0.362 | 0.649 | 0.648 | 0.512 |78.796 |69.318 | 67.335| 67.276 |0.713| 0.762 | 0.705 | 0.702 |0.347| 0.381 | 0.350 | 0.307
SVM | 0.085 | 0.639 | 0.611 | 0.445 | 75.358|70.454 |63.896 | 67.505 |0.521| 0.695 | 0.639 | 0.623 |0.151| 0.408 | 0.280 | 0.324
kNN | 0.395 | 0.584 | 0.858 | 0.684 |69.341|61.931 |85.673 | 72.997 |0.595| 0.616 | 0.868 | 0.728 |0.190| 0.233 | 0.714 | 0.449
kStar | 0.419 | 0.650 | 0.836 | 0.717 |72.206 | 68.750 | 83.094 | 76.201 |0.651| 0.686 | 0.912 | 0.843 |0.238 | 0.370 | 0.663 | 0.512
OneR | 0.256 | 0.656 | 0.661 | 0.671 |73.352|64.204 | 65.616 | 77.345 |0.551| 0.648 | 0.656 | 0.742 |0.147| 0.298 | 0.313 | 0.536
PART | 0.255 | 0.664 | 0.671 | 0.475 |76.504 |55.113 | 72.779 | 69.107 |0.636| 0.680 | 0.813 | 0.727 |0.239| 0.227 | 0.484 | 0.366

DT 0.430 | 0.500 | 0.798 | 0.679 |75.644|64.772|79.369 | 72.082 |0.606| 0.664 | 0.784 | 0.740 |0.291| 0.305 | 0.588 | 0.434

RF 0.454 | 0.620 | 0.861 | 0.790 | 77.937 | 63.068 | 85.959 | 82.837 [0.751| 0.733 | 0.935 | 0.890 |[0.346 | 0.263 | 0.720 | 0.645

Classifiers

Table 7. KC3 Results

F-Measure Accuracy ROC Area MCC

No Tec| RUS | ROS |[SMOTE|NoTec| RUS | ROS |SMOTE .’Fleoc RUS | ROS |SMOTE "Fle(z: RUS | ROS |SMOTE

NB 0.421 | 0.526 | 0.588 | 0.471 |81.034|59.090 | 63.793 | 73.913 [0.769| 0.846 | 0.712 | 0.686 |0.309| 0.302 | 0.358 | 0.364
MLP | 0.375 | 0.667 | 0.857 | 0.634 |82.758 | 63.636 | 84.482 | 78.260 |0.733| 0.761 | 0.851 | 0.824 |0.295| 0.277 | 0.692 | 0.490
RBF | 0.000 | 0.526 | 0.733 | 0.467 |77.586 | 59.090 | 72.413 | 76.811 |0.735| 0.829 | 0.772 | 0.724 |-0.107| 0.302 | 0.463 | 0.475
SVM ? 0.526 | 0.667 | 0.160 |82.758 |59.090 | 67.241 | 69.565 |0.500| 0.637 | 0.688 | 0.543 ? 0.302 | 0.378 | 0.244
kNN | 0.364 | 0.600 | 0.889 | 0.600 | 75.862 | 63.636 | 87.931 | 76.811 |0.617| 0.675 | 0.893 | 0.707 |0.218| 0.370 | 0.762 | 0.452
kStar | 0.300 | 0.609 | 0.923 | 0.667 | 75.862|59.090 | 91.379 | 79.710 |0.528| 0.521 | 0.942 | 0.818 |0.154 | 0.203 | 0.826 | 0.528
OneR | 0.375 | 0.476 | 0.836 | 0.439 |82.758 | 50.000 | 81.034 | 66.666 |0.619| 0.526 | 0.804 | 0.598 |0.295| 0.052 | 0.612 | 0.210
PART | 0.143 | 0.640 | 0.866 | 0.683 |79.3103|59.090 | 84.482 | 81.159 |0.788| 0.598 | 0.866 | 0.748 |0.056| 0.169 | 0.683 | 0.560

