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Absract—Predicting the defects at early stage of software 

development life cycle can improve the quality of end 

product at lower cost. Machine learning techniques have 

been proved to be an effective way for software defect 

prediction however an imbalance dataset of software 

defects is the main issue of lower and biased performance 

of classifiers. This issue can be resolved by applying the 

re-sampling methods on software defect dataset before 

the classification process. This research analyzes the 

performance of three widely used resampling techniques 

on class imbalance issue for software defect prediction. 

The resampling techniques include: “Random Under 

Sampling”, “Random Over Sampling” and “Synthetic 

Minority Oversampling Technique (SMOTE)”. For 

experiments, 12 publically available cleaned NASA 

MDP datasets are used with 10 widely used supervised 

machine learning classifiers. The performance is 

evaluated through various measures including: F-measure, 

Accuracy, MCC and ROC. According to results, most of 

the classifiers performed better with “Random Over 

Sampling” technique in many datasets. 

 

Index Terms—Software Defect predication, Imbalanced 

Dataset, Resampling Methods, Random Under Sampling, 

Random Oversampling, Synthetic Minority 

Oversampling Technique. 

 

I.  INTRODUCTION 

Developers and researchers have always been 

concerned to develop high quality softwares at lower cost 

[7, 8, 9]. Predicting the defects at early stage of 

development life cycle can achieve this goal as the cost 

of fixing the defects increases exponently at later stages 

[8], [20, 21]. Software defect prediction is the problem of 

binary classification in which we have to classify the 

particular module as defective or non-defective [7, 8, 9]. 

Supervised machine learning techniques have been 

widely used to solve the binary classification problems 

such as Sentiment Analysis [12, 13, 14, 15], Rainfall 

Prediction [16, 17], and DoS attack detection [18, 19]. 

The supervised machine learning techniques uses pre-

classified data (training data) in order to train the 

classifier. During the training process, classification rules 

are developed which are used to classify the unseen data 

(test data) [10, 11]. The datasets of software defects are 

usually skewed in which too many instances are related 

to one class and very less instances belong to second 

class. For instance, normally less records are related to 

defective class and too much records are related to non-

defective class. The class with less instances is known as 

minority class and the class with the too many instances 

is known as the majority class. The imbalance between 

these two classes is reflected by “Imbalance ratio”, which 

is the ratio of the number of instances in majority class to 

that of a minority class. [1]. In software defect datasets, 

the instances related to non-defective class are usually 

high with respect to defective instances as shown in this 

table 1. Therefore the particular classifiers trained on 

such imbalanced datasets may produce the bias result and 

may classify the minority instance as majority instance. 

To resolve this issue, many techniques are available. This 

paper uses three well known resampling techniques to 

handle the class imbalance issue for software defect 

prediction. The resampling techniques include: Random 

Under Sampling (ROS), Random Over Sampling (RUS) 

and Synthetic Minority Oversampling Technique 

(SMOTE). Twelve (12) publically available cleaned 

NASA MDP datasets are used for experiments along 

with 10 widely used supervised machine learning 

classifiers including: “Naïve Bayes (NB), Multi-Layer 

Perceptron (MLP). Radial Basis Function (RBF), Support 

Vector Machine (SVM), K Nearest Neighbor (KNN), 

kStar (K*), One Rule (OneR), PART, Decision Tree 

(DT), and Random Forest (RF)”. Performance evaluation 

is performed by using: “F-measure, Accuracy, MCC and 

ROC”. The results reflects that ROS performed better in 

almost all the datasets. 

The rest of the paper is organized as follows: Section 2 

discusses the related work done on Class Imbalance issue. 

Section 3 elaborates the materials and methods which are 

used in this research. Section 4 reflects the results of 

experiments. Section 5 finally concludes this research. 

 

II.  RELATED WORK 

Many researchers have worked to resolve the class 

imbalance issue since the last decade. Some of the related 

studies are discussed here. In [1], the authors proposed 

SOS-BUS which is a hybrid resampling technique. This 

approach integrated a well- known oversampling 

technique SMOTE with the newly developed Under 

Sampling Technique. The proposed approach focusses on 

the necessary data of majority class and avoid the 
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removal stage from random under-sampling. The results 

reflected that the proposed technique performed better in 

Area under ROC Curve (AUC). In [2], the researchers 

discussed class imbalance learning methods and 

elaborated that how these methods can be used for 

effective software defect prediction. They investigated 

various class imbalance learning methods such as 

resampling techniques, threshold moving techniques, and 

ensemble algorithms. AdaBoost.NC reflected high 

performance in Balance, G-mean, and Area Under the 

Curve (AUC). Moreover an improvement in 

AdaBoost.NC has also been proposed in which parameter 

adjustment is performed automatically during the training 

process. The proposed version proved to be more 

effective and efficient. Researchers in [3] discussed two 

resampling techniques which are the extensions of 

SMOTE and RUS. They have studied and discussed an 

ensemble learning method AdaBoost.R2 to resolve the 

data imbalance issue for software defect prediction. The 

researchers discussed that the extensions of SMOTE and 

RUS, SmoteND and RusND are the effective techniques 

to resolve the imbalance issue in software defect datasets. 

