
I.J. Information Technology and Computer Science, 2019, 11, 44-53
Published Online November 2019 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2019.11.05

Copyright © 2019 MECS I.J. Information Technology and Computer Science, 2019, 11, 44-53

Performance Analysis of Resampling Techniques on Class

Imbalance Issue in Software Defect Prediction

Ahmed Iqbal, Shabib Aftab, Faseeha Matloob
Department of Computer Science, Virtual University of Pakistan

E-mail: ahmedeqbal@gmail.com, shabib.aftab@gmail.com, faseeham7@gmail.com

Received: 17 August 2019; Accepted: 14 September 2019; Published: 08 November 2019

Absract—Predicting the defects at early stage of software

development life cycle can improve the quality of end

product at lower cost. Machine learning techniques have

been proved to be an effective way for software defect

prediction however an imbalance dataset of software

defects is the main issue of lower and biased performance

of classifiers. This issue can be resolved by applying the

re-sampling methods on software defect dataset before

the classification process. This research analyzes the

performance of three widely used resampling techniques

on class imbalance issue for software defect prediction.

The resampling techniques include: “Random Under

Sampling”, “Random Over Sampling” and “Synthetic

Minority Oversampling Technique (SMOTE)”. For

experiments, 12 publically available cleaned NASA

MDP datasets are used with 10 widely used supervised

machine learning classifiers. The performance is

evaluated through various measures including: F-measure,

Accuracy, MCC and ROC. According to results, most of

the classifiers performed better with “Random Over

Sampling” technique in many datasets.

Index Terms—Software Defect predication, Imbalanced

Dataset, Resampling Methods, Random Under Sampling,

Random Oversampling, Synthetic Minority

Oversampling Technique.

I. INTRODUCTION

Developers and researchers have always been

concerned to develop high quality softwares at lower cost

[7, 8, 9]. Predicting the defects at early stage of

development life cycle can achieve this goal as the cost

of fixing the defects increases exponently at later stages

[8], [20, 21]. Software defect prediction is the problem of

binary classification in which we have to classify the

particular module as defective or non-defective [7, 8, 9].

Supervised machine learning techniques have been

widely used to solve the binary classification problems

such as Sentiment Analysis [12, 13, 14, 15], Rainfall

Prediction [16, 17], and DoS attack detection [18, 19].

The supervised machine learning techniques uses pre-

classified data (training data) in order to train the

classifier. During the training process, classification rules

are developed which are used to classify the unseen data

(test data) [10, 11]. The datasets of software defects are

usually skewed in which too many instances are related

to one class and very less instances belong to second

class. For instance, normally less records are related to

defective class and too much records are related to non-

defective class. The class with less instances is known as

minority class and the class with the too many instances

is known as the majority class. The imbalance between

these two classes is reflected by “Imbalance ratio”, which

is the ratio of the number of instances in majority class to

that of a minority class. [1]. In software defect datasets,

the instances related to non-defective class are usually

high with respect to defective instances as shown in this

table 1. Therefore the particular classifiers trained on

such imbalanced datasets may produce the bias result and

may classify the minority instance as majority instance.

To resolve this issue, many techniques are available. This

paper uses three well known resampling techniques to

handle the class imbalance issue for software defect

prediction. The resampling techniques include: Random

Under Sampling (ROS), Random Over Sampling (RUS)

and Synthetic Minority Oversampling Technique

(SMOTE). Twelve (12) publically available cleaned

NASA MDP datasets are used for experiments along

with 10 widely used supervised machine learning

classifiers including: “Naïve Bayes (NB), Multi-Layer

Perceptron (MLP). Radial Basis Function (RBF), Support

Vector Machine (SVM), K Nearest Neighbor (KNN),

kStar (K*), One Rule (OneR), PART, Decision Tree

(DT), and Random Forest (RF)”. Performance evaluation

is performed by using: “F-measure, Accuracy, MCC and

ROC”. The results reflects that ROS performed better in

almost all the datasets.

The rest of the paper is organized as follows: Section 2

discusses the related work done on Class Imbalance issue.

Section 3 elaborates the materials and methods which are

used in this research. Section 4 reflects the results of

experiments. Section 5 finally concludes this research.

II. RELATED WORK

Many researchers have worked to resolve the class

imbalance issue since the last decade. Some of the related

studies are discussed here. In [1], the authors proposed

SOS-BUS which is a hybrid resampling technique. This

approach integrated a well- known oversampling

technique SMOTE with the newly developed Under

Sampling Technique. The proposed approach focusses on

the necessary data of majority class and avoid the

mailto:shabib.aftab@gmail.com

 Performance Analysis of Resampling Techniques on Class Imbalance Issue in Software Defect Prediction 45

Copyright © 2019 MECS I.J. Information Technology and Computer Science, 2019, 11, 44-53

removal stage from random under-sampling. The results

reflected that the proposed technique performed better in

Area under ROC Curve (AUC). In [2], the researchers

discussed class imbalance learning methods and

elaborated that how these methods can be used for

effective software defect prediction. They investigated

various class imbalance learning methods such as

resampling techniques, threshold moving techniques, and

ensemble algorithms. AdaBoost.NC reflected high

performance in Balance, G-mean, and Area Under the

Curve (AUC). Moreover an improvement in

AdaBoost.NC has also been proposed in which parameter

adjustment is performed automatically during the training

process. The proposed version proved to be more

effective and efficient. Researchers in [3] discussed two

resampling techniques which are the extensions of

SMOTE and RUS. They have studied and discussed an

ensemble learning method AdaBoost.R2 to resolve the

data imbalance issue for software defect prediction. The

researchers discussed that the extensions of SMOTE and

RUS, SmoteND and RusND are the effective techniques

to resolve the imbalance issue in software defect datasets.

Experiments on 6 datasets with two performance

measures have showed the effectives of these techniques.

Moreover in order to improve the performance of these

techniques, AdaBoost.R2 algorithm is integrated and

made these techniques as SmoteNDBoost and

RusNDBoost. Experiments reflected that the hybrid

approach outperformed the individual techniques

including SmoteND, RusND and AdaBoost.R2).

