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Abstract—In recent years, the use of cloud computing 

has increased exponentially to satisfy computing needs in 

both big and small organizations. However, the high 

amounts of power consumed by cloud data centres have 

raised concern. A major cause of power wastage in cloud 

computing is inefficient utilization of computing 

resources. In Infrastructure as a Service, the inefficiency 

is caused when users request for more resources for 

virtual machines than is required. In this paper, we 

propose a technique for automatic virtual machine sizing 

and resource usage prediction using neural networks, for 

multi-tenant Infrastructure as a Service cloud service 

model. The proposed technique aims at reducing energy 

wastage in data centres by efficient resource utilization. 

An evaluation of our technique on CloudSim Plus cloud 

simulator and WEKA shows that effective VM sizing not 

only achieves energy savings but also reduces the cost of 

using cloud services from a customer perspective.  

 

Index Terms—Cloud computing, virtual machine sizing, 

IaaS cloud, multi-tenant public cloud, energy efficiency, 

CloudSim plus, neural networks.  

 

I.  INTRODUCTION 

The growth of appetite to cloud computing by small 

and big enterprises has resulted in setting up of many 

data centres. Unfortunately, data centres consume a lot of 

energy and this a concern. According to [1] and [2], 

power bills have been the largest commodity service 

expenditure in CSPs. Moreover, data centre electricity 

usage was about 3% by 2012 and now it is expected to 

triple by 2020 [1]. In addition, high power usage has a 

negative environmental implication, which is the release 

of CO2 to the environment. In 2013 alone, the US data 

centres consumed 91 billion kWh of electricity [3]. This 

amount of electricity is enough to power New York 

City’s households for a full 2 years and is expected to rise 

to 140 billion kWh by 2020, which can in turn release 

150 million tons of CO2.  

Some of the energy consumed in data centres does not 

perform useful processing and thus is wasted [4]. The 

major causes of data centre power wastage are low server 

utilization and idle power wastage, which is caused by 

inefficient resource utilization [4,5]. An example of 

inefficient resource utilization is where excessive 

resources are provisioned than is required. This means 

that many PMs are used to run workloads, which would 

actually be executed by less PMs. Idle power wastage is 

caused by non-proportional computing, where energy 

consumed by data centre servers is high even at low 

server load. A survey involving 5000 servers revealed 

that although servers are generally not idle, their 

utilization never reaches 100% [6]. An analysis by [7] on 

Google Cluster Trace (GCT), 65 % of CPU and 45 % of 

memory go to waste. 

Virtualization technology is poised to address the 

problem of resource wastage in cloud computing [8]. 

Virtualization provides a way of independently hosting 

applications that share resources in the same PM and thus 

improves the energy efficiency of data centres through 

consolidation. Consolidation allows packing many VMs 

in the one PM so that other PMs can be shut down thus 

achieving energy savings. However, this technique may 

not useful in some circumstances. For instance, in 

Infrastructure as a service (IaaS), which is the most 

promising cloud model among small organizations [9], 

[10], customers are allowed to pick VM sizes from CSPs’ 

list of available VM types without the knowledge of the 

actual amount of resources their applications need [11]. A 

VM size or type is the amount of each computing 

resources assigned to a VM such as memory, CPU, hard 

disk and network bandwidth [12]. More often, the 

resources are over-provisioned and thus goes to waste. 

From this viewpoint, resources not performing useful 

work consume energy and the customer has to pay for 

them.  

In order to determine the actual amount of resources 

used by a VM, data about a particular VM has to be 
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collected and analyzed and this has to be done by the 

CSP. From a CSPs’ point of view, applications running in 

a particular customer VM are a black box host in a VM 

[13]. Fortunately, the CSP has access to the virtualization 

layer, where they can monitor resource usage for each 

hosted VM. From this viewpoint, there are many attempts 

that have made by the large organization to address the 

problem of VM sizing, which include ParkMyCloud [14] 

for Windows Azure Cloud service customers, VM sizing 

recommendation service for Google customers [15] and 

Amazon’s CloudWatch [16]. All the methods provided by 

Azure, Google and AWS cloud services have to be 

manually completed by customers and seems to fit 

customers who already have knowledge in cloud 

computing.  

To address the problem of non-proportional 

computing, Dynamic Voltage and Frequency Scaling 

(DVFS) has been used. DVFS is an energy saving 

technique in computer architecture that is used to save 

energy when the server load is low [4]. In this technique, 

the frequency and voltage of the CPU are scaled 

dynamically to relate with the amount of server load. The 

power, P, of the CPU is computed as shown in equation 

(1) [17] where V is the voltage, F is the frequency and C 

is the capacitive load on the system. It is observed that if 

voltage and frequency are lowered, there will be a 

significant reduction in power consumption. However, 

DVFS is hardware-based technique and works well only 

on CPU bound tasks because dynamic power ranges for 

other components (memory, disk and network) are much 

narrower [6].  

 

C,*F*
2

VP                               (1) 

 

Another technique for managing dynamic resource 

management is dynamic memory allocation known as 

Memory Ballooning [18, 19, 20, 21]. This technique 

allows the hypervisor to reclaim unused memory from 

one VM to share it with another.  

VM trace logs collected from VMs can be analyzed or 

characterized using statistical techniques such as mean, 

quartiles and correlations [22]. This analysis can be used 

as insights to address the problems of VM sizing for 

efficient resource utilization. Moreover, other 

considerations such as industry standards can affect how 

VM sizing is achieved. For instance, the Data Center 

Maturity Model (DCMM) is a best practice reference 

model used for evaluating data centres. According to 

DCMM, the highest level, otherwise known as Visionary, 

is achieved if the average monthly CPU utilization is 

above 60% [23]. Another reference model is a threshold 

setting for physical CPU and memory known as VMware 

Knowledge Base (VMware KB) [21]. According to 

VMware KB, 80% CPU utilization is considered a 

ceiling and a warning if CPU utilization is 90% for 5 

minutes. Thresholds set by such reference models can be 

used for scaling [24]. All these techniques can be 

completed by using automatic resource allocation, 

resource provisioning and resource monitoring by 

designing Autonomous Resource Management System 

(ARMS) [25]. 