Experiments on 6 datasets with two performance 

measures have showed the effectives of these techniques. 

Moreover in order to improve the performance of these 

techniques, AdaBoost.R2 algorithm is integrated and 

made these techniques as SmoteNDBoost and 

RusNDBoost. Experiments reflected that the hybrid 

approach outperformed the individual techniques 

including SmoteND, RusND and AdaBoost.R2). 

Researchers in [4] analyzed the performance of SMOTE 

on the issue of class imbalance on software defect 

prediction. They have analyzed that at which extent the 

SMOTE technique can improve the classification of 

defective software modules. The researchers reflected 

that after applying the SMOTE technique the dataset 

became more balanced and more accurate results were 

noted on four benchmark datasets. In [5], the researchers 

have proposed a software defect prediction system named 

“Weighted Least Squares Twin Support Vector Machine” 

(WLSTSVM). The proposed system works by assigning 

the higher misclassification cost to the instances related 

to defective class and lower cost to the instances related 

to non-defective class. Experiments were performed by 

using 8 software defect datasets which showed that the 

proposed system performed better in non-parametric 

Wilcoxon signed rank test. Researchers in [6] used three 

re sampling techniques on credit card dataset in order to 

overcome the class imbalance issue. The techniques 

include: Random Under Sampling, Random Over 

Sampling and Synthetic Minority Oversampling 

Technique. The performance was evaluated by using 

Sensitivity, Specificity, Accuracy, Precision, Area Under 

Curve (AUC) and Error Rate. The results reflected that 

the resampled datasets brought better performance. 

Researchers in [7] analyzed the performance of various 

widely used supervised classifiers on software defect 

prediction. For experiments, 12 publically available 

NASA datasets were used. The classification techniques 

included: “Naïve Bayes (NB), Multi-Layer Perceptron 

(MLP). Radial Basis Function (RBF), Support Vector 

Machine (SVM), K Nearest Neighbor (KNN), kStar   

(K*), One Rule (OneR), PART, Decision Tree (DT), and 

Random Forest (RF)”. The performance is evaluated by 

using Precision, Recall, F-Measure, Accuracy, MCC, and 

ROC Area. The researchers have observed that that 

neither the Accuracy and nor the ROC can be used as an 

effective performance measure as both of these did not 

react on class imbalance issue. However, Precision, 

Recall, F-Measure and MCC reacted to class imbalance 

problem in the results. 

 

III.  MATERIALS AND METHODS 

This research aims to analyze the performance of three 

well known resampling techniques on class imbalance 

issue for software defect prediction. For this purpose a 

comparison framework (Fig. 1) is used in which 

performance of each re-sampling technique is analyzed 

with various well known classifiers. The framework 

consists of four stages: 1) Dataset selection, 2) 

Resampling, 3) Classification, and 4) reflection and 

analysis of Results. First stage deals with the selection of 

datasets in which 12 cleaned NASA MDP datasets are 

used for experiments including: “CM1, JM1, KC1, KC3, 

MC1, MC2, MW1, PC1, PC2, PC3, PC4 and PC5 (Table 

I)”. Each of the used dataset represents a particular 

NASA’s software system. The datasets include various 

quality metrics in the form of attributes along with 

known output class. The output class is also called the 

target class which is predicted on behalf of other 

attributes. The attribute which holds the target/output 

class is known as dependent attribute and other attributes 

are known as independent attributes as those are used to 

predict the dependent attribute. 

 

 
Fig.1. Comparison Framework
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Table 1. Cleaned NASA Software Datasets [22], [23] 

Dataset Attributes Modules Defective 
Non- 

Defective 

CM1 38 327 42 285 

JM1 22 7,720 1,612 6,108 

KC1 22 1,162 294 868 

KC3 40 194 36 158 

MC1 39 1952 36 1916 

MC2 40 124 44 80 

MW1 38 250 25 225 

PC1 38 679 55 624 

PC2 37 722 16 706 

PC3 38 1,053 130 923 

PC4 38 1,270 176 1094 

PC5 39 1694 458 1236 

 

The dependent attribute in the used datasets have the 

values of either “Y” or “N”. “Y” means that particular 

instance (which represents a module) is defective and “N” 

reflects that it is non-defective. Two versions of NASA 

MDP cleaned datasets are provided by [22], D’ and D”. 

D’ includes the duplicate and inconsistent instances 

whereas D’’ do not include duplicate and inconsistent 

instances. We have used D” version of cleaned datasets 

(Table 1) available at [23]. This version of cleaned 

dataset is already used and discussed by [7,8,9], 

[24,25,26]. Table 2 reflects the cleaning criteria 

implemented by [22]. Table 1 reflects some crucial 

information about the datasets which are used in this 

research such as: Dataset name, No of attributes each 

dataset contains, No of modules (instances) in each 

dataset, No of defective modules and No of non-defective 

modules. 

Table 2. Cleaning Criteria Applied to Noisy NASA Datasets [22], [24] 

Criterion Data Quality Category Explanation 

1. Identical cases 
“Instances that have identical values for all metrics 

including class label”. 