Researchers in [4] analyzed the performance of SMOTE

on the issue of class imbalance on software defect

prediction. They have analyzed that at which extent the

SMOTE technique can improve the classification of

defective software modules. The researchers reflected

that after applying the SMOTE technique the dataset

became more balanced and more accurate results were

noted on four benchmark datasets. In [5], the researchers

have proposed a software defect prediction system named

“Weighted Least Squares Twin Support Vector Machine”

(WLSTSVM). The proposed system works by assigning

the higher misclassification cost to the instances related

to defective class and lower cost to the instances related

to non-defective class. Experiments were performed by

using 8 software defect datasets which showed that the

proposed system performed better in non-parametric

Wilcoxon signed rank test. Researchers in [6] used three

re sampling techniques on credit card dataset in order to

overcome the class imbalance issue. The techniques

include: Random Under Sampling, Random Over

Sampling and Synthetic Minority Oversampling

Technique. The performance was evaluated by using

Sensitivity, Specificity, Accuracy, Precision, Area Under

Curve (AUC) and Error Rate. The results reflected that

the resampled datasets brought better performance.

Researchers in [7] analyzed the performance of various

widely used supervised classifiers on software defect

prediction. For experiments, 12 publically available

NASA datasets were used. The classification techniques

included: “Naïve Bayes (NB), Multi-Layer Perceptron

(MLP). Radial Basis Function (RBF), Support Vector

Machine (SVM), K Nearest Neighbor (KNN), kStar

(K*), One Rule (OneR), PART, Decision Tree (DT), and

Random Forest (RF)”. The performance is evaluated by

using Precision, Recall, F-Measure, Accuracy, MCC, and

ROC Area. The researchers have observed that that

neither the Accuracy and nor the ROC can be used as an

effective performance measure as both of these did not

react on class imbalance issue. However, Precision,

Recall, F-Measure and MCC reacted to class imbalance

problem in the results.

III. MATERIALS AND METHODS

This research aims to analyze the performance of three

well known resampling techniques on class imbalance

issue for software defect prediction. For this purpose a

comparison framework (Fig. 1) is used in which

performance of each re-sampling technique is analyzed

with various well known classifiers. The framework

consists of four stages: 1) Dataset selection, 2)

Resampling, 3) Classification, and 4) reflection and

analysis of Results. First stage deals with the selection of

datasets in which 12 cleaned NASA MDP datasets are

used for experiments including: “CM1, JM1, KC1, KC3,

MC1, MC2, MW1, PC1, PC2, PC3, PC4 and PC5 (Table

I)”. Each of the used dataset represents a particular

NASA’s software system. The datasets include various

quality metrics in the form of attributes along with

known output class. The output class is also called the

target class which is predicted on behalf of other

attributes. The attribute which holds the target/output

class is known as dependent attribute and other attributes

are known as independent attributes as those are used to

predict the dependent attribute.

Fig.1. Comparison Framework

46 Performance Analysis of Resampling Techniques on Class Imbalance Issue in Software Defect Prediction

Copyright © 2019 MECS I.J. Information Technology and Computer Science, 2019, 11, 44-53

Table 1. Cleaned NASA Software Datasets [22], [23]

Dataset Attributes Modules Defective
Non-

Defective

CM1 38 327 42 285

JM1 22 7,720 1,612 6,108

KC1 22 1,162 294 868

KC3 40 194 36 158

MC1 39 1952 36 1916

MC2 40 124 44 80

MW1 38 250 25 225

PC1 38 679 55 624

PC2 37 722 16 706

PC3 38 1,053 130 923

PC4 38 1,270 176 1094

PC5 39 1694 458 1236

The dependent attribute in the used datasets have the

values of either “Y” or “N”. “Y” means that particular

instance (which represents a module) is defective and “N”

reflects that it is non-defective. Two versions of NASA

MDP cleaned datasets are provided by [22], D’ and D”.

D’ includes the duplicate and inconsistent instances

whereas D’’ do not include duplicate and inconsistent

instances. We have used D” version of cleaned datasets

(Table 1) available at [23]. This version of cleaned

dataset is already used and discussed by [7,8,9],

[24,25,26]. Table 2 reflects the cleaning criteria

implemented by [22]. Table 1 reflects some crucial

information about the datasets which are used in this

research such as: Dataset name, No of attributes each

dataset contains, No of modules (instances) in each

dataset, No of defective modules and No of non-defective

modules.

Table 2. Cleaning Criteria Applied to Noisy NASA Datasets [22], [24]

Criterion Data Quality Category Explanation

1. Identical cases
“Instances that have identical values for all metrics

including class label”.

2. Inconsistent cases
“Instances that satisfy all conditions of Case 1, but where

class labels differ”.

3. Cases with missing values “Instances that contain one or more missing observations”.

4. Cases with conflicting feature values

“Instances that have 2 or more metric values that violate

some referential integrity constraint. For example, LOC
TOTAL is less than Commented LOC. However,

Commented LOC is a subset of LOC TOTAL”.

5. Cases with implausible values
“Instances that violate some integrity constraint. For

example, value of LOC=1.1”

Table 3. Comparison of Resampling Methods [6]

 RUS ROS SMOTE

Process
Removes the instances of

majority class randomly and

reduces the dataset.

Increases the instances of

minority class by duplicating

randomly

Increases the instances of minority

class by extrapolating between
preexisting minority instances

which obtained by KNN.

Strength Shorter convergence time.
No information is lost and

can improve the performance
produce better results.

Effective in improving the

classification accuracy of the
minority data.

Limitation
Important information is lost

due to the shrinkage of

majority class

Overfitting issue due to
multiple tied instances.

Data synthetic still possible to

spread on both minority and
majority data, hence reduced the

performance of classification.

Second stage uses 3 widely used re sampling

techniques (Table 3) to resolve the class imbalance issue

in datasets. The resampling techniques include: RUS

(Random Under-Sampling), ROS (Random Over-

Sampling), SMOTE (Synthetic Minority Over-sampling

Technique) which are discussed below:

A. RUS (Random Under-Sampling)

This technique reduces the imbalance ratio in dataset

by removing some of the instances of majority class and

makes the classes equal in terms of related instances. The

balanced dataset may lose the important information

during the removal of instances from majority class due

to which the classifier may reflect worse performance.