DT 0.300 | 0.692 | 0.870 | 0.744 | 75.862 | 63.636 | 84.482 | 84.058 |0.570| 0.667 | 0.862 | 0.829 |0.154| 0.248 | 0.683 | 0.632

RF 0.235 | 0.571 | 0.896 | 0.563 | 77.586 | 59.090 | 87.931 | 79.710 |0.807| 0.714 | 0.948 | 0.838 |0.111| 0.245 | 0.753 | 0.548

Classifiers
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Table 8. MC1 Results
— F-Measure Accuracy ROC Area MCC
No Tec| RUS | ROS |SMOTE|NoTec| RUS | ROS |SMOTE .’F‘; RUS | ROS |SMOTE .:}leoc RUS | ROS |SMOTE
NB 0.217 | 0.353 | 0.505 | 0.211 |93.856 | 50.000 | 63.139 | 87.416 |0.826| 0.590 | 0.797 | 0.778 |0.208 | 0.153 | 0.330 | 0.204
MLP ? 0.727 | 0.887 | 0.400 |97.610 | 72.727 | 88.737 | 96.476 |0.805| 0.897 | 0.970 | 0.829 ? 0.504 | 0.776 | 0.391
RBF ? 0.727 | 0.781 ? 97.610 | 72.727 | 77.815 | 96.476 |0.781| 0.889 | 0.889 | 0.764 ? 0.504 | 0.557 ?
SVM ? 0.700 | 0.821 ? 97.610 | 72.727 | 81.570 | 96.476 |0.500( 0.769 | 0.815 | 0.500 ? 0.568 | 0.631 ?
kNN 0.333 | 0.696 | 0.995 | 0.585 |97.269 | 68.181 | 99.488 | 97.147 |0.638| 0.697 | 0.995 | 0.779 |0.325| 0.388 | 0.990 | 0.571
kStar | 0.182 | 0.667 | 0.998 | 0.514 |96.928 | 68.181 | 99.829 | 97.147 |0.631| 0.701 | 1.000 | 0.856 |0.174| 0.437 | 0.997 | 0.511
OneR | 0.200 | 0.421 | 0963 | 0.240 | 97.269 | 50.000 | 96.075 | 96.811 |0.568| 0.543 | 0.960 | 0.571 |0.206| 0.094 | 0.924 | 0.319
PART | 0.333 | 0.727 | 0.990 | 0.500 | 97.269 | 72.727 | 98.976 | 96.979 |0.684| 0.658 | 0.988 | 0.890 |0.325| 0.504 | 0.980 | 0.492
DT ? 0.667 | 0.984 | 0.474 |97.610 | 68.181 | 98.293 | 96.644 |0.500| 0.765 | 0.982 | 0.750 ? 0.437 | 0.966 | 0.459
RF 0.000 | 0.526 | 0.998 | 0.385 |97.440 |59.090 | 99.829 | 97.315 |0.864| 0.769 | 1.000 | 0.973 |-0.006( 0.302 | 0.997 | 0.481
Table 9. MC2 Results
e F-Measure Accuracy ROC Area MCC
No Tec| RUS | ROS |SMOTE|NoTec| RUS | ROS |SMOTE .P(_i RUS | ROS |SMOTE 'Pe?: RUS | ROS |SMOTE
NB 0.526 | 0.600 | 0.522 | 0.596 | 75.675 | 69.230 | 70.270 | 62.000 |0.795| 0.726 | 0.847 | 0.735 |0.444| 0.386 | 0.477 | 0.301
MLP | 0519 | 0.300 | 0.750 | 0.654 |64.864 | 46.153 | 78.378 | 64.000 [0.753| 0.507 | 0.865 | 0.785 |[0.243| -0.11 | 0.564 | 0.298
RBF | 0.444 | 0.538 | 0.667 | 0.750 |72.973|53.846 | 70.270 | 72.000 |0.766| 0.639 | 0.824 | 0.829 |0.371| 0.264 | 0.399 | 0.434
SVM | 0.222 | 0.583 | 0.621 | 0.720 |62.162 | 61.538 | 70.270 | 72.000 |[0.514| 0.688 | 0.690 | 0.739 | 0.04 | 0.356 | 0.404 | 0.478