2. Inconsistent cases 
“Instances that satisfy all conditions of Case 1, but where 

class labels differ”. 

3. Cases with missing values “Instances that contain one or more missing observations”. 

4. Cases with conflicting feature values 

“Instances that have 2 or more metric values that violate 

some referential integrity constraint. For example, LOC 
TOTAL is less than Commented LOC. However, 

Commented LOC is a subset of LOC TOTAL”. 

5. Cases with implausible values 
“Instances that violate some integrity constraint. For 

example, value of LOC=1.1” 

Table 3. Comparison of Resampling Methods [6] 

 RUS ROS SMOTE 

Process 
Removes the instances of 

majority class randomly and 

reduces the dataset. 

Increases the instances of 

minority class by duplicating 

randomly 

Increases the instances of minority 

class by extrapolating between 
preexisting minority instances 

which obtained by KNN. 

Strength Shorter convergence time. 
No information is lost and 

can improve the performance 
produce better results. 

Effective in improving the 

classification accuracy of the 
minority data. 

Limitation 
Important information is lost 

due to the shrinkage of 

majority class 

Overfitting issue due to 
multiple tied instances. 

Data synthetic still possible to 

spread on both minority and 
majority data, hence reduced the 

performance of classification. 
 

Second stage uses 3 widely used re sampling 

techniques (Table 3) to resolve the class imbalance issue 

in datasets. The resampling techniques include: RUS 

(Random Under-Sampling), ROS (Random Over-

Sampling), SMOTE (Synthetic Minority Over-sampling 

Technique) which are discussed below: 

A.  RUS (Random Under-Sampling) 

This technique reduces the imbalance ratio in dataset 

by removing some of the instances of majority class and 

makes the classes equal in terms of related instances. The 

balanced dataset may lose the important information 

during the removal of instances from majority class due 

to which the classifier may reflect worse performance. 

 

B.  ROS (Random Over-Sampling) 

This technique reduces the imbalance ratio in dataset 

by duplicating the instances in minority class. With this 

approach the existing instances retains in the dataset but 

the volume of the dataset increases due to duplication. 

Both the classes can get balance with this technique 

however over-fitting problem can occur which can 

degrade the performance of classifier. 

C.  SMOTE (Synthetic Minority Over-sampling 

Technique) 

Synthetic Minority Over-sampling Technique 

(SMOTE) is the widely used sampling techniques which 

creates additional synthetic instances in the minority 
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class instead of duplication. The steps of this technique 

are discussed below: 

 

1. A random number is generated between 0 and 1. 

2. The difference between the feature vector of 

minority class sample and its nearest neighbor is 

calculated. 

3. The difference calculated in step 2 is multiplied with 

the random number generated in step 1. 

4. The result achieved in step 3 is added to the feature 

vector of minority class sample. 

5. The result of step 4 identifies the newly generated 

sample. 

 

Third stage deals with the classification by using 

various widely used supervised learning techniques 

including: Naïve Bayes (NB), Multi-Layer Perceptron 

(MLP). Radial Basis Function (RBF), Support Vector 

Machine (SVM), K Nearest Neighbor (KNN), kStar (K*), 

One Rule (OneR), PART, Decision Tree (DT), and 

Random Forest (RF).  

Fourth and final stage of the comparison framework 

deals with the extraction and reflection of results and is 

discussed in next section (Section 4).   

 

IV.  RESULTS AND DISCUSSION 

The datasets after re sampling are given to 

classification techniques as input with 70:30 ratio (70 % 

training data and 30% test data). Performance is 

evaluated through various measures generated from 

confusion matrix including: Precision, Recall, F-measure, 

Accuracy, MCC and ROC. 

The confusion matrix is shown in (Fig. 2) and consists 

of following parameters [7]. 

 

True Positive (TP): “Instances which are actually 

positive and also classified as positive”. 

False Positive (FP): “Instances which are actually 

negative but classified as positive”. 

False Negative (FN): “Instances which are actually 

positive but classified as negative”. 

True Negative (TN): “Instances which are actually 

negative and also classified as negative”. 

Performance measures are based on the parameters of 

confusion matrix and are discussed below [7,8,9]. 

 

 

Fig.2. Confusion Matrix 
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Table 4. CM1 Results 

 

F-Measure Accuracy ROC Area MCC 

No Tec RUS ROS SMOTE No Tec RUS ROS SMOTE 
No 

Tec 
RUS ROS SMOTE 

No 

Tec 
RUS ROS SMOTE 

NB 0.190 0.316 0.444 0.462 82.653 48.000 59.183 74.774 0.703 0.535 0.685 0.806 0.097 -0.06 0.217 0.308 

MLP 0.000 0.690 0.907 0.244 86.734 64.000 89.795 72.072 0.634 0.622 0.923 0.638 -0.060 0.316 0.813 0.138 

RBF ? 0.667 0.736 0.171 90.816 60.000 71.428 73.873 0.702 0.532 0.741 0.686 ? 0.243 0.434 0.161 

SVM ? 0.667 0.684 0.065 90.816 60.000 63.265 73.873 0.500 0.609 0.633 0.517 ? 0.243 0.281 0.157 

kNN 0.083 0.667 0.867 0.517 77.551 60.000 84.693 74.774 0.477 0.609 0.855 0.670 -0.037 0.243 0.729 0.347 

kStar 0.083 0.348 0.899 0.571 77.551 40.000 88.775 78.378 0.538 0.417 0.946 0.761 -0.037 -0.20 0.796 0.430 