B. ROS (Random Over-Sampling)

This technique reduces the imbalance ratio in dataset

by duplicating the instances in minority class. With this

approach the existing instances retains in the dataset but

the volume of the dataset increases due to duplication.

Both the classes can get balance with this technique

however over-fitting problem can occur which can

degrade the performance of classifier.

C. SMOTE (Synthetic Minority Over-sampling

Technique)

Synthetic Minority Over-sampling Technique

(SMOTE) is the widely used sampling techniques which

creates additional synthetic instances in the minority

 Performance Analysis of Resampling Techniques on Class Imbalance Issue in Software Defect Prediction 47

Copyright © 2019 MECS I.J. Information Technology and Computer Science, 2019, 11, 44-53

class instead of duplication. The steps of this technique

are discussed below:

1. A random number is generated between 0 and 1.

2. The difference between the feature vector of

minority class sample and its nearest neighbor is

calculated.

3. The difference calculated in step 2 is multiplied with

the random number generated in step 1.

4. The result achieved in step 3 is added to the feature

vector of minority class sample.

5. The result of step 4 identifies the newly generated

sample.

Third stage deals with the classification by using

various widely used supervised learning techniques

including: Naïve Bayes (NB), Multi-Layer Perceptron

(MLP). Radial Basis Function (RBF), Support Vector

Machine (SVM), K Nearest Neighbor (KNN), kStar (K*),

One Rule (OneR), PART, Decision Tree (DT), and

Random Forest (RF).

Fourth and final stage of the comparison framework

deals with the extraction and reflection of results and is

discussed in next section (Section 4).

IV. RESULTS AND DISCUSSION

The datasets after re sampling are given to

classification techniques as input with 70:30 ratio (70 %

training data and 30% test data). Performance is

evaluated through various measures generated from

confusion matrix including: Precision, Recall, F-measure,

Accuracy, MCC and ROC.

The confusion matrix is shown in (Fig. 2) and consists

of following parameters [7].

True Positive (TP): “Instances which are actually

positive and also classified as positive”.

False Positive (FP): “Instances which are actually

negative but classified as positive”.

False Negative (FN): “Instances which are actually

positive but classified as negative”.

True Negative (TN): “Instances which are actually

negative and also classified as negative”.

Performance measures are based on the parameters of

confusion matrix and are discussed below [7,8,9].

Fig.2. Confusion Matrix

()

TP
Precision

TP FP



 (1)

()

TP
Recall

TP FN



 (2)

* *2

()

Precision Recall
F measure

Precision Recall
 


 (3)

TP TN
Accuracy

TP TN FP FN




  
 (4)

1

2

r rTP FP
AUC

 
 (5)

* *

()()()()

TN TP FN FP
MCC

FP TP FN TP TN FP TN FN




   
 (6)

Table 4. CM1 Results

F-Measure Accuracy ROC Area MCC

No Tec RUS ROS SMOTE No Tec RUS ROS SMOTE
No

Tec
RUS ROS SMOTE

No

Tec
RUS ROS SMOTE

NB 0.190 0.316 0.444 0.462 82.653 48.000 59.183 74.774 0.703 0.535 0.685 0.806 0.097 -0.06 0.217 0.308

MLP 0.000 0.690 0.907 0.244 86.734 64.000 89.795 72.072 0.634 0.622 0.923 0.638 -0.060 0.316 0.813 0.138

RBF ? 0.667 0.736 0.171 90.816 60.000 71.428 73.873 0.702 0.532 0.741 0.686 ? 0.243 0.434 0.161

SVM ? 0.667 0.684 0.065 90.816 60.000 63.265 73.873 0.500 0.609 0.633 0.517 ? 0.243 0.281 0.157

kNN 0.083 0.667 0.867 0.517 77.551 60.000 84.693 74.774 0.477 0.609 0.855 0.670 -0.037 0.243 0.729 0.347

kStar 0.083 0.348 0.899 0.571 77.551 40.000 88.775 78.378 0.538 0.417 0.946 0.761 -0.037 -0.20 0.796 0.430

OneR 0.000 0.667 0.759 0.273 85.714 60.000 73.469 71.171 0.472 0.609 0.735 0.551 -0.074 0.243 0.479 0.135

PART ? 0.444 0.913 0.600 90.816 40.000 90.816 78.378 0.610 0.413 0.912 0.684 ? -0.19 0.821 0.452

DT 0.154 0.581 0.846 0.458 77.551 48.000 83.673 76.576 0.378 0.439 0.850 0.595 0.041 -0.02 0.679 0.338

RF 0.000 0.571 0.899 0.462 89.795 52.000 88.775 81.081 0.761 0.465 0.991 0.924 -0.032 0.053 0.796 0.488

48 Performance Analysis of Resampling Techniques on Class Imbalance Issue in Software Defect Prediction

Copyright © 2019 MECS I.J. Information Technology and Computer Science, 2019, 11, 44-53

Table 5. JM1 Results

F-Measure Accuracy ROC Area MCC

No Tec RUS ROS SMOTE No Tec RUS ROS SMOTE No Tec RUS ROS SMOTE
No

Tec
RUS ROS SMOTE

NB 0.318 0.307 0.310 0.290 79.835 57.600 56.217 68.035 0.663 0.650 0.652 0.629 0.251 0.210 0.199 0.188

MLP 0.146 0.639 0.525 0.483 80.354 59.152 61.312 67.750 0.702 0.671 0.673 0.666 0.206 0.197 0.250 0.253

RBF 0.181 0.601 0.605 0.403 80.397 62.771 63.385 69.000 0.713 0.667 0.675 0.675 0.215 0.225 0.273 0.241

SVM ? 0.497 0.504 0.217 79.188 62.771 61.053 67.750 0.500 0.623 0.613 0.545 ? 0.284 0.252 0.167

kNN 0.348 0.594 0.867 0.565 73.963 59.565 85.751 71.035 0.591 0.596 0.850 0.672 0.186 0.192 0.720 0.348

kStar 0.355 0.567 0.869 0.646 75.993 59.462 85.794 76.071 0.572 0.634 0.934 0.794 0.212 0.188 0.723 0.465