kNN 0.545 | 0.522 | 0.839 | 0.800 |72.973|57.692 |86.486 | 76.000 |0.668| 0.625 | 0.822 | 0.747 |0.374| 0.234 | 0.734 | 0.503
kStar | 0.348 | 0.400 | 0.765 | 0.862 |59.459|65.384 | 78.378 | 84.000 |0.510| 0.576 | 0.838 | 0.816 |0.062 | 0.159 | 0.565 | 0.672
OneR | 0.316 | 0.385 | 0.647 | 0.807 |64.864 | 38.461 | 67.567 | 78.000 |0.553| 0.451 | 0.674 | 0.778 |0.137| -0.09 | 0.347 | 0.552
PART | 0.667 | 0.500 | 0.727 | 0.727 | 78.378 | 53.846 | 75.675 | 70.000 |0.724| 0.639 | 0.768 | 0.755 |0.512| 0.184 | 0.509 | 0.399
DT 0.435 | 0.522 | 0.629 | 0.721 | 64.864 | 57.692 | 64.864 | 66.000 |0.615| 0.639 | 0.715 | 0.631 |0.189| 0.234 | 0.296 | 0.290
RF 0.480 | 0.435 | 0.774 | 0.847 |64.864 | 50.000 | 81.081 | 82.000 |0.646| 0.556 | 0.937 | 0.878 |0.216| 0.065 | 0.623 | 0.629
Table 10. MW1 Results
i F-Measure Accuracy ROC Area MCC
No Tec| RUS | ROS |SMOTE|No Tec| RUS | ROS [SMOTE .’F‘:C RUS | ROS [SMOTE .Ilile% RUS | ROS |[SMOTE
NB 0.435 | 0.706 | 0.740 | 0.516 | 82.666 | 66.666 | 74.666 | 81.707 |0.791| 0.630 | 0.793 0.842 |0.367| 0.327 | 0.506 0.427
MLP | 0.632 | 0.706 | 0.930 | 0.522 | 90.666 | 66.666 | 92.000 | 86.585 |0.843| 0.722 | 0.938 0.790 |0.589| 0.327 | 0.849 0.444
RBF ? 0.667 | 0.819 | 0.400 |89.333|66.666 | 80.000 | 85.365 |0.808| 0.778 | 0.828 | 0.829 ? 0.389 | 0.598 | 0.329
SVM ? 0.667 | 0.800 | 0.500 |89.333|66.666 | 80.000 | 87.804 |0.500| 0.694 | 0.804 | 0.687 ? 0.389 | 0.607 | 0.445
KNN 0.444 | 0.706 | 0.909 0.538 | 86.666 | 66.666 | 89.333 | 85.365 [0.705| 0.667 | 0.854 | 0.742 |0.373| 0.327 | 0.802 0.454
kStar | 0.133 | 0.800 | 0.909 0.552 | 82.666 | 80.000 | 89.333 | 84.146 |0.543| 0.778 | 0.967 0.860 |0.038| 0.667 | 0.802 0.469
OneR | 0.200 | 0.667 | 0.833 | 0.333 |89.333|66.666 | 81.333 | 85.365 |0.555| 0.694 | 0.809 | 0.604 |0.211| 0.389 | 0.626 | 0.281
PART | 0.167 | 0.706 | 0.930 | 0.522 | 86.666 | 66.666 | 92.000 | 86.585 |0.314| 0.630 | 0.940 | 0.656 |0.110| 0.327 | 0.849 | 0.444
DT 0.167 | 0.750 | 0.920 | 0.417 | 86.666 | 73.333 | 90.666 | 82.926 |0.314| 0.722 | 0.900 0.740 |0.110| 0.491 | 0.825 0.317
RF 0.182 | 0.667 | 0.952 0.609 | 88.000 | 66.666 | 94.666 | 89.024 |0.766| 0.741 | 1.000 0.896 |0.150| 0.389 | 0.897 0.546
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Table 11. PC1 Results