OneR 0.000 0.667 0.759 0.273 85.714 60.000 73.469 71.171 0.472 0.609 0.735 0.551 -0.074 0.243 0.479 0.135 

PART ? 0.444 0.913 0.600 90.816 40.000 90.816 78.378 0.610 0.413 0.912 0.684 ? -0.19 0.821 0.452 

DT 0.154 0.581 0.846 0.458 77.551 48.000 83.673 76.576 0.378 0.439 0.850 0.595 0.041 -0.02 0.679 0.338 

RF 0.000 0.571 0.899 0.462 89.795 52.000 88.775 81.081 0.761 0.465 0.991 0.924 -0.032 0.053 0.796 0.488 
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Table 5. JM1 Results 

 

F-Measure Accuracy ROC Area MCC 

No Tec RUS ROS SMOTE No Tec RUS ROS SMOTE No Tec RUS ROS SMOTE 
No 

Tec 
RUS ROS SMOTE 

NB 0.318 0.307 0.310 0.290 79.835 57.600 56.217 68.035 0.663 0.650 0.652 0.629 0.251 0.210 0.199 0.188 

MLP 0.146 0.639 0.525 0.483 80.354 59.152 61.312 67.750 0.702 0.671 0.673 0.666 0.206 0.197 0.250 0.253 

RBF 0.181 0.601 0.605 0.403 80.397 62.771 63.385 69.000 0.713 0.667 0.675 0.675 0.215 0.225 0.273 0.241 

SVM ? 0.497 0.504 0.217 79.188 62.771 61.053 67.750 0.500 0.623 0.613 0.545 ? 0.284 0.252 0.167 

kNN 0.348 0.594 0.867 0.565 73.963 59.565 85.751 71.035 0.591 0.596 0.850 0.672 0.186 0.192 0.720 0.348 

kStar 0.355 0.567 0.869 0.646 75.993 59.462 85.794 76.071 0.572 0.634 0.934 0.794 0.212 0.188 0.723 0.465 

OneR 0.216 0.560 0.672 0.607 77.158 56.256 67.055 77.678 0.543 0.563 0.671 0.711 0.126 0.125 0.341 0.478 

PART 0.037 0.678 0.658 0.606 79.490 65.563 66.968 76.142 0.714 0.697 0.738 0.786 0.104 0.319 0.342 0.446 

DT 0.348 0.619 0.834 0.623 79.101 63.909 82.728 76.821 0.671 0.654 0.855 0.777 0.252 0.278 0.655 0.464 

RF 0.284 0.671 0.885 0.690 80.181 66.597 87.953 81.071 0.738 0.715 0.960 0.840 0.244 0.334 0.761 0.564 

Table 6. KC1 Results 

 
 

F-Measure Accuracy ROC Area MCC 

No Tec RUS ROS SMOTE No Tec RUS ROS SMOTE 
No 

Tec 
RUS ROS SMOTE 

No 

Tec 
RUS ROS SMOTE 

NB 0.400 0.516 0.498 0.468 74.212 64.772 61.318 66.132 0.694 0.719 0.669 0.692 0.250 0.300 0.253 0.280 

MLP 0.358 0.504 0.692 0.480 77.363 67.613 69.627 67.734 0.736 0.755 0.744 0.714 0.296 0.398 0.393 0.322 

RBF 0.362 0.649 0.648 0.512 78.796 69.318 67.335 67.276 0.713 0.762 0.705 0.702 0.347 0.381 0.350 0.307 

SVM 0.085 0.639 0.611 0.445 75.358 70.454 63.896 67.505 0.521 0.695 0.639 0.623 0.151 0.408 0.280 0.324 

kNN 0.395 0.584 0.858 0.684 69.341 61.931 85.673 72.997 0.595 0.616 0.868 0.728 0.190 0.233 0.714 0.449 

kStar 0.419 0.650 0.836 0.717 72.206 68.750 83.094 76.201 0.651 0.686 0.912 0.843 0.238 0.370 0.663 0.512 

OneR 0.256 0.656 0.661 0.671 73.352 64.204 65.616 77.345 0.551 0.648 0.656 0.742 0.147 0.298 0.313 0.536 

PART 0.255 0.664 0.671 0.475 76.504 55.113 72.779 69.107 0.636 0.680 0.813 0.727 0.239 0.227 0.484 0.366 

DT 0.430 0.500 0.798 0.679 75.644 64.772 79.369 72.082 0.606 0.664 0.784 0.740 0.291 0.305 0.588 0.434 

RF 0.454 0.620 0.861 0.790 77.937 63.068 85.959 82.837 0.751 0.733 0.935 0.890 0.346 0.263 0.720 0.645 

Table 7. KC3 Results 

 
 