OneR 0.216 0.560 0.672 0.607 77.158 56.256 67.055 77.678 0.543 0.563 0.671 0.711 0.126 0.125 0.341 0.478

PART 0.037 0.678 0.658 0.606 79.490 65.563 66.968 76.142 0.714 0.697 0.738 0.786 0.104 0.319 0.342 0.446

DT 0.348 0.619 0.834 0.623 79.101 63.909 82.728 76.821 0.671 0.654 0.855 0.777 0.252 0.278 0.655 0.464

RF 0.284 0.671 0.885 0.690 80.181 66.597 87.953 81.071 0.738 0.715 0.960 0.840 0.244 0.334 0.761 0.564

Table 6. KC1 Results

F-Measure Accuracy ROC Area MCC

No Tec RUS ROS SMOTE No Tec RUS ROS SMOTE
No

Tec
RUS ROS SMOTE

No

Tec
RUS ROS SMOTE

NB 0.400 0.516 0.498 0.468 74.212 64.772 61.318 66.132 0.694 0.719 0.669 0.692 0.250 0.300 0.253 0.280

MLP 0.358 0.504 0.692 0.480 77.363 67.613 69.627 67.734 0.736 0.755 0.744 0.714 0.296 0.398 0.393 0.322

RBF 0.362 0.649 0.648 0.512 78.796 69.318 67.335 67.276 0.713 0.762 0.705 0.702 0.347 0.381 0.350 0.307

SVM 0.085 0.639 0.611 0.445 75.358 70.454 63.896 67.505 0.521 0.695 0.639 0.623 0.151 0.408 0.280 0.324

kNN 0.395 0.584 0.858 0.684 69.341 61.931 85.673 72.997 0.595 0.616 0.868 0.728 0.190 0.233 0.714 0.449

kStar 0.419 0.650 0.836 0.717 72.206 68.750 83.094 76.201 0.651 0.686 0.912 0.843 0.238 0.370 0.663 0.512

OneR 0.256 0.656 0.661 0.671 73.352 64.204 65.616 77.345 0.551 0.648 0.656 0.742 0.147 0.298 0.313 0.536

PART 0.255 0.664 0.671 0.475 76.504 55.113 72.779 69.107 0.636 0.680 0.813 0.727 0.239 0.227 0.484 0.366

DT 0.430 0.500 0.798 0.679 75.644 64.772 79.369 72.082 0.606 0.664 0.784 0.740 0.291 0.305 0.588 0.434

RF 0.454 0.620 0.861 0.790 77.937 63.068 85.959 82.837 0.751 0.733 0.935 0.890 0.346 0.263 0.720 0.645

Table 7. KC3 Results

F-Measure Accuracy ROC Area MCC

No Tec RUS ROS SMOTE No Tec RUS ROS SMOTE
No

Tec
RUS ROS SMOTE

No

Tec
RUS ROS SMOTE

NB 0.421 0.526 0.588 0.471 81.034 59.090 63.793 73.913 0.769 0.846 0.712 0.686 0.309 0.302 0.358 0.364

MLP 0.375 0.667 0.857 0.634 82.758 63.636 84.482 78.260 0.733 0.761 0.851 0.824 0.295 0.277 0.692 0.490

RBF 0.000 0.526 0.733 0.467 77.586 59.090 72.413 76.811 0.735 0.829 0.772 0.724 -0.107 0.302 0.463 0.475

SVM ? 0.526 0.667 0.160 82.758 59.090 67.241 69.565 0.500 0.637 0.688 0.543 ? 0.302 0.378 0.244

kNN 0.364 0.600 0.889 0.600 75.862 63.636 87.931 76.811 0.617 0.675 0.893 0.707 0.218 0.370 0.762 0.452

kStar 0.300 0.609 0.923 0.667 75.862 59.090 91.379 79.710 0.528 0.521 0.942 0.818 0.154 0.203 0.826 0.528

OneR 0.375 0.476 0.836 0.439 82.758 50.000 81.034 66.666 0.619 0.526 0.804 0.598 0.295 0.052 0.612 0.210

PART 0.143 0.640 0.866 0.683 79.3103 59.090 84.482 81.159 0.788 0.598 0.866 0.748 0.056 0.169 0.683 0.560

DT 0.300 0.692 0.870 0.744 75.862 63.636 84.482 84.058 0.570 0.667 0.862 0.829 0.154 0.248 0.683 0.632

RF 0.235 0.571 0.896 0.563 77.586 59.090 87.931 79.710 0.807 0.714 0.948 0.838 0.111 0.245 0.753 0.548

 Performance Analysis of Resampling Techniques on Class Imbalance Issue in Software Defect Prediction 49

Copyright © 2019 MECS I.J. Information Technology and Computer Science, 2019, 11, 44-53

Table 8. MC1 Results

F-Measure Accuracy ROC Area MCC

No Tec RUS ROS SMOTE No Tec RUS ROS SMOTE
No

Tec
RUS ROS SMOTE

No

Tec
RUS ROS SMOTE

NB 0.217 0.353 0.505 0.211 93.856 50.000 63.139 87.416 0.826 0.590 0.797 0.778 0.208 0.153 0.330 0.204

MLP ? 0.727 0.887 0.400 97.610 72.727 88.737 96.476 0.805 0.897 0.970 0.829 ? 0.504 0.776 0.391

RBF ? 0.727 0.781 ? 97.610 72.727 77.815 96.476 0.781 0.889 0.889 0.764 ? 0.504 0.557 ?

