
I.J. Information Technology and Computer Science, 2019, 6, 50-62
Published Online June 2019 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2019.06.06

Copyright © 2019 MECS I.J. Information Technology and Computer Science, 2019, 6, 50-62

Towards a Meta-Modeling and Verification

Approach of Multi-Agent Systems Based on the

Agent Petri Net Formalism

Amel Dembri
Universite 20 Aout 1955- Department of Computer Science, Skikda, 21000, Algeria

E-mail: Dembri_amel@yahoo.com

Mohammed Redjimi
Universite 20 Aout 1955- Department of Computer Science, Skikda, 21000, Algeria

E-mail: medredjimi@gmail.com, m.redjimi@univ-skikda.dz

Received: 29 December 2018; Accepted: 11 April 2019; Published: 08 June 2019

Abstract—The Agent Petri Nets (APN) formalism

provides a set of adapted and specific tools, relations and

functions for modeling multi-agent systems (MAS).

However, there is a lack of tools for verifying the APN

models. In order to fill some of these gaps, we propose in

this paper, a meta-modeling approach based on the Model

Driven Architecture (MDA). The Eclipse Modeling

Framework (EMF) permits to define a generic APN

Meta-model in Ecore informal format. Its abstraction

level is very high, it offers as a basis for developing

system models dedicated to various specific domains. In

addition, the Object Constraint Language (OCL) aims to

increase the structural verification level of the model and

the Graphical Modeling Framework (GMF), for its part,

is concerned with generating a graphical editor associated

with the APN meta-model. Thus, we combine the rigor of

APN formalism with the power of the MDA-based meta-

modeling tools for verifying APN models.

Index Terms—Agent Petri Nets, Model Driven

Architecture, Eclipse Modeling Framework, Graphical

Modeling Framework, Metamodeling, Object Constraints

Language.

I. INTRODUCTION

The development of complex systems requires the

choice of appropriate formalisms to model and verify

them. Several factors can guide these choices, including

the power of expressiveness and the high level of

abstraction guaranteed by the model and the set of

verification mechanisms offered by these formalisms.

Since their appearance, petri nets (PN) [1, 2] have been

widely and successfully used in the modeling of different

types of systems, including discrete, concurrent and

parallel event systems. Among the advantages of these

tools, the graphical representation makes the model

readable. The mathematical foundations allow the

establishment of a rigorous verification, guarantee a high

reliability, and decrease the ambiguities. Petri nets are

considered as an excellent tool that can be used to model

and analyze discrete event systems [3, 5]. Several Petri

net extensions have been proposed and implemented

including: Colored Petri Nets (CPN) [6, 7] Nets Within

Nets (NWN) [7, 9], Nested Petri Nets (NPN) [10,11] and

object petri nets [12]. On the other hand, the multi-agent

systems (MAS) offer an interesting solution for mastering,

optimizing and controlling the complexity of large

systems [13, 14]. The Agent Petri Nets (APN) paradigm

combines the MAS and the PN approaches and is an

appropriate and powerful formalism for modeling multi

agent systems [15]. This formalism expresses a set of

theoretical MAS concepts, which concern the agents, the

environments and the interactions between the SMA

components. However, an important remark should be

mentioned which concerns the lack of software modeling

and verification tools for modeled systems by using the

Agent Petri Nets formalism. This work comes in this

order of ideas; we propose an approach based on a

generic meta-modeling method for the APN formalism.

Currently, applications that are developed in the context

of the Model Driven Development approach [16, 19] are

yielding very good results. This approach helps to

increase the level of abstraction of the models and to

automate complex programming tasks [17]. There are

several applications of this approach in the field of

software development; thus, we chose to develop the

APN modeling tool using the Model Driven Architecture

(MDA) by using the Eclipse environment [20]. The

universal Eclipse platform provides powerful frameworks

for users. The Graphical Modeling Framework (GMF)

[21] and Eclipse Modeling Framework (EMF) [22]

furnish tools and solutions that can be used to develop

various generic and powerful model-editing frameworks

that can be specified in the Agent Petri Net formalism.

The Object Constraint Language (OCL) [23],

standardized by the Object Management Group (OMG)

[24], adds structural verification code to the model.

mailto:Dembri_amel@yahoo.com
mailto:medredjimi@gmail.com
mailto:m.redjimi@univ-skikda.dz

 Towards a Meta-Modeling and Verification Approach of Multi-Agent Systems Based 51

on the Agent Petri Net Formalism

Copyright © 2019 MECS I.J. Information Technology and Computer Science, 2019, 6, 50-62

The rest of this paper is structured as follows: The

second section deals with the related works. The third

section is devoted to the presentation of a set of

languages and platforms involved in the development of

the graphical editing tools of the APN models. The APN

tool is presented in the fourth section. In the fifth section,

a description of our development approach is detailed.

The sixth section presents a use case that is modeled with

the proposed tool, and this paper ends with a conclusion

and some perspectives.