F-Measure Accuracy ROC Area MCC 

No Tec RUS ROS SMOTE No Tec RUS ROS SMOTE 
No 

Tec 
RUS ROS SMOTE 

No 

Tec 
RUS ROS SMOTE 

NB 0.421 0.526 0.588 0.471 81.034 59.090 63.793 73.913 0.769 0.846 0.712 0.686 0.309 0.302 0.358 0.364 

MLP 0.375 0.667 0.857 0.634 82.758 63.636 84.482 78.260 0.733 0.761 0.851 0.824 0.295 0.277 0.692 0.490 

RBF 0.000 0.526 0.733 0.467 77.586 59.090 72.413 76.811 0.735 0.829 0.772 0.724 -0.107 0.302 0.463 0.475 

SVM ? 0.526 0.667 0.160 82.758 59.090 67.241 69.565 0.500 0.637 0.688 0.543 ? 0.302 0.378 0.244 

kNN 0.364 0.600 0.889 0.600 75.862 63.636 87.931 76.811 0.617 0.675 0.893 0.707 0.218 0.370 0.762 0.452 

kStar 0.300 0.609 0.923 0.667 75.862 59.090 91.379 79.710 0.528 0.521 0.942 0.818 0.154 0.203 0.826 0.528 

OneR 0.375 0.476 0.836 0.439 82.758 50.000 81.034 66.666 0.619 0.526 0.804 0.598 0.295 0.052 0.612 0.210 

PART 0.143 0.640 0.866 0.683 79.3103 59.090 84.482 81.159 0.788 0.598 0.866 0.748 0.056 0.169 0.683 0.560 

DT 0.300 0.692 0.870 0.744 75.862 63.636 84.482 84.058 0.570 0.667 0.862 0.829 0.154 0.248 0.683 0.632 

RF 0.235 0.571 0.896 0.563 77.586 59.090 87.931 79.710 0.807 0.714 0.948 0.838 0.111 0.245 0.753 0.548 
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Table 8. MC1 Results 

 
 

F-Measure Accuracy ROC Area MCC 

No Tec RUS ROS SMOTE No Tec RUS ROS SMOTE 
No 

Tec 
RUS ROS SMOTE 

No 

Tec 
RUS ROS SMOTE 

NB 0.217 0.353 0.505 0.211 93.856 50.000 63.139 87.416 0.826 0.590 0.797 0.778 0.208 0.153 0.330 0.204 

MLP ? 0.727 0.887 0.400 97.610 72.727 88.737 96.476 0.805 0.897 0.970 0.829 ? 0.504 0.776 0.391 

RBF ? 0.727 0.781 ? 97.610 72.727 77.815 96.476 0.781 0.889 0.889 0.764 ? 0.504 0.557 ? 

SVM ? 0.700 0.821 ? 97.610 72.727 81.570 96.476 0.500 0.769 0.815 0.500 ? 0.568 0.631 ? 

kNN 0.333 0.696 0.995 0.585 97.269 68.181 99.488 97.147 0.638 0.697 0.995 0.779 0.325 0.388 0.990 0.571 

kStar 0.182 0.667 0.998 0.514 96.928 68.181 99.829 97.147 0.631 0.701 1.000 0.856 0.174 0.437 0.997 0.511 

OneR 0.200 0.421 0.963 0.240 97.269 50.000 96.075 96.811 0.568 0.543 0.960 0.571 0.206 0.094 0.924 0.319 

PART 0.333 0.727 0.990 0.500 97.269 72.727 98.976 96.979 0.684 0.658 0.988 0.890 0.325 0.504 0.980 0.492 

DT ? 0.667 0.984 0.474 97.610 68.181 98.293 96.644 0.500 0.765 0.982 0.750 ? 0.437 0.966 0.459 

RF 0.000 0.526 0.998 0.385 97.440 59.090 99.829 97.315 0.864 0.769 1.000 0.973 -0.006 0.302 0.997 0.481 

Table 9. MC2 Results 

 
 

F-Measure Accuracy ROC Area MCC 

No Tec RUS ROS SMOTE No Tec RUS ROS SMOTE 
No 

Tec 
RUS ROS SMOTE 

No 

Tec 
RUS ROS SMOTE 

NB 0.526 0.600 0.522 0.596 75.675 69.230 70.270 62.000 0.795 0.726 0.847 0.735 0.444 0.386 0.477 0.301 

MLP 0.519 0.300 0.750 0.654 64.864 46.153 78.378 64.000 0.753 0.507 0.865 0.785 0.243 -0.11 0.564 0.298 

RBF 0.444 0.538 0.667 0.750 72.973 53.846 70.270 72.000 0.766 0.639 0.824 0.829 0.371 0.264 0.399 0.434 

SVM 0.222 0.583 0.621 0.720 62.162 61.538 70.270 72.000 0.514 0.688 0.690 0.739 0.04 0.356 0.404 0.478 

kNN 0.545 0.522 0.839 0.800 72.973 57.692 86.486 76.000 0.668 0.625 0.822 0.747 0.374 0.234 0.734 0.503 

kStar 0.348 0.400 0.765 0.862 59.459 65.384 78.378 84.000 0.510 0.576 0.838 0.816 0.062 0.159 0.565 0.672 