SVM ? 0.700 0.821 ? 97.610 72.727 81.570 96.476 0.500 0.769 0.815 0.500 ? 0.568 0.631 ?

kNN 0.333 0.696 0.995 0.585 97.269 68.181 99.488 97.147 0.638 0.697 0.995 0.779 0.325 0.388 0.990 0.571

kStar 0.182 0.667 0.998 0.514 96.928 68.181 99.829 97.147 0.631 0.701 1.000 0.856 0.174 0.437 0.997 0.511

OneR 0.200 0.421 0.963 0.240 97.269 50.000 96.075 96.811 0.568 0.543 0.960 0.571 0.206 0.094 0.924 0.319

PART 0.333 0.727 0.990 0.500 97.269 72.727 98.976 96.979 0.684 0.658 0.988 0.890 0.325 0.504 0.980 0.492

DT ? 0.667 0.984 0.474 97.610 68.181 98.293 96.644 0.500 0.765 0.982 0.750 ? 0.437 0.966 0.459

RF 0.000 0.526 0.998 0.385 97.440 59.090 99.829 97.315 0.864 0.769 1.000 0.973 -0.006 0.302 0.997 0.481

Table 9. MC2 Results

F-Measure Accuracy ROC Area MCC

No Tec RUS ROS SMOTE No Tec RUS ROS SMOTE
No

Tec
RUS ROS SMOTE

No

Tec
RUS ROS SMOTE

NB 0.526 0.600 0.522 0.596 75.675 69.230 70.270 62.000 0.795 0.726 0.847 0.735 0.444 0.386 0.477 0.301

MLP 0.519 0.300 0.750 0.654 64.864 46.153 78.378 64.000 0.753 0.507 0.865 0.785 0.243 -0.11 0.564 0.298

RBF 0.444 0.538 0.667 0.750 72.973 53.846 70.270 72.000 0.766 0.639 0.824 0.829 0.371 0.264 0.399 0.434

SVM 0.222 0.583 0.621 0.720 62.162 61.538 70.270 72.000 0.514 0.688 0.690 0.739 0.04 0.356 0.404 0.478

kNN 0.545 0.522 0.839 0.800 72.973 57.692 86.486 76.000 0.668 0.625 0.822 0.747 0.374 0.234 0.734 0.503

kStar 0.348 0.400 0.765 0.862 59.459 65.384 78.378 84.000 0.510 0.576 0.838 0.816 0.062 0.159 0.565 0.672

OneR 0.316 0.385 0.647 0.807 64.864 38.461 67.567 78.000 0.553 0.451 0.674 0.778 0.137 -0.09 0.347 0.552

PART 0.667 0.500 0.727 0.727 78.378 53.846 75.675 70.000 0.724 0.639 0.768 0.755 0.512 0.184 0.509 0.399

DT 0.435 0.522 0.629 0.721 64.864 57.692 64.864 66.000 0.615 0.639 0.715 0.631 0.189 0.234 0.296 0.290

RF 0.480 0.435 0.774 0.847 64.864 50.000 81.081 82.000 0.646 0.556 0.937 0.878 0.216 0.065 0.623 0.629

Table 10. MW1 Results

F-Measure Accuracy ROC Area MCC

No Tec RUS ROS SMOTE No Tec RUS ROS SMOTE
No

Tec
RUS ROS SMOTE

No

Tec
RUS ROS SMOTE

NB 0.435 0.706 0.740 0.516 82.666 66.666 74.666 81.707 0.791 0.630 0.793 0.842 0.367 0.327 0.506 0.427

MLP 0.632 0.706 0.930 0.522 90.666 66.666 92.000 86.585 0.843 0.722 0.938 0.790 0.589 0.327 0.849 0.444

RBF ? 0.667 0.819 0.400 89.333 66.666 80.000 85.365 0.808 0.778 0.828 0.829 ? 0.389 0.598 0.329

SVM ? 0.667 0.800 0.500 89.333 66.666 80.000 87.804 0.500 0.694 0.804 0.687 ? 0.389 0.607 0.445

kNN 0.444 0.706 0.909 0.538 86.666 66.666 89.333 85.365 0.705 0.667 0.854 0.742 0.373 0.327 0.802 0.454

kStar 0.133 0.800 0.909 0.552 82.666 80.000 89.333 84.146 0.543 0.778 0.967 0.860 0.038 0.667 0.802 0.469

OneR 0.200 0.667 0.833 0.333 89.333 66.666 81.333 85.365 0.555 0.694 0.809 0.604 0.211 0.389 0.626 0.281

PART 0.167 0.706 0.930 0.522 86.666 66.666 92.000 86.585 0.314 0.630 0.940 0.656 0.110 0.327 0.849 0.444

DT 0.167 0.750 0.920 0.417 86.666 73.333 90.666 82.926 0.314 0.722 0.900 0.740 0.110 0.491 0.825 0.317

RF 0.182 0.667 0.952 0.609 88.000 66.666 94.666 89.024 0.766 0.741 1.000 0.896 0.150 0.389 0.897 0.546

50 Performance Analysis of Resampling Techniques on Class Imbalance Issue in Software Defect Prediction

Copyright © 2019 MECS I.J. Information Technology and Computer Science, 2019, 11, 44-53

Table 11. PC1 Results

F-Measure Accuracy ROC Area MCC

No Tec RUS ROS SMOTE No Tec RUS ROS SMOTE
No

Tec
RUS ROS SMOTE

No

Tec
RUS ROS SMOTE

NB 0.400 0.583 0.530 0.485 89.705 69.697 65.024 84.545 0.879 0.818 0.846 0.842 0.400 0.442 0.382 0.403

MLP 0.462 0.500 0.929 0.508 96.568 57.575 92.118 85.909 0.779 0.713 0.942 0.910 0.538 0.149 0.852 0.443

RBF 0.154 0.667 0.851 0.130 94.607 66.666 83.743 81.818 0.875 0.790 0.901 0.870 0.161 0.335 0.677 0.104

SVM ? 0.688 0.853 0.000 95.098 69.697 83.743 82.272 0.5 0.697 0.835 0.497 ? 0.393 0.680 -0.031

kNN 0.286 0.774 0.963 0.507 92.647 78.787 96.059 85.000 0.629 0.787 0.979 0.691 0.247 0.576 0.924 0.426

kStar 0.176 0.552 0.955 0.667 86.274 60.606 95.073 88.636 0.673 0.728 0.983 0.920 0.128 0.211 0.905 0.598

OneR 0.154 0.737 0.860 0.276 94.607 69.697 84.729 80.909 0.545 0.702 0.845 0.572 0.161 0.429 0.697 0.190