II. RELATED WORKS

The modeling of complex systems with Petri Nets (PN)

extensions has been a subject of intensive researches in

recent years. Among the proposed tools in this domain:

Colored Petri Nets (CPN), Object Petri Nets (OPN) and

Agent Petri Nets (APN) are considered as modeling and

verification mechanisms for these systems. Agent Petri

Net (APN) is a very expressive tool that captures all the

concepts of agents. Until now the researches made on the

APN formalism, mainly revolve around applications in

the modeling of specific systems. To our knowledge, a

generic software platform for editing and analyzing a

model formalized by APN has not yet been implemented.

In [25, 26] the interaction protocols of the Foundation for

Intelligent Physical Agents (FIPA) [27] is modeled by

using the APN formalism. In [28], APN is used as a

modeling and systems analysis tool for molecular

biofilms.

Each of the extensions of the Petri net networks

mentioned above is equipped with mechanisms and

software tools that allow to model, analyze and simulate

the systems expressed thanks to their own tools.

CPNTools [29] is a sophisticated platform for modeling

and simulating complex systems. For its part, Renew

(Reference Net workshop) [30] is a platform that allows

to develop and model the systems described in Reference

nets (Object Petri Nets). Both of these last two tools

provide valuable help for users to model their

applications in a simple way, but they remain dedicated

just for modeling and simulation of specific classes of the

Petri nets.The current challenge in modeling and

verification is to have automatic methods and tools that

are generic and extensible.

The proposed work concerns the development of an

expandable Agent Petri Nets manipulation tool as part of

the Model Driven Engineering (MDE) software

development approach that gives value to models in all

cycles of the software development and automates the

generation of the application code.

III. BACKGROUNDS

A. The Graphical Modeling Framework

Eclipse is an integrated development environment that

has a plugin system to make it extensible [20, 31]. The

Graphical Modeling Framework (GMF) [32] is an Eclipse

Framework. It provides a Model Driven Architecture

approach for generating graphical editors as Eclipse

plugins. GMF itself is an Eclipse plugin. It is based on

two Frameworks: the Eclipse Modeling Framework

(EMF) [22, 33] and the Graphical Editing Framework

(GEF) [34]. To develop a graphical editor, the three

frameworks (EMF, GEF and GMF) must participate in

the development process of the editor. Thus, GMF is an

application of Model Driven Architecture in Eclipse; its

main originality is to pass the model through all the

development cycles of an application. A set of models

related to the different frameworks (EMF, GEF and GMF)

must be defined. A mapping between these models is

done to generate a graphical editor under the GMF

Framework.

We introduce below, the roles and concepts of each

platform that participates in GMF. Thus, the models of

each one are necessary to the developments of a graphic

editor under GMF.

 The Eclipse Modeling Framework (EMF)
The Eclipse Modeling Framework is a modeling

solution proposed by Eclipse. It provides the mechanisms

necessary to specify Meta models and quickly generate

java-based applications. EMF relies on the MDA

approach: from the beginning of the structured data

model to the code generation of the corresponding

application. For this purpose, EMF supports a description

language of the meta-model in the Ecore format. In

addition to the Ecore syntax, EMF has a unification

mechanism [33] that allows developers to write their

models in different languages (Java language, XML

schema or Unified Modeling Language UML) and obtain

an equivalent Model in Ecore Format.

The principles of the Ecore concepts: EPackage,

EClass, ERefernce, EDataType are used to represent

respectively the package, class, association and type of an

attribute of a structured data model. The template

definition is stored in an ".ecore" extension file. EMF has

a code generation technology that can generate the

implementation of an application from a structured data

model. Thus, a file that has the ".genmodel" extension

must be generate at first. This Generator Model is used by

the EMF Framework to generate the application code

(classes and interfaces of model elements).

In addition to the application code generation, EMF

allows to generate the code of the plugins Edit (It

provides the necessary classes of adaptation of editing

and display of model instances) and Editor (Plugin Editor

provides the interface as a tree structure). Note that the

EMF Framework can be used separately from GMF to

generate a simple graphical tree editor.

 The Graphical Edition Framework (GEF)

GEF is an Eclipse framework dedicated to the creation

of graphical representations for model elements [20, 32].

The editor generated by the EMF Framework is very

basic. Having graphical shapes that are meaningful for

model instances is often desirable for any developer. GEF

can be considered as an efficient solution to generate

52 Towards a Meta-Modeling and Verification Approach of Multi-Agent Systems Based

on the Agent Petri Net Formalism

Copyright © 2019 MECS I.J. Information Technology and Computer Science, 2019, 6, 50-62

editors that meets the requirements of designers. The

GEF Framework is used to define two types of models:

Graphical Models, which are files with the ".gmfgraph"

extension used to specify the graphical representation of

each model instance and Tooling Models, which are files

with the ".gmftool‖ extension for creating pallets that are

used to draw graphics.