In this paper, we propose an architecture for VM sizing 

in IaaS multi-tenant public cloud based on historical 

resource usage. Because of the dynamic nature of cloud 

workload, static resources assigned to VM may not be 

accurate. Thus the fixed thresholds resource values can 

trigger unnecessary migrations, which will, in turn, 

increase energy consumption [26]. Therefore, we extend 

our architecture to predict resource usage so that, at VM 

peak resource usage, resources from host reserves can be 

provisioned.  

In order to apply our technique using real workload 

traces, we have utilized GWA-T-13 Materna dataset, 

which contains information about VMs hosted in a data 

centre that supports business-critical workloads in 

Germany. The dataset structure and format is explained 

in [27].  

 

II.  RELATED WORK 

Efficient management of power usage in data centres 

through prediction and VM sizing is on the rise 

[11,28,29]. However, the approaches used have not 

attempted to combine VM sizing and resource usage 

prediction. Moreover, there are gaps that can be exploited 

when it comes to multi-tenant IaaS cloud models.  

The work in [30] in one of the earliest attempts to 

introduce VM sizing. The authors’ attempts to give a VM 

its size (resource demand) based on its contribution to the 

aggregate resource of the host server. An overall outcome 

is a function of the VMs own resource demand and that 

of its co-located VMs along the time. Based on this 

effective size, a VM placement algorithm is developed, 

which reduces chances of VM migration.  

In [11] the authors have described an architecture for 

customizing VMs to match workload task characteristics 

in container-based virtualization. Their approach clusters 

job tasks based on resource usage and other 

characteristics such as task length, priority and 

submission rate, which are them mapped to appropriate 

VM types (VM sizes). They have used GCT to evaluate 

their technique, which they conclude achieves their goal - 

to reduce energy consumption in data centres by efficient 

utilization of resources.  

In [31] the authors have proposed a VM resizing 

strategy with the aim of matching VM capacity with VM 

load in IaaS cloud. Their approach proposes a new VM 

capacity through time division multiplexing and 

adjustments proposed can be completed by existing 

virtualization technologies. The authors have compared 

their strategy with migration and they have reported that 

performance degradation resulting from their approach is 

much lower and for a short time as compared to VM 

migration.     

In [32] a framework is presented for predicting 

performance loss and energy consumption caused by VM 

live migration. This framework is used to support 

decisions on auto-scaling and solve two VM 

consolidation sub-problems 1) VM selection and 2) VM 
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allocation. VM selection for migration and host selection 

to host the migrated VM is decided after forecasting the 

resource usage and energy consumption before and after 

the live migration. This framework uses ARIMA model 

for prediction. ARIMA models have also been used in 

[33] to predict workload for achieving QoS.  

Finally, in [29]  the authors proposes a data centre 

resource usage prediction that is based on either 

Autoregressive Integrated Moving Average (ARIMA) or 

Autoregressive Neural Network (AR-NN). Real-time 

resources usage in a server is monitored at intervals and 

is used to forecast future resource demands. If the 

resource usage collected over time follows Gaussian 

distribution, ARIMA is used to forecast, otherwise, AR-

NN is used. The authors report that AR-NN performs 

better than ARIMA on a number of accuracy metrics 

such as Mean Error (ME), Mean Absolute Error (MAE) 

and Mean Absolute Percentage Error (MAPE). A similar 

conclusion has also been made in [34,35]. Neural 

network techniques have been successful in predicting 

cloud resource usage as seen in [36,37,38,39,40,41].  

 

III.  CLOUD MODEL, SYSTEM ARCHITECTURE AND 

RESOURCE PREDICTION MODEL 

In this section, we describe the target cloud service 

model for this work and the system components of our 

proposed solution.  

A.  Cloud service model  

The target cloud service model in this paper is a public 

IaaS multi-tenant cloud, which offers service to the 

public. In this cloud model, users request a VM to be 

created by selecting predefined machine types (sizes) 

such those provided by Google cloud [42]. The VMs are 

then created and place on available PMs the hypervisor. 

The user has full control of the VM and can run any type 

of applications in the VM. From the CSP point of view, 

applications are a black box host in a VM. However, in 

public clouds, users do not have access to VMM, only the 

CSPs do [13]. We assume that the CSP has put in place 

an effective real-time system for monitoring VM resource 

usage. We also propose a change to the default 

hypervisor resource scheduling policies such that a VM is 

allocated a specific CPU core until when migration is 

needed. This is feasible because a customer specifies the 

number of CPU cores before a VM is created. This idea 

is different from CPU affinity [43] but it is close to the 

technique proposed in [44]. The reason for having a fixed 

core for each VM is to achieve per-core DVFS [45] for 

each VM. 

B.  System architecture  

Our proposed architecture is shown in Fig. 1 and its 

components are explained in this section. Our system 

components are separate from the core datacenter 

infrastructure to avoid unnecessary overhead on the core 

datacenter resources.  

 

1) VM size calculator: this component receives 

resource usage harvested from the VM. It then analyzes 

VM resource usage and then determines the right size of 

the VM (VM fixed size). We have adopted VMware KB 

threshold setting for VM resource usage. We set CPU 

usage ceiling CPUceiling and memory usage ceiling, 

MEMceiling to represent the percentage of resource usage 

instances that were below MEMceiling % and CPUceiling % 

for memory and CPU respectively. The resource 

warnings for these resources are set at 5% above the 

ceiling. The percentile rankings, Rcpu and Rram, for the 

effective VM size is given by; 

 

 

Fig.1. Proposed Architecture 
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where N is the total number of observations for either 

CPU or memory. The ranking, Rcpu and Rram , are then 

used to get values, which are 80% of effective VM sizes. 

We have preferred to consider a ceiling for Rcpu and Rram 

because resource warning is set above resource usage 

ceiling and not below and thus this is an advantage. If a 

function f(.) gives the values at rank Rcpu and Rram, the 

effective new values for VM CPU, CPU, and memory, 

MEM, are given in equations (4) and 5 below.  
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2) VM analysis results history: this is a database that 

stores the results from VM resource usage analysis.  