F-Measure Accuracy ROC Area MCC

No Tec| RUS | ROS |SMOTE|NoTec| RUS | ROS |SMOTE 'INeOc RUS | ROS |SMOTE .’F‘eoc RUS | ROS |SMOTE

NB 0.400 | 0.583 | 0.530 | 0.485 |89.705 | 69.697 | 65.024 | 84.545 | 0.879 | 0.818 | 0.846 | 0.842 |0.400| 0.442 | 0.382 | 0.403
MLP | 0.462 | 0.500 | 0.929 | 0.508 | 96.568 | 57.575|92.118 | 85.909 | 0.779 | 0.713 | 0.942 | 0.910 |0.538| 0.149 | 0.852 | 0.443
RBF | 0.154 | 0.667 | 0.851 | 0.130 | 94.607 | 66.666 | 83.743 | 81.818 | 0.875|0.790 | 0.901 | 0.870 |0.161| 0.335 | 0.677 | 0.104
SVM ? 0.688 | 0.853 | 0.000 |95.098 |69.697 |83.743 | 82.272 | 0.5 |0.697 | 0.835 | 0.497 ? 0.393 | 0.680 | -0.031
KNN | 0.286 | 0.774 | 0.963 | 0.507 |92.647 | 78.787 | 96.059 | 85.000 | 0.629 | 0.787 | 0.979 | 0.691 |0.247| 0.576 | 0.924 | 0.426
kStar | 0.176 | 0.552 | 0.955 | 0.667 |86.274 | 60.606 | 95.073 | 88.636 | 0.673 | 0.728 | 0.983 | 0.920 |[0.128| 0.211 | 0.905 | 0.598
OneR | 0.154 | 0.737 | 0.860 | 0.276 |94.607 | 69.697 | 84.729 | 80.909 | 0.545|0.702 | 0.845 | 0.572 |0.161| 0.429 | 0.697 | 0.190
PART | 0.462 | 0.667 | 0.963 | 0.514 |93.137|69.697 | 96.059 | 84.545 | 0.889|0.691 | 0.967 | 0.771 |0.440| 0.394 | 0.922 | 0.425

DT 0.500 | 0.750 | 0.940 | 0.606 |93.137 | 75.757 | 93.596 | 88.181 | 0.718 | 0.721| 0.948 | 0.808 [0.490| 0.515 | 0.874 | 0.547

RF 0.429 | 0.778 | 0.946 | 0.610 |96.078 | 75.757 | 94.088 | 89.545 | 0.858 | 0.860 | 0.999 | 0.941 [0.459| 0.534 | 0.887 | 0.588

Classifiers

Table 12. PC2 Results

F-Measure Accuracy ROC Area MCC

Cesifies | No Tec| RUS | ROS |SMOTE|No Tec| RUS | ROS |SMOTE %\‘e"c RUS | ROS |SMOTE }“e‘f: RUS | ROS |SMOTE