PART 0.462 0.667 0.963 0.514 93.137 69.697 96.059 84.545 0.889 0.691 0.967 0.771 0.440 0.394 0.922 0.425

DT 0.500 0.750 0.940 0.606 93.137 75.757 93.596 88.181 0.718 0.721 0.948 0.808 0.490 0.515 0.874 0.547

RF 0.429 0.778 0.946 0.610 96.078 75.757 94.088 89.545 0.858 0.860 0.999 0.941 0.459 0.534 0.887 0.588

Table 12. PC2 Results

F-Measure Accuracy ROC Area MCC

No Tec RUS ROS SMOTE No Tec RUS ROS SMOTE
No

Tec
RUS ROS SMOTE

No

Tec
RUS ROS SMOTE

NB 0.000 0.667 0.752 0.250 94.470 70.000 76.958 91.855 0.751 0.875 0.826 0.844 -0.028 0.535 0.542 0.207

MLP 0.000 0.923 0.955 0.273 96.774 90.000 95.391 92.760 0.746 0.958 0.939 0.866 -0.015 0.802 0.912 0.236

RBF ? 0.923 0.800 ? 97.695 90.000 78.801 94.570 0.724 0.958 0.885 0.812 ? 0.802 0.583 ?

SVM ? 0.667 0.790 ? 97.695 70.000 77.419 94.570 0.500 0.750 0.775 0.500 ? 0.535 0.558 ?

kNN 0.000 0.833 0.955 0.400 96.774 80.000 95.391 94.570 0.495 0.792 0.941 0.657 -0.015 0.583 0.912 0.381

kStar 0.167 0.833 0.973 0.182 95.391 80.000 97.235 91.855 0.791 0.813 1.000 0.696 0.146 0.583 0.946 0.140

OneR 0.000 0.923 0.930 0.375 97.235 90.000 92.626 95.475 0.498 0.875 0.927 0.623 -0.01 0.802 0.862 0.417

PART 0.000 0.833 0.968 ? 96.774 80.000 96.774 94.570 0.623 0.854 0.979 0.871 -0.015 0.583 0.937 ?

DT ? 0.833 0.973 0.250 97.695 80.000 97.235 94.570 0.579 0.854 0.977 0.813 ? 0.583 0.946 0.267

RF ? 0.923 0.977 ? 97.695 90.000 97.695 94.570 0.731 0.958 1.000 0.968 ? 0.802 0.955 ?

Table 13. PC3 Results

F-Measure Accuracy ROC Area MCC

No Tec RUS ROS SMOTE No Tec RUS ROS SMOTE
No

Tec
RUS ROS SMOTE

No

Tec
RUS ROS SMOTE

NB 0.257 0.754 0.634 0.576 28.797 78.205 49.683 75.493 0.773 0.823 0.722 0.832 0.088 0.561 0.013 0.452

MLP 0.261 0.694 0.819 0.482 83.860 71.794 81.012 79.436 0.796 0.751 0.859 0.848 0.183 0.433 0.627 0.356

RBF ? 0.763 0.764 0.274 86.392 76.923 75.316 76.056 0.795 0.798 0.807 0.803 ? 0.542 0.511 0.152

SVM ? 0.763 0.731 0.136 86.320 76.923 71.835 78.591 0.500 0.772 0.720 0.528 ? 0.542 0.442 0.120

kNN 0.353 0.667 0.928 0.535 86.075 70.512 92.721 81.408 0.616 0.700 0.919 0.702 0.294 0.404 0.856 0.421

kStar 0.267 0.667 0.904 0.604 82.594 70.512 89.873 82.253 0.749 0.702 0.962 0.870 0.173 0.404 0.806 0.491

OneR 0.226 0.747 0.774 0.462 87.025 75.641 75.949 84.225 0.562 0.758 0.761 0.651 0.245 0.514 0.527 0.450

PART ? 0.658 0.906 0.417 86.392 65.384 90.506 81.126 0.790 0.696 0.929 0.747 ? 0.318 0.811 0.339

DT 0.358 0.718 0.896 0.592 86.392 71.794 89.240 83.662 0.664 0.742 0.908 0.711 0.304 0.444 0.789 0.491

RF 0.226 0.767 0.911 0.641 87.025 78.205 90.822 86.760 0.855 0.796 0.983 0.900 0.245 0.563 0.822 0.571

 Performance Analysis of Resampling Techniques on Class Imbalance Issue in Software Defect Prediction 51

Copyright © 2019 MECS I.J. Information Technology and Computer Science, 2019, 11, 44-53

Table 14. PC4 Results

F-Measure Accuracy ROC Area MCC

No Tec RUS ROS SMOTE No Tec RUS ROS SMOTE
No

Tec
RUS ROS SMOTE

No

Tec
RUS ROS SMOTE

NB 0.404 0.617 0.650 0.477 86.0892 70.754 69.816 79.262 0.807 0.766 0.787 0.844 0.334 0.456 0.436 0.396

MLP 0.562 0.739 0.899 0.736 89.7638 72.641 89.238 85.483 0.898 0.814 0.938 0.918 0.515 0.458 0.784 0.638

RBF 0.250 0.717 0.788 0.476 87.4016 71.698 77.690 80.184 0.862 0.824 0.887 0.887 0.279 0.434 0.553 0.424

SVM 0.286 0.754 0.805 0.561 88.189 73.584 78.477 83.410 0.583 0.738 0.782 0.696 0.342 0.482 0.569 0.539

kNN 0.438 0.738 0.954 0.679 85.8268 69.811 95.013 83.871 0.667 0.701 0.945 0.778 0.359 0.425 0.902 0.573

kStar 0.330 0.683 0.917 0.733 81.8898 62.264 90.551 85.253 0.734 0.669 0.985 0.905 0.225 0.275 0.821 0.633

OneR 0.361 0.786 0.841 0.620 87.9265 77.358 82.677 85.023 0.614 0.775 0.825 0.726 0.352 0.555 0.653 0.589