3) Customer right-sizing recommendations: after VM 

size calculator generates new VM sizes, they are stored in 

this component for the customer to access. 

4) VM sizer: this is a very important component in this 

architecture because it is responsible for implementing 

VM size recommendations from VM sizer.  

Recommended VM sizes are used to resize a particular 

VM according to Algorithm 1 if the recommended size 

is not equal or close to current VM size. A VM to be used 

to resize a current VM is considered close to it if its size 

is not more than 5% of the current VMs. If memory or 

vCPU core addition or removal is required, we propose 

the use of CPU hot-plug for CPU and dynamic memory 

management for memory. In case a full vCPU core is not 

necessary, we propose per-core DVFS. The required CPU 

core frequency DVFS process, fcore, is determined 

according to equation (6) [46]. Any time a VM size is 

adjusted, billing for that VM is also adjusted.   

 
Algorithm 1: VM sizer operation 
Input: CalculatedVMSize(cpu,ram), VmTypeList, CurrentVMSize(cpu,ram) 

1.rightVMSizeFoudInVmTypeList equals false 

2.if CalculatedVMSize(cpu,ram) approx. equals CurrentVMSize(cpu,ram) 

then 
3. return; //nothing should happen 

4. else  

5. for each vmType in VmTypeList do 

6.   if CalculatedVMSize(cpu,ram) approx. equals  

vmType(cpu,ram) then 

7.   rightVMSizeFoudInVmTypeList 

equals true 

8.       end if 

9.                      end for 

10.           if rightVMSizeFoudInVmTypeList equals true      then 

11.  Scale resources (cpu,ram) to new   size using 

hot-plug 

12. else 

13.       Scale resource(ram) using hot-plug 

                  14.      For resource(cpu), add cores OR reduce 

cores OR apply per-core DVFS as  

               appropriate  

15. Store new recommendations in CSP VM size 

recommendation repository 

16.                      end if 

17.                     Adjust billing 

18.                     Pass VM new details to resource usage    predictor 

19                      return; 

20. end if 

 

tt
tftf

f
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lowlowhighhigh
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          (6) 

 

where fhigh the highest frequency, thigh the number of 

occurrences of the high frequency and similarly for the 

low frequency.    

 

5) VM type/size repository: this is a database of all VM 

types that have been preconfigured by the CSP. The 

customer picks a VM type for this repository the first 

time they request VM creation.  

6) CSP VM size recommendation repository: if the VM 

sizer cannot get a VM type/size from VM type/size 

repository as recommended by VM size calculator, it will 

recommend that this VM type is availed. This 

recommendation will be stored in this repository for 

CSP’s access.  

7) Resource usage predictor: This component is used 

to predict future VM resource usage. In the next 

subsection, we have used artificial neural networks 

(ANN) and not ARIMA for resource usage prediction 

because our time series data does not follow a normal 

distribution. ANN has been elaborated in subsection (d) 

of this section. The aim of this component is to solve a 

problem, which can be stated as follows; for a VM, given 

a time t and a history of VM resource utilization before t, 

we can forecast resource utilization of the VM at time t. 

In this paper, we focus on one resource, CPU, for 

simplicity. The CPU capacity, CPUadd
(t)

, which needs to 

be added to the VM at time t is determined according to 

Equation (7). 

 

CPUCPU fixednutilizatioadd ttCPU 
)()(

          (7) 

 

where CPUutilization
(t) 

is the total CPU capacity required by 

the VM at time t and CPUfixed is the fixed CPU capacity 

of the VM. Prediction results are stored in a Prediction 

results buffer.  

 

8)  Billing: this component is used to calculate and 

report the cost of running a VM. The cost of running a 

VM, Ctotal, is determined according to equation (8).  

 

  )(
),(),( cpuramcpuramtotal CC          (8) 

 

where C is the cost of the fixed size VM, α(ram,cpu) is the 

cost of resources borrowed at spiky times, β(ram,cpu) is the 

cost of resources lent to other VMs and µ are other costs 

associated with the VM such choice of operating system, 



 Autonomous Virtual Machine Sizing and Resource Usage Prediction for Efficient Resource 15 

Utilization in Multi-Tenant Public Cloud 

Copyright © 2019 MECS                                            I.J. Information Technology and Computer Science, 2019, 5, 11-22 

data centre region, extra services like use of snapshot and 

multiple Internet Protocol (IP) address. 

 

9) PM controller: this component runs in the physical 

machine and is responsible for monitoring resource usage 

of the VM via the virtualization layer and stores it in the 

VM monitoring database. This component can also give 

the resource usage predictor and power calculator access 

to PM real-time resource usage in the PM.  

10) Power calculator: this is a simple component that 

estimates the power consumed by all active hosts at any 

given time t during execution of an application. Total 

power is given by a model shown in equation (9).   

 

 











k

i
i
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                (9) 

 

where k is the number of active hosts at any time, P’ is 

the maximum power consumption of the ith host, P is the 

power consumed by the host when completely idle and n 

is the percentage CPU utilization of the host. Energy, E, 

can be calculated as shown in equation (10).  

 

PTE                                   (10) 

 

where P is average power consumption (in watts) and T 

is a time (in seconds)   interval.  

 

11)  Prediction results buffer: this component is used 

to hold output results, which are prediction values from 

the Resource usage predictor. 

C.  Workload data cleaning, preprocessing and initial 

characterization  

In this subsection, we present selected useful statistics 

about the dataset we will use in this paper. The complete 

workload description and nature of the workload can be 

found in [27]. The first set of Materna dataset shows 

resource provisioned and used for a total of 520 VMs.  

Before characterization, data has to be cleaned. In this 

paper, we have cleaned our data because of the following 

reasons; 

 

1) Wrong data format: some columns in the VM data 

had formats that could not work for our architecture. For 

instance, the columns showing percentage CPU and 

memory usage had values with a comma in place of a 

decimal point. In addition, the timestamp column had a 

date and time format that could not be used in the 

Waikato Environment for Knowledge Analysis (WEKA). 