NB 0.000 | 0.667 | 0.752 | 0.250 |94.470 | 70.000 | 76.958 | 91.855 [0.751| 0.875 | 0.826 | 0.844 |(-0.028| 0.535 | 0.542 | 0.207
MLP | 0.000 | 0.923 | 0.955 | 0.273 |96.774|90.000 | 95.391 | 92.760 | 0.746 | 0.958 | 0.939 | 0.866 |[-0.015| 0.802 | 0.912 | 0.236
RBF ? 0.923 | 0.800 ? 97.695 | 90.000 | 78.801 | 94.570 | 0.724 | 0.958 | 0.885 | 0.812 ? 0.802 | 0.583 ?
SVM ? 0.667 | 0.790 ? 97.695 | 70.000 | 77.419 | 94.570 | 0.500 | 0.750 | 0.775 | 0.500 ? 0.535 | 0.558 ?
kNN | 0.000 | 0.833 | 0.955 | 0.400 |96.774 |80.000 [ 95.391 | 94.570 [0.495| 0.792 | 0.941 | 0.657 |(-0.015| 0.583 | 0.912 | 0.381
kStar | 0.167 | 0.833 | 0.973 | 0.182 |95.391 | 80.000 | 97.235| 91.855 [0.791| 0.813 | 1.000 | 0.696 |0.146| 0.583 | 0.946 | 0.140
OneR | 0.000 | 0.923 | 0.930 | 0.375 |97.235|90.000 | 92.626 | 95.475 | 0.498 | 0.875 | 0.927 | 0.623 |-0.01 | 0.802 | 0.862 | 0.417
PART | 0.000 | 0.833 | 0.968 ? 96.774 | 80.000 | 96.774 | 94.570 [ 0.623 | 0.854 | 0.979 | 0.871 |-0.015| 0.583 | 0.937 ?

DT ? 0.833 | 0.973 | 0.250 |97.695 | 80.000 | 97.235 | 94.570 |0.579 | 0.854 | 0.977 | 0.813 ? 0.583 | 0.946 | 0.267

RF ? 0.923 | 0.977 ? 97.695 | 90.000 | 97.695 | 94.570 | 0.731| 0.958 | 1.000 | 0.968 ? 0.802 | 0.955 ?

Table 13. PC3 Results

F-Measure Accuracy ROC Area MCC

No Tec| RUS | ROS |SMOTE|NoTec| RUS | ROS [SMOTE .Ilile(:: RUS | ROS [SMOTE "Fle(z: RUS | ROS |SMOTE

NB 0.257 | 0.754 | 0.634 | 0.576 |28.797|78.205 | 49.683 | 75493 |[0.773| 0.823 | 0.722 | 0.832 |0.088 | 0.561 | 0.013 | 0.452
MLP | 0.261 | 0.694 | 0.819 | 0.482 |83.860 | 71.794|81.012| 79.436 | 0.796| 0.751 | 0.859 | 0.848 |[0.183| 0.433 | 0.627 | 0.356
RBF ? 0.763 | 0.764 | 0.274 |86.392|76.923 | 75.316 | 76.056 | 0.795| 0.798 | 0.807 | 0.803 ? 0.542 | 0511 | 0.152
SVM ? 0.763 | 0.731 | 0.136 |86.320|76.923 | 71.835| 78.591 | 0.500 | 0.772 | 0.720 | 0.528 ? 0.542 | 0.442 | 0.120
kNN | 0.353 | 0.667 | 0.928 | 0.535 |86.075|70.512|92.721 | 81.408 | 0.616 | 0.700 | 0.919 | 0.702 |0.294 | 0.404 | 0.856 | 0.421
kStar | 0.267 | 0.667 | 0.904 | 0.604 |82.594 70512 |89.873 | 82.253 | 0.749| 0.702 | 0.962 | 0.870 |[0.173| 0.404 | 0.806 | 0.491
OneR | 0.226 | 0.747 | 0.774 | 0.462 |87.025 | 75.641 | 75.949 | 84.225 | 0.562 | 0.758 | 0.761 | 0.651 |[0.245| 0.514 | 0.527 | 0.450

PART ? 0.658 | 0.906 | 0.417 |86.392|65.384 | 90.506 | 81.126 | 0.790 | 0.696 | 0.929 | 0.747 ? 0.318 | 0.811 | 0.339

DT 0.358 | 0.718 | 0.896 | 0.592 |86.392|71.794 | 89.240 | 83.662 | 0.664 | 0.742 | 0.908 | 0.711 |0.304| 0.444 | 0.789 | 0.491