PART 0.481 0.828 0.916 0.785 85.3018 81.132 90.813 87.788 0.776 0.801 0.923 0.892 0.396 0.641 0.818 0.705

DT 0.583 0.810 0.936 0.742 86.8766 79.245 92.913 86.405 0.834 0.775 0.944 0.863 0.514 0.602 0.862 0.650

RF 0.532 0.831 0.947 0.823 90.2887 81.132 94.225 91.474 0.945 0.877 0.995 0.964 0.516 0.647 0.888 0.773

Table 15. PC5 Results

F-Measure Accuracy ROC Area MCC

No Tec RUS ROS SMOTE No Tec RUS ROS SMOTE
No

Tec
RUS ROS SMOTE

No

Tec
RUS ROS SMOTE

NB 0.269 0.281 0.333 0.385 75.3937 55.272 56.692 64.860 0.725 0.695 0.732 0.748 0.245 0.167 0.214 0.282

MLP 0.299 0.702 0.738 0.663 74.2126 67.636 73.622 69.195 0.751 0.698 0.797 0.771 0.216 0.357 0.473 0.384

RBF 0.235 0.699 0.686 0.662 75.5906 68.727 68.110 72.291 0.732 0.719 0.751 0.788 0.251 0.375 0.362 0.429

SVM 0.097 0.671 0.710 0.612 74.2126 65.090 68.897 68.421 0.524 0.651 0.688 0.671 0.173 0.304 0.378 0.349

kNN 0.498 0.671 0.858 0.702 73.0315 66.909 85.039 74.767 0.657 0.669 0.857 0.741 0.314 0.338 0.702 0.483

kStar 0.431 0.680 0.849 0.731 69.8819 66.181 83.661 75.541 0.629 0.697 0.903 0.818 0.227 0.325 0.678 0.511

OneR 0.387 0.611 0.718 0.662 71.2598 62.909 70.866 76.470 0.594 0.629 0.708 0.736 0.209 0.260 0.417 0.528

PART 0.335 0.733 0.766 0.669 75.7874 67.636 71.060 75.387 0.739 0.744 0.809 0.792 0.274 0.387 0.464 0.495

DT 0.531 0.695 0.824 0.737 75.000 65.454 81.692 76.935 0.703 0.626 0.819 0.761 0.361 0.319 0.634 0.532

RF 0.450 0.716 0.877 0.785 75.9843 69.090 87.204 81.114 0.805 0.766 0.953 0.897 0.322 0.387 0.744 0.617

The classification results after implementing each of

the resampling techniques (as mentioned in the

comparison framework) on all of the used datasets are

reflected in the tables (from Table. 4 to Table. 15). The

sub column named “No Tec” (no technique of class

balancing is used) in each of the accuracy measure refers

to the published results from [7], where same classifiers

and datasets are used without any resampling technique.

The purpose of using those results in this research is to

compare the effectiveness of resampling techniques.

From the results it has been observed that overall in each

performance measure, ROS performed better in all

datasets with most of the classifiers. However in

Accuracy, besides the ROS, most of the classifiers also

performed better when no sampling technique was used.

RUS did not perform well except in KC1 dataset with

few of the classifiers. SMOTE on the other hand

performed better in MC2 dataset with most of the

classifiers. The class imbalance issue reflected by [7] in

most of the datasets are resolved by the used resampling

techniques with one exceptional case of PC2 dataset in

which this issue still exists as shown in Table 12.

V. CONCLUSION

The performance of supervised machine learning

classifiers can be biased due to class imbalance issue in

the datasets. This research analyzed the performance of

three widely used resampling techniques on class

imbalance issue during software defect prediction. The

used resampling techniques are: Random Under

Sampling, Random Over Sampling and Synthetic

Minority Oversampling Technique (SMOTE). Twelve

cleaned publically available NASA datasets are used for

experiments along with 10 widely used classifiers

including: Naïve Bayes (NB), Multi-Layer Perceptron

(MLP). Radial Basis Function (RBF), Support Vector

Machine (SVM), K Nearest Neighbor (KNN), kStar (K*),

One Rule (OneR), PART, Decision Tree (DT), and

Random Forest (RF). The performance is measured in

terms of F-measure, Accuracy, MCC and ROC. This

paper compared the performance of resampling

techniques with the results of a published research in

which no resampling technique is used however

classifiers and datasets are the same. According to results,

52 Performance Analysis of Resampling Techniques on Class Imbalance Issue in Software Defect Prediction

Copyright © 2019 MECS I.J. Information Technology and Computer Science, 2019, 11, 44-53

Random Over Sampling outperformed other techniques

with most of the classifiers in all datasets. The

resampling techniques resolved the issue of class

imbalance in 11 out of 12 datasets with the exception of

one dataset named PC2. It is suggested for future that

ensemble classifiers should be used along with

resampling techniques to further improve the

performance.

REFERENCES

[1] U. R. Salunkhe and S. N. Mali, “A hybrid approach for

class imbalance problem in customer churn prediction: A

novel extension to under-sampling,” Int. J. Intell. Syst.

Appl., vol. 10, no. 5, pp. 71–81, 2018.

[2] S. Wang and X. Yao, “Using class imbalance learning for

software defect prediction,” IEEE Trans. Reliab., vol. 62,

no. 2, pp. 434–443, 2013.

[3] X. Yu, J. Liu, Z. Yang, X. Jia, Q. Ling, and S. Ye,

“Learning from Imbalanced Data for Predicting the

Number of Software Defects,” Proc. - Int. Symp. Softw.

Reliab. Eng. ISSRE, vol. 2017-October, pp. 78–89, 2017.

[4] L. Pelayo and S. Dick, “Applying novel resampling

strategies to software defect prediction,” Annu. Conf.

North Am. Fuzzy Inf. Process. Soc. - NAFIPS, pp. 69–72,

2007.

[5] D. Tomar and S. Agarwal, “Prediction of Defective

Software Modules Using Class Imbalance Learning,”

Appl. Comput. Intell. Soft Comput., vol. 2016, pp. 1–12,

2016.

[6] N. F. Hordri, S. S. Yuhaniz, N. F. M. Azmi, and S. M.

Shamsuddin, “Handling class imbalance in credit card

fraud using resampling methods,” Int. J. Adv. Comput.

Sci. Appl., vol. 9, no. 11, pp. 390–396, 2018.