OneR 0.316 0.385 0.647 0.807 64.864 38.461 67.567 78.000 0.553 0.451 0.674 0.778 0.137 -0.09 0.347 0.552 

PART 0.667 0.500 0.727 0.727 78.378 53.846 75.675 70.000 0.724 0.639 0.768 0.755 0.512 0.184 0.509 0.399 

DT 0.435 0.522 0.629 0.721 64.864 57.692 64.864 66.000 0.615 0.639 0.715 0.631 0.189 0.234 0.296 0.290 

RF 0.480 0.435 0.774 0.847 64.864 50.000 81.081 82.000 0.646 0.556 0.937 0.878 0.216 0.065 0.623 0.629 

Table 10. MW1 Results 

 
 

F-Measure Accuracy ROC Area MCC 

No Tec RUS ROS SMOTE No Tec RUS ROS SMOTE 
No 

Tec 
RUS ROS SMOTE 

No 

Tec 
RUS ROS SMOTE 

NB 0.435 0.706 0.740 0.516 82.666 66.666 74.666 81.707 0.791 0.630 0.793 0.842 0.367 0.327 0.506 0.427 

MLP 0.632 0.706 0.930 0.522 90.666 66.666 92.000 86.585 0.843 0.722 0.938 0.790 0.589 0.327 0.849 0.444 

RBF ? 0.667 0.819 0.400 89.333 66.666 80.000 85.365 0.808 0.778 0.828 0.829 ? 0.389 0.598 0.329 

SVM ? 0.667 0.800 0.500 89.333 66.666 80.000 87.804 0.500 0.694 0.804 0.687 ? 0.389 0.607 0.445 

kNN 0.444 0.706 0.909 0.538 86.666 66.666 89.333 85.365 0.705 0.667 0.854 0.742 0.373 0.327 0.802 0.454 

kStar 0.133 0.800 0.909 0.552 82.666 80.000 89.333 84.146 0.543 0.778 0.967 0.860 0.038 0.667 0.802 0.469 

OneR 0.200 0.667 0.833 0.333 89.333 66.666 81.333 85.365 0.555 0.694 0.809 0.604 0.211 0.389 0.626 0.281 

PART 0.167 0.706 0.930 0.522 86.666 66.666 92.000 86.585 0.314 0.630 0.940 0.656 0.110 0.327 0.849 0.444 

DT 0.167 0.750 0.920 0.417 86.666 73.333 90.666 82.926 0.314 0.722 0.900 0.740 0.110 0.491 0.825 0.317 

RF 0.182 0.667 0.952 0.609 88.000 66.666 94.666 89.024 0.766 0.741 1.000 0.896 0.150 0.389 0.897 0.546 
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Table 11. PC1 Results 

 
 

F-Measure Accuracy ROC Area MCC 

No Tec RUS ROS SMOTE No Tec RUS ROS SMOTE 
No 

Tec 
RUS ROS SMOTE 

No 

Tec 
RUS ROS SMOTE 

NB 0.400 0.583 0.530 0.485 89.705 69.697 65.024 84.545 0.879 0.818 0.846 0.842 0.400 0.442 0.382 0.403 

MLP 0.462 0.500 0.929 0.508 96.568 57.575 92.118 85.909 0.779 0.713 0.942 0.910 0.538 0.149 0.852 0.443 

RBF 0.154 0.667 0.851 0.130 94.607 66.666 83.743 81.818 0.875 0.790 0.901 0.870 0.161 0.335 0.677 0.104 

SVM ? 0.688 0.853 0.000 95.098 69.697 83.743 82.272 0.5 0.697 0.835 0.497 ? 0.393 0.680 -0.031 

kNN 0.286 0.774 0.963 0.507 92.647 78.787 96.059 85.000 0.629 0.787 0.979 0.691 0.247 0.576 0.924 0.426 

kStar 0.176 0.552 0.955 0.667 86.274 60.606 95.073 88.636 0.673 0.728 0.983 0.920 0.128 0.211 0.905 0.598 

OneR 0.154 0.737 0.860 0.276 94.607 69.697 84.729 80.909 0.545 0.702 0.845 0.572 0.161 0.429 0.697 0.190 

PART 0.462 0.667 0.963 0.514 93.137 69.697 96.059 84.545 0.889 0.691 0.967 0.771 0.440 0.394 0.922 0.425 

DT 0.500 0.750 0.940 0.606 93.137 75.757 93.596 88.181 0.718 0.721 0.948 0.808 0.490 0.515 0.874 0.547 

RF 0.429 0.778 0.946 0.610 96.078 75.757 94.088 89.545 0.858 0.860 0.999 0.941 0.459 0.534 0.887 0.588 

Table 12. PC2 Results 

 

F-Measure Accuracy ROC Area MCC 

No Tec RUS ROS SMOTE No Tec RUS ROS SMOTE 
No 

Tec 
RUS ROS SMOTE 

No 

Tec 
RUS ROS SMOTE 

NB 0.000 0.667 0.752 0.250 94.470 70.000 76.958 91.855 0.751 0.875 0.826 0.844 -0.028 0.535 0.542 0.207 

MLP 0.000 0.923 0.955 0.273 96.774 90.000 95.391 92.760 0.746 0.958 0.939 0.866 -0.015 0.802 0.912 0.236 

RBF ? 0.923 0.800 ? 97.695 90.000 78.801 94.570 0.724 0.958 0.885 0.812 ? 0.802 0.583 ? 