The date format was has been converted to WEKA’s data 

and time format and commas replaced with decimal 

points in CPU and memory usage percentages. Normally, 

WEKA works well with csv files, but due to format 

issues with some columns, we have converted all our 

CSV files into WEKA’s ARFF file format.  

2) Missing information: for some reasons, such as 

errors in computer program that generated CVS files or 

lack of system monitoring, some data may be missing. In 

our workload data, some column’s data was missing and 

thus indicated as zero. In our case, for some VM CSV, 

the column showing CPU capacity provisioned in MHz 

had zeros. This was obviously an omission since the VM 

had executed workloads and its CPU usage had 

consistent values. This column values, CPUprovisioned, is 

calculated according to equation (11). 

 

100*
%CPU

CPU
CPU

used
dprovisione                       (11) 

 

where CPUused is the value in the ‘CPU usage’ column 

and CPU% is the value in ‘CPU usage [%]’ column.  

In Fig. 2, we have shown a time series for VM 405 in 

our dataset. Because of the time series has a higher 

frequency, we apply a 150-point simple moving average 

(SMA), filter to remove the higher noise frequency  

The resultant SMA filtered time series is shown in Fig. 

3. We have noticed that the resource usage of almost all 

VMs is very low. For instance, Fig. 4 shows memory 

provisioned and memory that was used to execute 

workloads for VM 01. It is clear that the VMs’ memory 

usage was extremely low as compared to allocated 

memory. Summarily, the average CPU and memory 

usage for the 520 VMs is 4.5% and 8.3% respectively. In 

fact, the percentage of VMs with CPU and memory 

utilization below 20% is 96.3% and 90.6% respectively. 

The average highest VM CPU and memory usage stand 

at 69.3 % and 82.2 % respectively.  

The CPU cores provisioned to the VMs are 1, 2, 4, 6 

and 8. 78.8% of the VMs have either 1 or 2 cores and the 

rest have 4 or 6 or 8 cores. Average resource usage peak 

to mean ration, which can be used to show dynamicity 

[22] is 16:1 for CPU and 10:1 for memory. Fig. 5-8 

shows CPU and memory usage’s 90th percentile for 

various VMs (01, 45, 467 and 492). We have shown these 

because we had indicated earlier that our VM sizing 

techniques use percentiles. In Fig. 9, we have shown a 

frequency distribution plot of memory usage for VM 172. 

It is seen that the distribution has a positive skewness 

(skew value = 1.9021426). Skew values for VM 45 CPU 

usage, VM 172 CPU usage, VM 45 memory usage are 

5.2309817, 2.670302 and 1.6542248 respectively. We 

have computed autocorrelation for CPU and memory for 

a lag value ranging from 5 minutes (lag 1) to 2 hours and 

all were very low except for lags that are multiples of 3 

minutes (lag 3, lag 6, lag 9,…), which had a value of 0.3 

to 0.4.  
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Fig.2. CPU usage time series for VM 405 

 
Fig.3. CPU usage Simple Moving Average (window=150) filter 

series for VM 405 

 

Fig.4. A plot of memory allocated, and memory used for VM 01 
 

Fig.5. A plot of memory usage showing 90th percentile for VM 45 

 

Fig.6. A plot of CPU usage showing 90th percentile for VM 01 

 

Fig.7. A plot of memory usage showing 90th percentile for VM 492 

 

Fig.8. A plot of CPU usage showing 90th percentile for VM 467 

 

Fig.9. Frequency distribution of memory usage for VM 172 
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Additionally, Table 1 shows Jarque-Bera results for 

memory usage from VM 172. The computed p value is 

less than the alpha value (0.05), thus we conclude that the 

variable is not normally distributed  

Table 1. Jarque-Bera (JB) test results for memory usage of VM 172 

Item Value 

JB 3802.958114 

p value 0 

Alpha 0.05 

 

For each of the 520 VMs, we have identified all peak 

points, their corresponding timestamps and if there are 

peaks in other VM, which occur at the same time (see 

algorithm 2). We define a peak point of a  

 

VM as any point whose value is higher than a 90th 

percentile value. We have shown that, indeed, there are 

peaks happening simultaneously but their percentage is 

very low, which opens the opportunity of using statistical 

multiplexing [47], exploited where unutilized resources 

of one VM can be borrowed by a co-located VMs.  For 

instance, out of the 520 VMs (with over 4.3 million data 

points), a memory peak at timestamp 1.447967e+09 

happened simultaneously only in 25% of the VMs and it 

was the highest.  For CPU, a peek at timestamp 

1.449137e+09 happened simultaneously only in 24% of 

the VMs and it was the highest. Other peaks for CPU and 

memory occur simultaneously in less than 24% and 25% 

respectively. These results mean that resource over-

commitment is never a problem with workloads, which 

do not peak simultaneously.  

 

Algorithm 2: Finding the number of VM peaks that occur simultaneously 
 Input: # of VMs n, a set of time series for each VM Yt = {Yt

1
,Yt

2
,….Yt

n-1
, Yt

n
} 

 Output: uniquePeakCountList // a list of the frequency of ‘peak points’ 

 foreach yt in Yt set do 

     percentileValue = get90thPercentileForyt () 

     foreach value in yt do  

         if the value is greater than percentileValue then 

             get timestamp for this value 

             add timestamp to list timestampList variable 

  /*now percentileValue has peeks for all the VM time series. If a timestamp 

  appears x times, it means there was a peek at that timestamp in x VMs */ 

         end if 

     end for 

 end for  

 peakUniqueList = timestampList.getUnique //get all unique timestamps from list 

 /*find the number of times each unique appears in timestampList */ 

 foreach unique in peakUniqueList do 

     count = timestampList.count(unique) //the frequency of unique in timestampList 

     //add count to uniquePeakCountList 

     uniquePeakCountList.add(count). 

 end for 

 return uniquePeakCountList 

 

D.  Datacenter resource prediction using neural 

networks 

ANN is a suitable method of prediction in our case 

because we have shown that it data has a non-Gaussian 

distribution. It has also shown good performance than 

other prediction models [29,38]. Moreover, ANN has a 

great ability to model a non-linear function thus able to 

handle complex time series [39,48,49]. Our ANN 

architecture has three layers, which are an input layer, 

hidden layer and an output layer as shown in Fig. 10. 