 The Graphical Modeling Framework (GMF)

GMF is an Eclipse solution for rapidly generating

graphically rich feature editors and meets the desires of

designers. GMF uses models built by the EMF and those

defined by the GEF (Graphical and Tooling models) to

define a mapping model. It is based on a matching

process between entities of the .ecore model in

a .gmfgraph graphic model and visualizes components

of .gmftool pallet models in order to generate the link

model (.gmfgen extension file). Generator Model of GMF

is the model used by GMF to generate the code of the

graphic editor of GMF.

B. OCLinEcore for the structural validation

The validation module of the EMF guarantees a high

level of structural validation of the system modeled with

respect to its meta-model. Nevertheless, like any

modeling language such as UML, the Ecore Language

stills insufficient to express some of the desired

requirements for a given model. The Object Constraint

Language (OCL) is initially integrated with UML to

express constraints in a formal and unambiguous way on

a model. Now, most of the modeling languages ensure

that they can benefit from the expression power of formal

constraints on models. Eclipse offers the possibility of

integrating OCL with platform modeling tools. There are

different ways to use OCL in Eclipse; the OCLinEcore

editor [23] is certainly one of the most suitable solutions

for an application modeled by Ecore.

C. Agent Petri Net (APN)

The choice of a good formalism to model a Multi

Agents System (SMA) is related, generally, to its ability

to efficiently represent this SMA and more precisely its

different concepts. In the literature, researches on SMA

have focused on different areas [13]. Therefore, several

axes can be considered in a multi-agent system. The four

dimensions for multi-agent systems: Agent, Interaction,

Environment and Organization seem to be the most

characteristics of such systems. Having a tool that makes

it possible to express explicitly all these important

concepts of multi agent systems is a minimal requirement.

Agents Petri is a formalism proposed in order to offer a

great expressivity of the modeling of multi agent systems

by combining the Petri Net formalism with the agent‘s

paradigm. Its power to express the structure and the

behavior of multi agent systems as well as that of agents

through several functions and relationships is an

important solution for modeling complex systems. In

Agent Petri Nets, agents are represented by tokens and

the transitions are controlled by several agent-related

functions.

Formally, an Agent Petri Net [15] is defined by:

 , , , , , , , , kAPN P T A Meadow Post Prj F Ft Env (1)

Where:

, , P T A are finite sets of places, transitions and agents

respectively, such as:

 , , ;P T A and A P T

Post and Meadow are two arc-related applications. Such

as:

 Post: T X PN; Meadow: P X TN;

Prj: a firing precondition [see definition 2]

F : expresses the possibility of an interaction between the

agents:

1 2(,) , : (0 /1)F A A b b bool an é (2)

iA ∈ {total moderator, moderator, non-moderator} [see

definition 3]

tF : Allows identifying the relations between two agents

as well as the data to exchange during an interaction

between the agents. [See definition 4].

Envk : A working environment of agents.

Note: The pre-condition Prj and the function of relation

between the agents F control the activation of a transition

j.

Definition 1: Agent Constraint

A constraint of an Agent is defined as (, ,)i j kCont A P T .

It is a crossing constraint of a transition
kT to connect in

relation of descent with a place P (P source), formally:

, , , (, ,)i j ki I j J k K Cont A P T b (3)

Where:

 I, J, K are sets of numbers, respectively: one-place

tokens, Places and Transitions.

 i, j, k are indices, respectively of Agent, Places and

Transitions.

 The variable b, b: Boolean (0 or 1).

Definition 2 Firing precondition: Prj

Either, (, ,)i j kCont A P T b , for a number nx of agent

we get :

0 (, ,) 0
Pr (, ,)

1 1
j ki

if Cont A P Ti nxCont A P Ti i ji k else

 (4)

Definition 3

An agent can take three different values to indicate if it

is dominated by communication or has a hierarchical

degree:

 Towards a Meta-Modeling and Verification Approach of Multi-Agent Systems Based 53

on the Agent Petri Net Formalism

Copyright © 2019 MECS I.J. Information Technology and Computer Science, 2019, 6, 50-62

- Total moderator = 1

- Moderator = 2

- No moderator = 3

Definition 4:

The agent function Ft allows identifying the relations

between the agents and the exchanged data.

tF (ti): <var1.data.var2>. Its interpretation is as follow:

 If (var1 = 0 and var2 = 0) then there is no

interaction between the agents and no data has

been exchanged.

 If (var1 = 1 and var2 = 0 or var1=0 and var2=1)

then this is the beginning of interaction between

the agents. The transition crossing case ti. Data:

takes the value of the task to be carried out during

transition crossing ti.

 If (var = 1 and va2 = 1) then it means that the task

is completed successfully.

IV. THE APNTOOL FOR AGENT PETRI NET

Our contribution is to implement a generic, powerful

and extensible graphical tool that allows designers to

graphically model applications formalized by Agents

Petri Net, while ensuring a high level of verification of

the conformity of the modeled systems. To achieve this

goal, the choice of a good development process is

necessary. Our development approach is to combine the

power of the formal Agent Petri Net language with the

Model Driven Engineering (MDE) and to use the

mechanisms offered by these tools to generate a graphical

context for manipulating the Agent Petri Net. The

approach is depicted in Fig.1. We chose to develop our

APNTool according to the development approach MDA.