RF 0.226 | 0.767 | 0911 | 0.641 |87.025|78.205|90.822 | 86.760 | 0.855| 0.796 | 0.983 | 0.900 [0.245| 0.563 | 0.822 | 0.571

Classifiers
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Table 14. PC4 Results
F-Measure Accuracy ROC Area MCC
% |No Tec| RUS | ROS |SMOTE|NoTec| RUS | ROS |SMOTE #‘e"c RUS | ROS [SMOTE #‘e"c RUS | ROS |SMOTE
NB | 0.404 | 0.617 | 0.650 | 0.477 |(86.0892| 70.754 | 69.816 | 79.262 |0.807 | 0.766 | 0.787 | 0.844 |0.334| 0.456 | 0.436 | 0.396
MLP | 0.562 | 0.739 | 0.899 | 0.736 |89.7638| 72.641 | 89.238 | 85.483 (0.898| 0.814 | 0.938 | 0.918 |0.515| 0.458 | 0.784 | 0.638
RBF | 0.250 | 0.717 | 0.788 | 0.476 |87.4016| 71.698 | 77.690 | 80.184 [0.862| 0.824 | 0.887 | 0.887 |0.279| 0.434 | 0.553 | 0.424
SVM | 0.286 | 0.754 | 0.805 | 0.561 |88.189 | 73.584 | 78.477 | 83.410 |0.583| 0.738 | 0.782 | 0.696 |0.342| 0.482 | 0.569 | 0.539
kNN | 0.438 | 0.738 | 0.954 | 0.679 |85.8268|69.811 | 95.013 | 83.871 [0.667| 0.701 | 0.945 | 0.778 |0.359| 0.425 | 0.902 | 0.573
kStar | 0.330 | 0.683 | 0.917 | 0.733 |81.8898| 62.264 | 90.551 | 85.253 |0.734| 0.669 | 0.985 | 0.905 |0.225| 0.275 | 0.821 | 0.633
OneR | 0.361 | 0.786 | 0.841 | 0.620 |87.9265| 77.358 | 82.677 | 85.023 [0.614| 0.775 | 0.825 | 0.726 |0.352| 0.555 | 0.653 | 0.589
PART | 0481 | 0.828 | 0.916 | 0.785 |85.3018|81.132|90.813 | 87.788 [0.776| 0.801 | 0.923 | 0.892 [0.396| 0.641 | 0.818 | 0.705
DT | 0.583 | 0.810 | 0.936 | 0.742 |(86.8766| 79.245 | 92.913 | 86.405 |0.834| 0.775 | 0.944 | 0.863 |0.514| 0.602 | 0.862 | 0.650
RF | 0532 | 0.831 | 0.947 | 0.823 |90.2887|81.132 | 94.225 | 91.474 [0.945| 0.877 | 0.995 | 0.964 |0.516| 0.647 | 0.888 | 0.773
Table 15. PC5 Results
— F-Measure Accuracy ROC Area MCC
No Tec| RUS | ROS |SMOTE|No Tec| RUS | ROS |SMOTE .P‘e% RUS | ROS [SMOTE 1!}]; RUS | ROS |SMOTE
NB | 0.269 | 0.281 | 0.333 | 0.385 |75.3937|55.272 |56.692| 64.860 |0.725| 0.695 | 0.732 | 0.748 |0.245| 0.167 | 0.214 | 0.282
MLP | 0299 | 0.702 | 0.738 | 0.663 |74.2126| 67.636 |73.622| 69.195 |0.751 | 0.698 | 0.797 | 0.771 |0.216 | 0.357 | 0.473 | 0.384
RBF | 0.235 | 0.699 | 0.686 | 0.662 |75.5906| 68.727 [68.110| 72.291 |0.732| 0.719 | 0.751 | 0.788 |0.251| 0.375 | 0.362 | 0.429
SVM | 0.097 | 0.671 | 0.710 | 0.612 |74.2126| 65.090 (68.897| 68.421 [0.524 | 0.651 | 0.688 | 0.671 [0.173| 0.304 | 0.378 | 0.349
kNN | 0498 | 0.671 | 0.858 | 0.702 |73.0315| 66.909 [85.039| 74.767 |0.657 | 0.669 | 0.857 | 0.741 |0.314| 0.338 | 0.702 | 0.483
kStar | 0.431 | 0.680 | 0.849 | 0.731 |69.8819| 66.181 |83.661| 75.541 |0.629| 0.697 | 0.903 | 0.818 |0.227 | 0.325 | 0.678 | 0511
OneR | 0.387 | 0.611 | 0.718 | 0.662 |71.2598| 62.909 [70.866| 76.470 |0.594 | 0.629 | 0.708 | 0.736 |0.209| 0.260 | 0.417 | 0.528
PART | 0.335 | 0.733 | 0.766 | 0.669 |75.7874| 67.636 [71.060| 75.387 [0.739 | 0.744 | 0.809 | 0.792 |0.274| 0.387 | 0.464 | 0.495
DT | 0531 | 0.695 | 0.824 | 0.737 | 75.000 | 65.454 |81.692| 76.935 |0.703 | 0.626 | 0.819 | 0.761 |0.361| 0.319 | 0.634 | 0.532
RF | 0.450 | 0.716 | 0.877 | 0.785 |75.9843| 69.090 [87.204| 81.114 |0.805| 0.766 | 0.953 | 0.897 |0.322| 0.387 | 0.744 | 0.617