SVM ? 0.667 0.790 ? 97.695 70.000 77.419 94.570 0.500 0.750 0.775 0.500 ? 0.535 0.558 ? 

kNN 0.000 0.833 0.955 0.400 96.774 80.000 95.391 94.570 0.495 0.792 0.941 0.657 -0.015 0.583 0.912 0.381 

kStar 0.167 0.833 0.973 0.182 95.391 80.000 97.235 91.855 0.791 0.813 1.000 0.696 0.146 0.583 0.946 0.140 

OneR 0.000 0.923 0.930 0.375 97.235 90.000 92.626 95.475 0.498 0.875 0.927 0.623 -0.01 0.802 0.862 0.417 

PART 0.000 0.833 0.968 ? 96.774 80.000 96.774 94.570 0.623 0.854 0.979 0.871 -0.015 0.583 0.937 ? 

DT ? 0.833 0.973 0.250 97.695 80.000 97.235 94.570 0.579 0.854 0.977 0.813 ? 0.583 0.946 0.267 

RF ? 0.923 0.977 ? 97.695 90.000 97.695 94.570 0.731 0.958 1.000 0.968 ? 0.802 0.955 ? 

Table 13. PC3 Results 

 
 

F-Measure Accuracy ROC Area MCC 

No Tec RUS ROS SMOTE No Tec RUS ROS SMOTE 
No 

Tec 
RUS ROS SMOTE 

No 

Tec 
RUS ROS SMOTE 

NB 0.257 0.754 0.634 0.576 28.797 78.205 49.683 75.493 0.773 0.823 0.722 0.832 0.088 0.561 0.013 0.452 

MLP 0.261 0.694 0.819 0.482 83.860 71.794 81.012 79.436 0.796 0.751 0.859 0.848 0.183 0.433 0.627 0.356 

RBF ? 0.763 0.764 0.274 86.392 76.923 75.316 76.056 0.795 0.798 0.807 0.803 ? 0.542 0.511 0.152 

SVM ? 0.763 0.731 0.136 86.320 76.923 71.835 78.591 0.500 0.772 0.720 0.528 ? 0.542 0.442 0.120 

kNN 0.353 0.667 0.928 0.535 86.075 70.512 92.721 81.408 0.616 0.700 0.919 0.702 0.294 0.404 0.856 0.421 

kStar 0.267 0.667 0.904 0.604 82.594 70.512 89.873 82.253 0.749 0.702 0.962 0.870 0.173 0.404 0.806 0.491 

OneR 0.226 0.747 0.774 0.462 87.025 75.641 75.949 84.225 0.562 0.758 0.761 0.651 0.245 0.514 0.527 0.450 

PART ? 0.658 0.906 0.417 86.392 65.384 90.506 81.126 0.790 0.696 0.929 0.747 ? 0.318 0.811 0.339 

DT 0.358 0.718 0.896 0.592 86.392 71.794 89.240 83.662 0.664 0.742 0.908 0.711 0.304 0.444 0.789 0.491 

RF 0.226 0.767 0.911 0.641 87.025 78.205 90.822 86.760 0.855 0.796 0.983 0.900 0.245 0.563 0.822 0.571 
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Table 14. PC4 Results 

 

F-Measure Accuracy ROC Area MCC 

No Tec RUS ROS SMOTE No Tec RUS ROS SMOTE 
No 

Tec 
RUS ROS SMOTE 

No 

Tec 
RUS ROS SMOTE 

NB 0.404 0.617 0.650 0.477 86.0892 70.754 69.816 79.262 0.807 0.766 0.787 0.844 0.334 0.456 0.436 0.396 

MLP 0.562 0.739 0.899 0.736 89.7638 72.641 89.238 85.483 0.898 0.814 0.938 0.918 0.515 0.458 0.784 0.638 

RBF 0.250 0.717 0.788 0.476 87.4016 71.698 77.690 80.184 0.862 0.824 0.887 0.887 0.279 0.434 0.553 0.424 

SVM 0.286 0.754 0.805 0.561 88.189 73.584 78.477 83.410 0.583 0.738 0.782 0.696 0.342 0.482 0.569 0.539 

kNN 0.438 0.738 0.954 0.679 85.8268 69.811 95.013 83.871 0.667 0.701 0.945 0.778 0.359 0.425 0.902 0.573 

kStar 0.330 0.683 0.917 0.733 81.8898 62.264 90.551 85.253 0.734 0.669 0.985 0.905 0.225 0.275 0.821 0.633 