Some modeling languages and tools that are part of MDA

are used. As far as modeling is concerned, we use the

Ecore standardized modeling language, which makes it

possible to increase the level of abstraction of the model

by making it more generic. In addition, the OCL

specification language provides a complementary

solution for structural model checking. The EMF

Modeling Framework ensures that the model will be

expandable at any time. In addition, it also supports code

generation. Finally, the GMF Framework is used to

facilitate the creation and the generation of the graphical

tools. It is based solely on the definition and generation of

models throughout the development process.

The proposed approach is decomposed into two

successive stages:

Step1: The modeling: We propose a Meta model for the

Agent Petri Nets formalism called "APN.ecore". The

Ecore language of the EMF platform is used to specify

the meta-model. Like the most modeling languages,

Ecore does not allow to specify all constraints on a model.

In order to increase the verification level of the modeled

system, we add constraints specified in the OCL language

to the meta-model "APN.ecore". The edition of the

constraints code on the Meta model "APN.ecore" will be

done via the OclInEcore editor.

Step2: The graphical editor generation: In order to

generate the APNTOOL graphical editor, a set of models

associated with the proposed Ecore model is defined and

used to generate the code of the graphical editor

(Diagram Editor). Two models derive from the Ecore

APN Meta model stored in a file named "APN.ecore": the

graphical definition model (APN.gmfgraph) and the

pallet definition model (APN.gmfTool). They have then

edited and adapted. The generation of such models is

often inappropriate and their edition is necessary. After

the model generation, the GMF Framework itself

provides the application generation and the editor

implementation code.

Fig.1. Development approach of the APNTOOL

A. Meta Modeling approach

a. The proposed Ecore Agent Petri Net Meta model

The fundamental step to develop the APN graphic

editor is to specify a Meta model that allows expressing

the structural concepts of this formalism as well as the

relations between these concepts. The Ecore language is

used to define the APN meta-model. Fig.2. (model

diagram) presents the proposed meta-model "APN" in the

universal modeling standard Ecore (tree representation).

54 Towards a Meta-Modeling and Verification Approach of Multi-Agent Systems Based

on the Agent Petri Net Formalism

Copyright © 2019 MECS I.J. Information Technology and Computer Science, 2019, 6, 50-62

Fig.2. APN Meta model specifications in APN file.

The meta-model is defined by a set of EClasses as

follows:

Place: This class represents the Petri Net Agent Model

Places. Each place is characterized by a name (attribute

name) and consists of Agent type tokens.

Agent: This class represents the Petri Net Agent template

tokens where each agent is characterized by a name and

has a category declared as an enumeration to limit their

possible agent level values, which are moderator, no-

moderator or Total moderator.

Transition: This class represents the transitions in the

Agent Petri Nets system where each transition is

characterized by a name and structurally comprises two

functions: the relation function named f and an

interaction relation named Ft. These two functions are

themselves also Eclasses.

Link: This class models the arcs between the places and

the transitions elements and is characterized by the

weight of the arcs (attribute weight). Two subclasses

inherit from this class: LinkFromPlace and LinkFromTr,

which can be used to characterize an arc coming down

from a place or a transition (this characterization is used

to specify the upstream and the downstream of an arc).

F: This class describes the function of relation between

the agents and expresses the possibility of an interaction

between the agents. It is characterized by the syntax

attribute, which is of type string, used to enter the code of

the function.

Ft: This class describes the relationship between the

agents and allows identifying the relations between two

agents as well as the data to exchange during an

interaction between the agents. It is also characterized by

the syntax attribute, which is of type string used to enter

the code of the relation.

Environment: This class represents a MAS environment.

It is characterized by a name and contains all the

components of the APN system: Places (Place),

Transitions (Transition), Agent (Agent), Arcs (Link), the

function of relationship between agents (F), relationship

between agents (Ft) .The composition relation is modeled

by the Ecore and Ereference concepts.

APNLogicalSpace: The presence of this class is due to

the requirements of the implementation of the GMF

Framework. It designs the workspace generated for the

application (the space for instantiation and editing of

model elements.). It contains the Environment element

that represents the multi-agent system. An application can

have only one environment or a set of sub-environments.

In addition to its tree representation, EMF permits to

visualize the APN Meta-model by a diagram, this

representation is close to the UML class diagram (Fig.3.).

As mentioned earlier, EMF is a modeling framework

that is part of the MDA approach; it offers the advantage

of putting the meta-model "APN.ecore" in a level of

abstraction that makes it easily scalable and generic.

There are two possible uses of the "APN.ecore" model.

On the one hand, the APN model can be used to define a

specific application model that is based on the Agent

Petri Net formalism. This is the case, for example, of our

editor (See Fig4.a.). On the other hand, the model can be

placed at a very high level of abstraction. It serves itself

to define other models of the specific domain systems.