The classification results after implementing each of
the resampling techniques (as mentioned in the
comparison framework) on all of the used datasets are
reflected in the tables (from Table. 4 to Table. 15). The
sub column named “No Tec” (no technique of class
balancing is used) in each of the accuracy measure refers
to the published results from [7], where same classifiers
and datasets are used without any resampling technique.
The purpose of using those results in this research is to
compare the effectiveness of resampling techniques.
From the results it has been observed that overall in each
performance measure, ROS performed better in all
datasets with most of the classifiers. However in
Accuracy, besides the ROS, most of the classifiers also
performed better when no sampling technique was used.
RUS did not perform well except in KC1 dataset with
few of the classifiers. SMOTE on the other hand
performed better in MC2 dataset with most of the
classifiers. The class imbalance issue reflected by [7] in
most of the datasets are resolved by the used resampling
techniques with one exceptional case of PC2 dataset in
which this issue still exists as shown in Table 12.

Copyright © 2019 MECS

V. CONCLUSION

The performance of supervised machine learning
classifiers can be biased due to class imbalance issue in
the datasets. This research analyzed the performance of
three widely used resampling techniques on class
imbalance issue during software defect prediction. The
used resampling techniques are: Random Under
Sampling, Random Over Sampling and Synthetic
Minority Oversampling Technique (SMOTE). Twelve
cleaned publically available NASA datasets are used for
experiments along with 10 widely used -classifiers
including: Nawe Bayes (NB), Multi-Layer Perceptron
(MLP). Radial Basis Function (RBF), Support Vector
Machine (SVM), K Nearest Neighbor (KNN), kStar (K*),
One Rule (OneR), PART, Decision Tree (DT), and
Random Forest (RF). The performance is measured in
terms of F-measure, Accuracy, MCC and ROC. This
paper compared the performance of resampling
techniques with the results of a published research in
which no resampling technique is used however
classifiers and datasets are the same. According to results,
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Random Over Sampling outperformed other techniques

with most of the classifiers
resampling techniques resolved the

datasets. The
issue of class

in all

imbalance in 11 out of 12 datasets with the exception of
one dataset named PC2. It is suggested for future that

ensemble classifiers

should be wused along with

resampling techniques to further improve the
performance.
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