  

1) Input layer: the input layer receives a multivariate 

time series – each input variable is a time series. These 

attributes are contained in VM data in our dataset in CSV 

format. The inputs used include CPU usage (xcpu), 

memory usage (xmem), Disk read throughput (xr) , disk 

write throughput (xw), Network received throughput (xneti) 

and network transmitted throughput (xneto) represented as 

xinputs = { xcpu, xmem, xr , xw, xneti, xneto}. ). Feature reduction 

has been accomplished by using WEKA machine 

learning tool taking CPU usage as the target class 

[50,51]. The least correlated attributes to the target class 

are eliminated: CPU capacity provisioned, memory 

capacity provisioned, disk size, memory usage %, and 

CPU usage %. A bias node is also included in this layer 

to ensure that the network will be able to fit that data by 

avoiding null values.  

2) Hidden layer: the hidden layer serves to improve 

prediction accuracy and consists of nodes with activation 

functions.  

3) Output layer: the output layer is used to produce 

outputs from ANN.   

 

For our inputs from above, the output, Oj of node j in 

our hidden layer at a time, t, is given by; 
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Thus, the relationship between the output, yt, at time t, 

and input is given by; 
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where g(.) is a logistic function, ɛt is an error of the 

model, wij(i=1,2,…p, j=1,2,…q) wj(j=0,1,2,…q) are 

connection weights, which are parameters of the model, p 

is the number of input nodes and q is the number of 

hidden nodes. Specifically, w0,j is the bias included to the 

input nodes and w0 is the bias added to the output of 

hidden nodes. The initial values to the parameters 

represent a state of knowledge. We partition our input 

data so that 90% of input is used for training and 10% is 

used for testing. We use a 90:10 ratio because we have a 

substantive amount of data points – each VM has at least 

8352 points. The predicted values in our model have been 

tested on 4 accuracy metrics i.e. Mean Absolute Error 

(MAE), Mean Absolute Percentage Error (MAPE), Root 

Mean Squared Error (RMSE) and Success Rate (SR). SR 

is the percentage of all predictions which are equal or 

greater than the actual value.  

 

 

Fig.10. Neural network architecture 

 

IV.  EXPERIMENT SET UP 

In this paper, the evaluation experiment is divided into 

two parts;- 1) VM sizing and 2) VM resource prediction. 

The design of the VM sizing technique has been 

explained in section III and we have evaluated the energy 

savings resulting from our technique using Cloudsim 

Plus cloud simulator. We have configured a datacenter in 

this simulator according to the characteristics in Table 2. 

The datacenter host resources have been set to satisfy the 

demands of the VMs before and after VM sizing.  

The workloads used in this experiments is Grid 

Workload Archive Trace 13 (GWA-T-13) Materna cloud, 

which is well explained in [27]. We executed the 

workloads in the datacenter and then measure the energy 

consumption before and after VM sizing using well 

known First Fit (FF), Worst Fit (WF) and Best Fit (BF) 

VM allocation algorithms.  

For the VM resource usage prediction, we have 

evaluated the performance of the use of ANN prediction 

using WEKA. An ANN model is trained using the 

following parameters: number of hidden layers = 1, 

learning rate = 0.3, momentum = 0.2 and training time or 

epoch = 1000. The model prediction performance has 

been tested using the accuracy metrics described in 

section III (A) above.  

Table 2. Cloudsim Plus datacenter configuration before and 

after VM sizing. 

Item Before VM sizing After VM sizing 

No. of hosts 49 28 

No. of VMs 520 520 

No. of CPU cores 1298 535 

Memory size (in 

GB) 
6780 4142 

Hypervisor VMware ESX VMware ESX 

No. of cores 

allocated per VM 

Varying (1,2,4,6 

and 8) 
Varying (1, 2 & 3) 

Memory size 

allocated per host 

(in GB) 

Varying (2,4,8 and 

16) 

Varying (1, 2, 4, & 

6) 

Host static power 
60 % of host peak 

power 

60 % of host peak 

power 

 

Next, we present and explain the evaluation results of 

our VM sizing and VM resource usage approaches.  

 

V.  RESULTS AND DISCUSSION 

As a result of VM sizing, Table 2 shows that we have 

theoretically reduced CPU cores from 1298 cores to 535 

cores and memory from 6780 GB to 4142 GB for 

processing workloads for the 520 VMs. Consequently, 

the number of VM hosts in the datacenter has reduced 

from 49 to 28. The reduction of the amount of resources 

required to process workloads definitely reduces the fixed 

cost of running VM workloads in the cloud. This cost is 

the component C from equation (8). Assuming µ does not 

change after VM sizing (α-β) cancels out within the 

multitenant cloud from the CSP point of view. In addition, 

the reduction in the number of hosts in the datacenter 

reduces the amount of energy consumed. Fig. 11 shows 

the amount of energy consumed when using WF, BF and 

FF VM allocation algorithms before and after VM sizing. 

 

 

Fig.11. A comparison of energy consumption in datacenter before and 

after VM sizing using WF, BF and FF VM allocation algorithms 

It is can be observed that the energy consumed to 

process the same workload has reduced under the 

different VM allocation algorithms. These results show 

that VM sizing has a big potential in managing cloud 

costs and energy consumption and thus opens up for 
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more inquiries to design more techniques on the same. 