The APN model is considered here as a meta-model, it

describes Multi Agent system concepts: Agents (Agent

Eclass), Environnent (Environnent Eclasse) and

interaction between agents (Transition, F, Ft, and link:

Eclasses). (See Fig4.b.).

b. The structural checking of the Meta model

The checking of a model's compliance with its meta-

model is an essential key to validate a modeled system.

The EMF Framework verifies a set of structural

constraints. EMF guarantees the respect of the cardinality

specification of Ereference between the model entities

and still the respect of the senses of the relations

(elements of the systems upstream and downstream of an

arc). Another check concerns the case of deleting a

referenced element, which automatically causes the

deletion of all Ereferences (relations) related to this

element. Nevertheless, EMF does not allow all to express

and check all the constraints desired by the designer.

 Towards a Meta-Modeling and Verification Approach of Multi-Agent Systems Based 55

on the Agent Petri Net Formalism

Copyright © 2019 MECS I.J. Information Technology and Computer Science, 2019, 6, 50-62

Fig.3. APNEcore Meta-model diagram

For example, the uniqueness of the names attributed to

model instances is an essential constraint for a formal

model such as Agent Petri Net where the negligence of

this property causes ambiguities in understanding of the

semantics of the models. A future simulation of models is

an impossible task with the existence of semantic errors.

We have enriched our APN model by adding the rules of

uniqueness of the names of objects of the same class. The

following constraints "unique_name_environment",

"unique_name_place", "unique_name_transition" and

"unique_name_agent" are defined for the classes

Environment, Place, Transition and Agent respectively.

These constraints make it possible to formally ensuring

that the name of each instance will be different from all

the names of the other instances of the same class. As

seen previously, Eclipse offers several possibilities to

model the constraints. The choice of the OclinEcore

constraints editor seems to be the most favorable. It offers

the possibility of editing the Ecore model and adding the

OCL constraints code in the Ecore APN.ecore meta-

model. Fig.5. shows the model enriched by invariants.

In our modeling approach, the meta-model is

extensible and an addition of other constraints is always

possible.

Fig.4. Ecore modeling levels.

56 Towards a Meta-Modeling and Verification Approach of Multi-Agent Systems Based

on the Agent Petri Net Formalism

Copyright © 2019 MECS I.J. Information Technology and Computer Science, 2019, 6, 50-62

Fig.5. Meta-model enriched with OCL constraints code.

c. Generation of the application code

After defining the meta-model for the Agent Petri Net

formalism and its enrichment with OCL, the creation of a

generator model associated with the APN.ecore model is

necessary in order to obtain the application java code.

The EMF generates a basic tree editor that permits

editing APN meta-model instances then uses this code.

The APN generator model is stored in the file named

"APN.genmodel". It is ready to be used to generate the

application code (Code package). This code is then used

to generate the edit code (Edit package) and the diagram

code (package editor) of meta-model Agent Petri Net.

B. Generation of the graphic editor APNTOOL

In addition to the tree editor provided by the EMF

Framework, GMF can generate a rich graphical editor

that meets the needs of designers. The tool is obtained

after a series of definitions of the graphical models,

which serve to define a concrete representation and a

model of connection, which serves to link the models (to

make the necessary correspondence between them) and

finally a generator model which serves to generate the

code of the graphical editor (Diagram Editor). These

models are detailed in this section. The following three

tasks are necessary to generate the editor: to define the

concrete representation of the elements of the models, to

link the models and finally to generate the code of the

diagrams.

a. Concrete Representation

This step can be summed up in the derivation of the

graphic models and tools associated with the meta-model.

We have proposed the concrete representation of the

APN model elements.

Thus and as the generation of GMF models and

especially the graphical model can often be inconvenient,

a default figure is assigned to each element of the meta-

model. GMF offers the possibility to the users to adapt it

and to make the necessary modifications if needs. It

provides a Gallery of available figures, so that the

designers can develop personalized figure. For example,

the default rectangle figure is assigned to all meta-model

Eclasses and a link to the associations. In our proposal,

we have edited all the representations of the figures

elements of the graphical model generated. Fig.6. shows

the graphical model.

For each element, we have specified a significant form

that allows representing it graphically. After defining the

graphical representation of the elements of our model, the

definition of the tooling model is necessary. It provides a

pallet of visual components corresponding to the

elements of the meta-model. This pallet is used to

instantiate and edit the elements of the model in the

graphical editor. The generation of the tooling model is

often suitable for the entire editor provided by GMF with,

of course, the possibility of editing the model. We can

keep the generated model unchanged. Fig.7. presents the

tooling model APN.gmfTool that corresponds to the

meta-model APN.Ecore.