OneR 0.361 0.786 0.841 0.620 87.9265 77.358 82.677 85.023 0.614 0.775 0.825 0.726 0.352 0.555 0.653 0.589 

PART 0.481 0.828 0.916 0.785 85.3018 81.132 90.813 87.788 0.776 0.801 0.923 0.892 0.396 0.641 0.818 0.705 

DT 0.583 0.810 0.936 0.742 86.8766 79.245 92.913 86.405 0.834 0.775 0.944 0.863 0.514 0.602 0.862 0.650 

RF 0.532 0.831 0.947 0.823 90.2887 81.132 94.225 91.474 0.945 0.877 0.995 0.964 0.516 0.647 0.888 0.773 

Table 15. PC5 Results 

 
 

F-Measure Accuracy ROC Area MCC 

No Tec RUS ROS SMOTE No Tec RUS ROS SMOTE 
No 

Tec 
RUS ROS SMOTE 

No 

Tec 
RUS ROS SMOTE 

NB 0.269 0.281 0.333 0.385 75.3937 55.272 56.692 64.860 0.725 0.695 0.732 0.748 0.245 0.167 0.214 0.282 

MLP 0.299 0.702 0.738 0.663 74.2126 67.636 73.622 69.195 0.751 0.698 0.797 0.771 0.216 0.357 0.473 0.384 

RBF 0.235 0.699 0.686 0.662 75.5906 68.727 68.110 72.291 0.732 0.719 0.751 0.788 0.251 0.375 0.362 0.429 

SVM 0.097 0.671 0.710 0.612 74.2126 65.090 68.897 68.421 0.524 0.651 0.688 0.671 0.173 0.304 0.378 0.349 

kNN 0.498 0.671 0.858 0.702 73.0315 66.909 85.039 74.767 0.657 0.669 0.857 0.741 0.314 0.338 0.702 0.483 

kStar 0.431 0.680 0.849 0.731 69.8819 66.181 83.661 75.541 0.629 0.697 0.903 0.818 0.227 0.325 0.678 0.511 

OneR 0.387 0.611 0.718 0.662 71.2598 62.909 70.866 76.470 0.594 0.629 0.708 0.736 0.209 0.260 0.417 0.528 

PART 0.335 0.733 0.766 0.669 75.7874 67.636 71.060 75.387 0.739 0.744 0.809 0.792 0.274 0.387 0.464 0.495 

DT 0.531 0.695 0.824 0.737 75.000 65.454 81.692 76.935 0.703 0.626 0.819 0.761 0.361 0.319 0.634 0.532 

RF 0.450 0.716 0.877 0.785 75.9843 69.090 87.204 81.114 0.805 0.766 0.953 0.897 0.322 0.387 0.744 0.617 

 

The classification results after implementing each of 

the resampling techniques (as mentioned in the 

comparison framework) on all of the used datasets are 

reflected in the tables (from Table. 4 to Table. 15). The 

sub column named “No Tec” (no technique of class 

balancing is used) in each of the accuracy measure refers 

to the published results from [7], where same classifiers 

and datasets are used without any resampling technique. 

The purpose of using those results in this research is to 

compare the effectiveness of resampling techniques. 

From the results it has been observed that overall in each 

performance measure, ROS performed better in all 

datasets with most of the classifiers. However in 

Accuracy, besides the ROS, most of the classifiers also 

performed better when no sampling technique was used. 

RUS did not perform well except in KC1 dataset with 

few of the classifiers. SMOTE on the other hand 

performed better in MC2 dataset with most of the 

classifiers. The class imbalance issue reflected by [7] in 

most of the datasets are resolved by the used resampling 

techniques with one exceptional case of PC2 dataset in 

which this issue still exists as shown in Table 12. 

 

 

 

V.  CONCLUSION 

The performance of supervised machine learning 

classifiers can be biased due to class imbalance issue in 

the datasets. This research analyzed the performance of 

three widely used resampling techniques on class 

imbalance issue during software defect prediction. The 

used resampling techniques are: Random Under 

Sampling, Random Over Sampling and Synthetic 

Minority Oversampling Technique (SMOTE). Twelve 

cleaned publically available NASA datasets are used for 

experiments along with 10 widely used classifiers 

including: Naïve Bayes (NB), Multi-Layer Perceptron 

(MLP). Radial Basis Function (RBF), Support Vector 

Machine (SVM), K Nearest Neighbor (KNN), kStar (K*), 

One Rule (OneR), PART, Decision Tree (DT), and 

Random Forest (RF). The performance is measured in 

terms of F-measure, Accuracy, MCC and ROC. This 

paper compared the performance of resampling 

techniques with the results of a published research in 

which no resampling technique is used however 

classifiers and datasets are the same. According to results, 
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Random Over Sampling outperformed other techniques 

with most of the classifiers in all datasets. The 

resampling techniques resolved the issue of class 

imbalance in 11 out of 12 datasets with the exception of 

one dataset named PC2. It is suggested for future that 

ensemble classifiers should be used along with 

resampling techniques to further improve the 

performance. 
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