Table 3. ANN prediction performance metrics on VM 01, VM 172, VM 

405, VM 467 and VM 492 

VM No. 
Performance 

metrics 

Resource considered 

CPU Memory 

01 

MAE 23.1 183012.5 

MAPE 13.8 17.9 

RMSE 109.4 219973.7 

SR 61.1 72.5 

172 

MAE 6.7 142359 

MAPE 5.8 58.9 

RMSE 17.7 201971 

SR 31 39.8 

405 

MAE 198.9 518969.5 

MAPE 9.5 24.6 

RMSE 265.8 742942.4 

SR 87.3 36.6 

467 

MAE 7.5 106509 

MAPE 6.1 28.7 

RMSE 13.4 143803 

SR 43 57.6 

492 

MAE 34.7 158126.8 

MAPE 31.9 20.4 

RMSE 66.1 232459.2 

SR 90.4 67.7 

 

Our ANN model is evaluated by predicting future 835 

instances. We have evaluated the performance of the 

model on actual values and predicted values on a number 

of performance metrics and on 5 different VMs (VM 01, 

VM 172, VM 405, VM 467 and VM 492). Table 3 

summarizes the performance metrics. 

For all the VMs that we considered, the MAPE of is 

below 32%, which shows a good prediction performance 

considering the dynamic nature of the cloud. In fact, the 

MAPE of the model for CPU on VM 01, VM 172, VM 

405 and VM 467 is below 14%, which is impressive. The 

MAE for the prediction memory shows a good 

performance – the values for memory seems bigger but it 

is because the memory unit of measurement is in 

Kilobytes.  

We have also computed SR, which measures the 

degree to which a VM is likely not to borrow resources 

from other neighbouring VMs. This is not a problem 

because, if a VM demands more resources than was 

predicted, it can use resources from other more idle VMs. 

This is called statistical multiplexing and is possible as 

seen from algorithm 2. 

We have also presented graph plots that visually 

compare predicted and actual values of CPU and memory 

for different VMs (Fig. 12 - 14). The graph plots only 

show a portion of the predicted values with the order of 

observations is preserved. The results from Fig. 14 – 16 

and those from Table 3 shows that the model performs 

differently on the different VMs. For instance, CPU 

prediction for VM 172 (Fig. 14) is more accurate than 

that of VM 01 (Fig. 12). This means that each VM’s 

model will be generated independently.  

 

    

Fig.12. Graphical representation of a comparison between predicted and actual values for CPU and memory for VM 01 

     

Fig.13. Graphical representation of a comparison between predicted and actual values for CPU and memory for VM 405 
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Fig.14. Graphical representation of a comparison between predicted and actual values for CPU and memory for VM 172 

 

VI.  CONCLUSION 

In this paper, we have proposed an approach for 

automatic VM sizing and VM resource usage prediction 

for multitenant IaaS cloud. In our proposed architecture, 

historical resource usage for a VM are extracted and are 

used to determine a fixed size for that VM. Due to the 

dynamicity of the cloud, we have proposed an approach 

for future resource usage prediction using the ANN 

model to foresee resource usages that may exceed the 

fixed ones. 

Since VM resource usage does not peak at the same 

time, VM resources for one VM can be borrowed by 

another VM, a technique known as statistical 

multiplexing. We have evaluated our VM sizing on 

Cloudsim Plus cloud simulator using real workload trace 

and results show that VM sizing can improve resource 

utilization and thus reduce cloud costs as well as energy 

wastage. Additionally, we have evaluated our ANN 

model on WEKA using real workload trace and results 

show that ANN model can achieve good levels accuracy 

even on a time series data that does not follow a normal 

distribution. As future work, we wish to increase the 

scope to cover techniques such as deep learning and 

applying our technique on a wider range of cloud 

workloads harvested from different infrastructures.  

REFERENCES 

[1] Salam, R. Karim and M. Ali, "Proactive dynamic virtual-

machine consolidation for energy conservation in cloud 

data centres," Journal of Cloud ComputingAdvances, 

Systems and Applications. 

[2] G. Albert, H. James, A. M. David and P. Parveen, "The 

cost of a cloud: research problems in data centre 

networks," The ACM Digital Library is published by the 

Association for Computing Machinery, vol. 39, no. 1, 

2009. 

[3] Khosravi, "Energy and Carbon-Efficient Resource 

Management in Geographically Distributed Cloud Data 

Centers," The University of Melbourne, Melbourne, 

Australia, 2017. 

[4] F. P. Sareh, "Energy-Efficient Management of Resources 

in Enterprise and Container-based Clouds," The 

University of Melbourne, 2016. 

[5] J. Patel, V. Jindal, I.-L. Yen, F. Bastani, J. Xu and P. 

Garraghan, "Workload Estimation for Improving 

Resource Management Decisions in the Cloud," in 2015 

IEEE Twelfth International Symposium on Autonomous 

Decentralized Systems, Taichung, Taiwan, 2015. 

[6] B. Anton, "Energy-Efficient Management of Virtual 

Machines Data Centers for Cloud Computing," The 

University of Melbourne, 2013. 

[7] M. Dabbagh, B. Hamdaoui, M. Guizani and A. Rayes, 

"Toward energy-efficient cloud computing: Prediction, 

consolidation, and overcommitment," IEEE Network, vol. 

29, no. 2, 2015. 

[8] G. Hadi and P. Massoud, "Achieving Energy Efficiency 

in Datacenters by Virtual Machine Sizing, Replication, 

and Placement," in Energy Efficiency in Data Centers and 

Clouds, Elsevier Science, 2016. 

[9] R. Neha and J. Rishabh, "Cloud Computing: Architecture 

and Concept of Virtualization," International Journal of 

Science, Technology & Management, vol. 4, no. 1, 2015. 

[10] B. Carmody, "Infrastructure On Demand Is Giving Small 

Businesses An Edge," Inc, 2018. [Online]. Available: 

https://www.inc.com/bill-carmody/infrastructure-on-

demand-is-giving-small-businesses-an-edge.html. 

[Accessed 01 OCtober 2018]. 

[11] F. P. Sareh, R. N. Calheiros, J. Chan, A. V. Dastjerdi and 

R. Buyya, "Virtual Machine Customization and Task 

Mapping Architecture for Efficient Allocation of Cloud 

Data Center Resources," The Computer Journal, 2015. 