 Towards a Meta-Modeling and Verification Approach of Multi-Agent Systems Based 57

on the Agent Petri Net Formalism

Copyright © 2019 MECS I.J. Information Technology and Computer Science, 2019, 6, 50-62

Fig.6. Graphical model APN.gmfgraph.

b. Linkage of GMF models

GMF makes it possible to link the three models: the

meta-model "APN.ecore", the graphical definition model

"APN.gmfgraph" and the pallet definition model "APN.

gmftooling" to obtain the binding model named

"APN.gmfmap ". As we have already noted on the quality

of the models generated by GMF, the link model is

unsuitable. One must confirm the correspondence

between the Ecore elements, the chosen graph and the

appropriate pallet tool. All the three models must be

selected correctly. Fig.8. shows the edited binding model.

c. The diagram code generation

At the end of this process and thanks to the GMF

generation system, the java code of the Diagram Editor is

obtained. The resulting file for this step is the

"APN.gengmf". GMF uses this model to provide the

implementation of the graphical editor. Our tool (APN)

runs as an Eclipse plugin. Fig.9. shows the APN plugin

interface. This tool permits the APN model elements

editing from a palette of visual components on the

workspace (APNLogicalSpace). A properties view is

available to edit instantiated elements of the APN meta-

model, for example for an Agent element, the values of

its Name and Category attributes can be edited.

Fig.7. The APN.gmfTool tooling model

58 Towards a Meta-Modeling and Verification Approach of Multi-Agent Systems Based

on the Agent Petri Net Formalism

Copyright © 2019 MECS I.J. Information Technology and Computer Science, 2019, 6, 50-62

Fig.8. The binding model: AgentPetri.gmfmap

Fig.9. The APNtool plugin interface.

V. USE CASE

Today, parking system is a serious problem in the

design of Smart Cities. Many studies proved that, when

people are looking for a parking space they waste time,

consume energy and they participate in the increase of the

traffic congestion [36, 38]. The majority of research

concerned with smart parking consider multi agents

system as an efficient solution to resolve the problems of

parking system like in [39, 40].

We experiment our APNTool in the design of a

powerful Parking model, we release the idea in research

[40], which assist user to find a parking place. According

this research in [40], authors propose four agents to

manage the parking system and each agent have specifics

tasks to realize as follows:

o Driver Agent: researches a parking space by

requesting a manager then waits for the manager‘s

answer (success or failure).

o Manager Agent: receives request from agents with

their preferences (prices and location) and works

to find the appropriate parking space according to

the agents‘ preferences by sending request to the

Sector Agents.

o Sector Agent: works to find the appropriate

 Towards a Meta-Modeling and Verification Approach of Multi-Agent Systems Based 59

on the Agent Petri Net Formalism

Copyright © 2019 MECS I.J. Information Technology and Computer Science, 2019, 6, 50-62

Parking agent‘s space.

o Parking Space Agent: observes and validates the

state of parking space and sends a result by

message to Manager Agent.

Fig.10. presents a modeling of Parking System by APN

formalism using our APNTool Editor. Where:

 DA, MA, SA1, SA2, SA3, PA1,PA2,PA3: set of

agents participate in parking management;

 P1: Driver Agent is ready to request;

 P2: Driver Agent is waiting to interact with

Manager Agent;

 P3: Driver Agent is waiting for Manager answer;

 P4: Manager Agent is ready to interact ;

 P5: Manager Agent is preparing request to Sector

agent ;

 P6: Manager Agent is waiting for Sector Agent

answer ;

 P7: Sector Agents are ready to interact;

 P8: Sector Agents is preparing request to Parking

Space Agent ;

 P9: Sector Agents is waiting for Parking Space

Agent answer ;

 P10: Parking Space Agents are ready to interact;

 P11: Parking Space Agent is processing Sector

Agent request (success message or fail message or

choose another Parking Space Agent) ;

 P12: Parking Space Agent is waiting to interact

with Manager Agent;

 P13: Manager Agent is preparing Driver Agent

answer;

 P14: Manager Agent is waiting to interact with

agent;

 P15: Driver agent gets an answer of his request;

 T1: Driver Agent sends request to Manager Agent

with his preferences (place and price) ;

 T2: Manager Agent receives Driver Agent request;

 T3: Manager Agent sends requests to Sector

Agent ;

 T4: Sector Agent receives Manager Agent request;

 T5: Sector Agent sends request to Parking Space

Agent ;

 T6: Parking Space Agent receives Sector Agent

request ;

 T7: Parking Space Agent chooses other Parking

Space Sector;

 T8: Parking Space Agent sends success message to

Manager Agent;

 T9: Parking Space Agent sends failure message to

Manager Agent;

 T10:Manager Agent receives Parking Space Agent

message;

 T11: Manager Agent sends message to Driver

Agent;

 T12: Driver Agent receives Manager Agent

message;

Fig.10. The APN Parking model edited with the APNTool.

60 Towards a Meta-Modeling and Verification Approach of Multi-Agent Systems Based

on the Agent Petri Net Formalism

Copyright © 2019 MECS I.J. Information Technology and Computer Science, 2019, 6, 50-62

Fig.11. The XML generated code of APN Parking model.