[7] A. Iqbal, S. Aftab, U. Ali, Z. Nawaz, L. Sana, M. Ahmad,

and A. Husen “Performance Analysis of Machine

Learning Techniques on Software Defect Prediction using

NASA Datasets,” Int. J. Adv. Comput. Sci. Appl., vol. 10,

no. 5, 2019.

[8] D. Bowes, T. Hall, and J. Petrić, “Software defect

prediction: do different classifiers find the same defects?,”

Softw. Qual. J., vol. 26, no. 2, pp. 525–552, 2018

[9] A. Iqbal, S. Aftab, I. Ullah, M. S. Bashir, and M. A.

Saeed, “A Feature Selection based Ensemble

Classification Framework for Software Defect Prediction,”

Int. J. Mod. Educ. Comput. Sci., vol. 11, no. 9, pp. 54-64,

2019.

[10] M. Ahmad, S. Aftab, I. Ali, and N. Hameed, “Hybrid

Tools and Techniques for Sentiment Analysis: A Review,”

Int. J. Multidiscip. Sci. Eng., vol. 8, no. 3, 2017.

[11] M. Ahmad, S. Aftab, S. S. Muhammad, and S. Ahmad,

“Machine Learning Techniques for Sentiment Analysis:

A Review,” Int. J. Multidiscip. Sci. Eng., vol. 8, no. 3, p.

27, 2017.

[12] M. Ahmad, S. Aftab, M. S. Bashir, N. Hameed, I. Ali, and

Z. Nawaz, “SVM Optimization for Sentiment Analysis,”

Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 4, 2018.

[13] M. Ahmad, S. Aftab, M. S. Bashir, and N. Hameed,

“Sentiment Analysis using SVM: A Systematic Literature

Review,” Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 2,

2018.

[14] M. Ahmad, S. Aftab, and I. Ali, “Sentiment Analysis of

Tweets using SVM,” Int. J. Comput. Appl., vol. 177, no.

5, pp. 25–29, 2017.

[15] M. Ahmad and S. Aftab, “Analyzing the Performance of

SVM for Polarity Detection with Different Datasets,” Int.

J. Mod. Educ. Comput. Sci., vol. 9, no. 10, pp. 29–36,

2017.

[16] S. Aftab, M. Ahmad, N. Hameed, M. S. Bashir, I. Ali, and

Z. Nawaz, “Rainfall Prediction in Lahore City using Data

Mining Techniques,” Int. J. Adv. Comput. Sci. Appl., vol.

9, no. 4, 2018.

[17] S. Aftab, M. Ahmad, N. Hameed, M. S. Bashir, I. Ali, and

Z. Nawaz, “Rainfall Prediction using Data Mining

Techniques: A Systematic Literature Review,” Int. J. Adv.

Comput. Sci. Appl., vol. 9, no. 5, 2018.

[18] A. Iqbal and S. Aftab, “A Feed-Forward and Pattern

Recognition ANN Model for Network Intrusion

Detection,” Int. J. Comput. Netw. Inf. Secur., vol. 11, no.

4, pp. 19–25, 2019.

[19] A. Iqbal, S. Aftab, I. Ullah, M. A. Saeed, and A. Husen,

“A Classification Framework to Detect DoS Attacks,” Int.

J. Comput. Netw. Inf. Secur., vol. 11, no. 9, pp. 40-47,

2019.

[20] S. Huda et al., “A Framework for Software Defect

Prediction and Metric Selection,” IEEE Access, vol. 6, no.

c, pp. 2844–2858, 2017.

[21] E. Erturk and E. Akcapinar, “A comparison of some soft

computing methods for software fault prediction,” Expert

Syst. Appl., vol. 42, no. 4, pp. 1872–1879, 2015.

[22] M. Shepperd, Q. Song, Z. Sun and C. Mair, “Data Quality:

Some Comments on the NASA Software Defect Datasets,”

IEEE Trans. Softw. Eng., vol. 39, pp. 1208–1215, 2013.

[23] “NASA Defect Dataset.” [Online]. Available:

https://github.com/klainfo/NASADefectDataset.

[Accessed: 14-August-2019].

[24] B. Ghotra, S. McIntosh, and A. E. Hassan, “Revisiting the

impact of classification techniques on the performance of

defect prediction models,” Proc. - Int. Conf. Softw. Eng.,

vol. 1, pp. 789–800, 2015.

[25] G. Czibula, Z. Marian, and I. G. Czibula, “Software

defect prediction using relational association rule mining,”

Inf. Sci. (Ny)., vol. 264, pp. 260–278, 2014.

[26] D. Rodriguez, I. Herraiz, R. Harrison, J. Dolado, and J. C.

Riquelme, “Preliminary comparison of techniques for

dealing with imbalance in software defect prediction,” in

Proceedings of the 18th International Conference on

Evaluation and Assessment in Software Engineering.

ACM, p. 43, 2014.

Authors’ Profiles

Ahmed Iqbal is the student of MS Computer

Science with the specialization of Software

Engineering in Virtual University of Pakistan.

He received the degree, Master of

Information Technology (MIT) from Virtual

University of Pakistan in 2016. His research

interest includes Software Engineering and

Data Mining.

Shabib Aftab received MS Degree in

Computer Science from COMSATS Institute

of Information Technology Lahore, Pakistan,

and M.Sc degree in Information Technology

from Punjab University College of

Information Technology (PUCIT) Lahore,

Pakistan. Currently he is serving as Lecturer

Computer Sciences at Virtual University of Pakistan. His

 Performance Analysis of Resampling Techniques on Class Imbalance Issue in Software Defect Prediction 53

Copyright © 2019 MECS I.J. Information Technology and Computer Science, 2019, 11, 44-53

research areas include Data Mining and Software Process

Improvement.

Faseeha Matloob is student of MS Computer Science with the

specialization of Software Engineering in Virtual University of

Pakistan. Her research interest includes Software Engineering

and Data Mining.

How to cite this paper: Ahmed Iqbal, Shabib Aftab, Faseeha

Matloob, "Performance Analysis of Resampling Techniques on

Class Imbalance Issue in Software Defect Prediction",

International Journal of Information Technology and Computer

Science(IJITCS), Vol.11, No.11, pp.44-53, 2019. DOI:

10.5815/ijitcs.2019.11.05