[12] R. Hu, J. Jiang, G. Liu and L. Wang, "Efficient Resources 

Provisioning Based on Load Forecasting in Cloud," The 

Scientific World Journal, vol. 2014, no. 321231, 2014. 

[13] D. Jiaqing, S. Nipun and Z. Willy, "Performance profiling 

in a virtualized environment," in HotCloud'10 

Proceedings of the 2nd USENIX conference on Hot topics 

in cloud computing, Boston, USA, 2010. 

[14] ParkMyCloud, "Why Azure Right Sizing is Important," 

ParkMyCloud, 2018. [Online]. Available: 

https://www.parkmycloud.com/azure-right-sizing/. 

[Accessed 01 November 2018]. 

[15] Google, "Applying Sizing Recommendations for VM 

Instances," Google, 2018. [Online]. Available: 

https://cloud.google.com/compute/docs/instances/apply-

sizing-recommendations-for-instances. [Accessed 1 

November 2018]. 

[16] Amazon Web Services, "Right-Sizing: Provisioning 

Instances to Match Workloads: AWS Whitepaper," 

Amazon Web Services, Inc., 2018. 

[17] V. Patel and H. Bheda, "Reducing Energy Consumption 

with Dvfs for Real-Time Services in Cloud Computing," 

IOSR Journal of Computer Engineering (IOSR-JCE), vol. 

16, no. 3, pp. 53-57, 2014. 

[18] VMware, "vSphere Resource Management," VMware, 

Inc, Palo Alto, CA, 2015. 

[19] X. Bronson, R. P. and S. S. Raja, "A Dynamic Memory 

Allocation Strategy for Virtual Machines in Cloud 



 Autonomous Virtual Machine Sizing and Resource Usage Prediction for Efficient Resource 21 

Utilization in Multi-Tenant Public Cloud 

Copyright © 2019 MECS                                            I.J. Information Technology and Computer Science, 2019, 5, 11-22 

Platform," international Journal of Pure and Applied 

Mathematics, vol. 119, no. 15, pp. 1423-1444, 2018. 

[20] S. Perera, "Multi-tenancy after 10 years of Cloud 

Computing," Hackernoon, 2016. [Online]. Available: 

https://hackernoon.com/multi-tenancy-after-10-years-of-

cloud-computing-19de782ef899. [Accessed 01 November 

2018]. 

[21] VMware, "Performance Best Practices for VMware 

vSphere 6.0," VMware, Inc, Palo Alto, CA, 2015. 

[22] S. Shen, V. v. Beek and A. Iosup, "Statistical 

Characterization of Business-Critical Workloads Hosted 

in Cloud Datacenters," in 2015 15th IEEE/ACM 

International Symposium on Cluster, Cloud and Grid 

Computing, Shenzhen, China, 2015. 

[23] P. Xuesong, P. Barbara and V. Monica, "Virtual Machine 

Profiling for Analyzing Resource Usage of Applications," 

in International Conference on Services Computing, 

Milano, Italy, 2018. 

[24] S. K. Tesfatsion, "Energy-efficient cloud computing: 

Autonomic resource provisioning for datacenters," Umea 

University, Umea, 2018. 

[25] S. S. David and A. R., "Autonomic Resource Provisioning 

Algorithm for Cloud Computing using Match Making 

Technique," International Journal of Advanced Research 

in Computer Science and Software Engineering , vol. 6, 

no. 9, pp. 168 -173, 2016. 

[26] G. ̈. Urul, "ENERGY EFFICIENT DYNAMIC 

VIRTUAL MACHINE ALLOCATION WITH CPU 

USAGE PREDICTION IN CLOUD DATACENTERS," 

Bilkent University, 2018. 

[27] Delf University, "The Grid Workloads Datasets," Delf 

University, 2018. [Online]. Available: 

http://gwa.ewi.tudelft.nl/datasets/. [Accessed October 2 

2018]. 

[28] M. Amiri and L. Mohammad-Khanli, "Survey on 

prediction models of applications for resources 

provisioning in cloud," Journal of Network and Computer 

Applications, vol. 82, 2017. 

[29] Q. Z. Ullah, S. Hassan and G. M. Khan, "Adaptive 

Resource Utilization Prediction System for Infrastructure 

as a Service Cloud," Journal of Computational 

Intelligence and Neuroscience: Hidawi, vol. 2017, 2017. 

[30] M. Chen, H. Zhang, Y.-Y. Su, X. Wang, G. Jiang and K. 

Yoshihira, "Effective VM sizing in virtualized data 

centres," in 12th IFIP/IEEE International Symposium on 

Integrated Network Management (IM 2011) and 

Workshops, Dublin, Ireland , 2011. 

[31] R. Hu, G. Liu, J. Jiang and L. Wang, "A New Resources 

Provisioning Method Based on QoS Differentiation and 

VM Resizing in IaaS," Journal of Mathematical Problems 

in Engineering - Hidawi, vol. 2015, no. 215147, 2015. 

[32] M. Aldossary and K. Djemame, "Performance and 

Energy-based Cost Prediction of Virtual Machines Live 

Migration in Clouds," in Proceedings of the 8th 

International Conference on Cloud Computing and 

Services Science. 8th International Conference on Cloud 

Computing and Services Science, Madeira, Portugal, 2018. 

[33] R. N. Calheiros, E. Masoumi, R. Ranjan and R. Buyya, 

"Workload Prediction Using ARIMA Model and Its 

Impact on Cloud Applications’ QoS," IEEE 

TRANSACTIONS ON CLOUD COMPUTING, vol. 3, no. 

3, pp. 449-458, 2016. 

[34] J. Xue, F. Yan, R. Birke, L. Chen, T. Scherer and E. 

Smirni, "PRACTISE: Robust prediction of data centre 

time series," in 2015 11th International Conference on 

Network and Service Management (CNSM), Barcelona, 

Spain, 2015. 

[35] Mozo, B. Ordozgoiti and S. Gómez-Canaval, 

"Forecasting short-term data center network traffic load 

with convolutional neural networks," PLOS one, 2018. 