This act concerns the interaction between agents (DA,

MA, SA, PA). Each agent sends request as a message to

the concerned agent and crosses the appropriate transition

Ti. Driver Agent (DA) starts by requesting a parking

space according to his preferences (place, price), DA

crosses transition T1. This schedule ends when Agent

Driver receives the answer of his request by crossing

transition T12.

In our contribution, the combination of formal method

(APN) with Tools of Model driven Engineering in the

design of our APNTool Editor, granted a height level of

abstraction and rigour in the design of Parking Model.

The structural verification of Parking Model is supported

by integrating EMF with OCL. Once the model is edited,

its XML specification is automatically generated. Fig.11.

presents the serialized XML document of the example

concerning Parking Model in the GMF runtime; due to

limited space, just a snip of generating code is captured.

This file is ready to be reused by the tool itself or by other

tools in the mission of a semantic verification or

simulation of Parking Model by analyses techniques of

Petri Net. Thanks to its specification in the XML standard,

which makes it possible to overcome interoperability

problems between systems.

VI. CONCLUSION

In this paper, we proposed a meta-modeling approach

based on the model Driven Architecture. A generic meta-

model that describes the concepts of the Agent Petri Net

formalism is developed by combining the formal APN

language with the informal Ecore-EMF modeling

approach. We have developed a graphical modeling tool

called APNTool, which is used to graphically define

specified models in APN formalism by exploiting the

power of the EMF modeling platform and the generation

platform of GMF graphic editors.

The advantages of this work can be summed up in two

essential points: firstly, the combination of APN with

EMF-Ecore, which introduces a great rigor into the

modeling and increases the level of abstraction of the

models. The resulting models of this combination are

generic and extensible. Developers can reuse concepts

implemented in this generic model to define their own

specific models. Secondly, a system model edition tool in

Agent Petri Net is developed following the MDA

approach, which facilitates the creation of applications

based on the models in the development processes. The

tool is powerful and serves to define valid APN models

thanks to the EMF and the enrichment that has been made

by OCL constraints. This tool is extensible and adding

features is possible at any time. In future works, we

propose to add other functionalities to our APNTool such

as the behavior check and the proposal of simulation

models based on the universal representation of instances

of APN models under XML.

REFERENCES

[1] C.A. Petri, ―Kommunication mit Automaten― Ph.D.

Thesis, Technischen Hoschule Darmstadt, 1962.

 Towards a Meta-Modeling and Verification Approach of Multi-Agent Systems Based 61

on the Agent Petri Net Formalism

Copyright © 2019 MECS I.J. Information Technology and Computer Science, 2019, 6, 50-62

[2] V. Khomenko, O. H. Roux, (Eds) ―Application and

Theory of Petri Nets and Concurrency‖ LNCS, 10877,

2018. https://doi.org/10.1007/978-3-319-91268-4

[3] H. Hu, & M. Zhou, ―A Petri net-based discrete-event

control of automated manufacturing systems with

assembly operations‖. IEEE Transactions on Control

Systems Technology, 23(2), 2015, pp. 513-524.

https://doi.org/10.1109/TCST.2014.2342664

[4] S. Pujari, & S. Mukhopadhyay, ―Petri net: A tool for

modeling and analyze multi-agent oriented systems‖.

International Journal of Intelligent Systems and

Applications (MECS Press), 4(10), 2012. doi:

10.5815/ijisa.2012.10.11

[5] Ding, Z., & Yang, R ―Modeling and Analysis for Mobile

Computing Systems Based on Petri Nets: A Survey‖.

IEEE Access, 6, 2018, 68038–68056.

doi:10.1109/access.2018.2878807

[6] Q. Bai, M. Zhang, & K. T. Win, ―A colored petri net-

based approach for multi-agent interactions‖. In Proc. of

second International Conference on Autonomous Robots

and Agents, Palmerston North, New Zealand, 2004,

December, pp. 152-157.

[7] D. A. Zaitsev, & T. R. Shmeleva, ―Modeling With

Colored Petri Nets: Specification, Verification, and

Performance Evaluation of Systems‖ In Automated

Systems in the Aviation and Aerospace Industries, IGI

Global, 2019, pp. 378-404. doi: 10.4018/978-1-5225-

7709-6.ch014

[8] F. Pommereau, ―SNAKES: a flexible high-level petri nets

library‖ (tool paper). In International Conference on

Applications and Theory of Petri Nets and Concurrency.