[36] J. J. Prevost, K. Nagothu, B. Kelley and M. Jamshidi, 

"Prediction of Cloud Data Center Networks Loads Using 

Stochastic and Neural Models," in Proceeding of the 2011 

6th International Conference on System of Systems 

Engineering, Albuquerque, New Mexico, USA, 2011. 

[37] S. Frey, S. Disch, C. Reich, M. Knahl and N. Clarke, 

"Cloud Storage Prediction with Neural Networks," in The 

Sixth International Conference on Cloud Computing, 

GRIDs, and Virtualization, 2015. 

[38] M. Duggan, K. Mason, J. Duggan, E. Howley and E. 

Barrett, "Predicting Host CPU Utilization in Cloud 

Computing using Recurrent Neural Networks," in The 8th 

International Workshop on Cloud Applications and 

Security, 2017. 

[39] H. Xu, X. Zuo, C. Liu and X. Zhao, "Predicting Virtual 

Machine’s Power via a RBF Neural Network," in 

International Conference in Swarm Intelligence, Bali, 

Indonesia, 2016. 

[40] Y. Lu, J. Panneerselvam, L. Liu and Y. Wu, "RVLBPNN: 

A Workload Forecasting Model for Smart Cloud 

Computing," Scientific Programming: Hidawi, vol. 2016, 

no. 5635673, 2016. 

[41] R. Cao, Z. Yu, T. Marbach, J. Li, G. Wang and X. Liu, 

"Load Prediction for Data Centers Based on Database 

Service," in 2018 IEEE 42nd Annual Computer Software 

and Applications Conference (COMPSAC), Tokyo, Japan, 

2018. 

[42] Google, "Machine types: Google compute 

documentation.," Google, 2018. [Online]. Available: 

https://cloud.google.com/compute/docs/machine-types. 

[Accessed November 02 2018]. 

[43] C. Ribeiro, M. Castro, M.-M. Vania and J.-F. Méhaut, 

"Evaluating CPU and Memory Affinity for Numerical 

Scientific Multithreaded Benchmarks on Multi-cores," 

IADIS International Journal on Computer Science and 

Information Systems, vol. 7, no. 1, pp. 79-93, 2012. 

[44] J. M. Szefer, "Architectures for Secure Cloud Computing 

Servers," Princeton University, 2013. 

[45] W. Kim, M. S. Gupta, G.-Y. Wei and D. Brooks, "System 

level analysis of fast, per-core DVFS using on-chip 

switching regulators," in 2008 IEEE 14th International 

Symposium on High Performance Computer Architecture, 

Salt Lake City, UT, USA, 2018. 

[46] C. M. Kamga, "CPU frequency emulation based on 

DVFS," in 2012 IEEE Fifth International Conference on 

Utility and Cloud Computing, Chicago, IL, USA, 2013. 

[47] X. Meng, X. Meng, X. Meng, X. Meng, X. Meng and X. 

Meng, "Efficient resource provisioning in compute clouds 

via VM multiplexing," in Proceedings of the 7th 

international conference on Autonomic computing , 

Washington DC, USA , 2010. 

[48] G. Shmueli, R. P. Nitin, C. B. Peter, I. Yahav and C. L. 

Kenneth, "Neural nets," in Data Mining for Business 

Intelligence: Concepts, Techniques, and Applications in 

Microsoft Office Excel with XLMiner, Wiley, 2017, p. 271. 

[49] M. Khashei and M. Bijari, "An artificial neural network 

(p, d, q) model for timeseries forecasting," Expert Systems 

with Applications: Elsevier, vol. 37, no. 1, pp. 479-489, 

2010. 

[50] Waikato University, "Machine Learning at Waikato 

University," Waikato University, 2018. [Online]. 

Available: https://www.cs.waikato.ac.nz/ml/index.html. 

[Accessed 25 November 2018]. 



22 Autonomous Virtual Machine Sizing and Resource Usage Prediction for Efficient Resource  

Utilization in Multi-Tenant Public Cloud 

Copyright © 2019 MECS                                            I.J. Information Technology and Computer Science, 2019, 5, 11-22 

[51] S. Karsoliya, "Approximating Number of Hidden layer 

neurons in Multiple Hidden Layer BPNN Architecture," 

International Journal of Engineering Trends and 

Technology, vol. 3, no. 6, pp. 714-717, 2012. 

 

 

 

Authors’ Profiles 

 
Derdus M. Kenga is a PhD candidate in 

the Faculty of Information Technology of 

Strathmore University, Kenya. He 

completed his Bachelor Degree in 

Computer Science from Moi University, 

Kenya (2012) and MSc. In Mobile 

Telecommunications and Innovation from 

Strathmore University (2014). His research areas is cloud 

computing and health informatics. 

 

 

Vincent O. Omwenga is a senior lecturer 

and an academic director in the Faculty of 

Information Technology of Strathmore 

University, Kenya. He earned his PhD in 

Mathematical Statistics from The 

University of Nairobi, Kenya. His areas of 

interest is systems modelling, 

computational models and cloud computing.  

 

 

Patrick J. Ogao is an Associate Professor 

of visualization and geoinformatics. He 

earned a PhD from Utrecht University, 

where he studied visual exploratory 

environments and techniques for 

knowledge discovery in large multi-

dimensional, time-varying spatial data sets 

and an MSc from ITC, University of 

Twente, Enschede, in The Netherlands. He has had previous 

appointments in Computer Science Departments of University 

of Groningen, The Netherlands, Makerere University, Uganda, 

and Masinde Muliro University of Science and Technology in 

Kenya. His research areas are in Information Systems and 

Information Visualization and consults regionally in 

Information Systems Development and geospatial sciences. 

 

 

 

How to cite this paper: Derdus M. Kenga, Vincent O. 

Omwenga, Patrick J. Ogao, "Autonomous Virtual Machine 

Sizing and Resource Usage Prediction for Efficient Resource 

Utilization in Multi-Tenant Public Cloud", International Journal 

of Information Technology and Computer Science(IJITCS), 

Vol.11, No.5, pp.11-22, 2019. DOI: 10.5815/ijitcs.2019.05.02 