Springer, Cham, 2015, June, pp. 254-265.

https://doi.org/10.1007/978-3-319-19488-2_13

[9] S. Kerraoui, Y. Kissoum, M. Redjimi, M. Saker, “MATT:

Multi Agents Testing Tool Based Nets within Nets‖,

Journal of Information and Organizational Sciences

(JIOS), Vol 40, No 2, 2016, pp. 165-184. doi:

10.31341/jios.40.2.1

[10] L. W. Dworzanski and I. A. Lomazova, ‗‗Structural place

invariants for analyzing the behavioral properties of

nested petri nets,‘‘ in Application and Theory of Petri

Nets and Concurrency. Cham, Switzerland: Springer,

2016, pp. 325–344. https://doi.org/10.1007/978-3-319-

39086-4_19

[11] L. Chang, ―A Nested Petri Net Framework for Modeling

and Analyzing Multi-Agent Systems‖. FIU Electronic

Theses and Dissertations, 339, 2011. doi:

10.25148/etd.FI11040601.

http://digitalcommons.fiu.edu/etd/339 accessed on 2019-

04-12

[12] R. Valk, ―Object petri nets‖. Lecture notes in computer

science, 3098, 2004, pp. 819-848.

https://doi.org/10.1007/978-3-540-27755-2_23

[13] R. Kamdar, P. Paliwal, & Y. Kumar, ―A State of Art

Review on Various Aspects of Multi-Agent System‖.

Journal of Circuits, Systems and Computers, 27(11), 2018.

doi: 10.1142/s0218126618300064

[14] J. R. Celaya, A. A. Desrochers and R. J. Graves,

―Modeling and Analysis of Multi-agent Systems using

Petri Nets‖, Journal of Computers, October 2009.

https://doi.org/10.1007/s10458-010-9146-1

[15] B. Marzougui, K. Hassine, & K. Barkaoui, ―A new

formalism for modeling a multi agent system: Agent petri

nets‖. Journal of Software Engineering and Applications,

3(12), 2010. https://doi.org/10.1007/978-3-642-36285-

9_54

[16] D. C. Schmidt, ―Model-driven engineering‖. computer-

ieee computer society-, 39(2), 2006. doi:

10.1109/MC.2006.58

[17] C. Atkinson, T. Kühne, ―Model-driven development: a

metamodeling foundation‖. IEEE software, 20(5), 2003,

pp. 36-41. doi: 10.1109/MS.2003.1231149

[18] A. Rodrigues da Silva, Model-driven engineering: A

survey supported by the unified conceptual model.

Computer Languages, Systems & Structures, 43,

2015, pp.139–155.doi:10.1016/j.cl.2015.06.001

[19] C. Sansores, & J. Pavón, ―Agent-Based Simulation

Replication: A Model Driven Architecture Approach‖.

MICAI 2005: Advances in Artificial Intelligence, 2005,

pp. 244–253. doi:10.1007/11579427_25

[20] Eclipse, http://www.eclipse.org accessed on 2019-03-12

[21] GMF, https://www.eclipse.org/modeling/gmp/ accessed

on 2019-03-12

[22] Eclipse Foundation, Inc: The Eclipse Modeling

Framework (EMF), 2019.

https://www.eclipse.org/modeling/emf/ accessed on 2019

03-12

[23] Eclipse-ocl.

http://download.eclipse.org/ocl/doc/6.3.0/ocl.pdf accessed

on 2019-03-12

[24] Object management group: object constraint language,

Formal specification OCL.

https://www.omg.org/spec/OCL/2.4/ accessed on 2019-

03-12

[25] M. Borhen, K. Barkaoui, & N. H. Alouane, ―APN Model

for Specification of the Communication Protocols in

Multi-Agent System‖. Journal of Software Engineering

and Applications, 6(09), 2013. doi:

10.4236/jsea.2013.69A002

[26] B. Marzougui, K. Hassine, K. Barkaoui. "Modeling

Migration of Mobile Agents", Lecture Notes in Business

Information Processing- Springer, vol.132, 2013, pp.530-

540, doi:10.1007/978-3-642-36285-9_54

[27] FIPA, Foundation for Intelligent Physical Agents

http://www.fipa.org/ accessed on 2019-03-21

[28] B. Marzougui, K. Barkaoui. "Agent Petri Nets Framework

for Modeling Staphylococcus epidermidis Biofilm

Formation", E-Health Telecommunication Systems and

Networks (ETSN), vol.5(1), 2016, pp.19-30.

doi:10.4236/etsn.2016.51003

[29] CPNL http://cpntools.org/ accessed on 2019-03-21

[30] The Reference Net Workshop http://www.renew.de/

accessed on 2019-03-12

[31] E. Gamma and k, Beck, ―Contribution To Eclipse

Principles, patterns, plugin‖. Addison-Wesley

Professional, first edition, October 30, 2003. ISBN-

13: 978-0321205759

[32] E. Biermann, K. Ehrig, C. Ermel, J. Hurrelmann,

―Generation of simulation views for domain specific

modeling languages based on the Eclipse modeling

framework‖. In: 2009 IEEE/ACM International

Conference on Automated Software Engineering, 2009,

pp. 625–629, https://doi.org/10.1109/ASE.2009.46

[33] W. Moore, D. Dean, A. Gerber, G. Wagenknecht, & P.

Vanderheyden. Eclipse Development using the Graphical

Editing Framework and the Eclipse Modeling Framework.

IBM Redbooks, 2004. ISBN 0738453161

[34] D. Steinberg, F. Budinsky, & M., E. Merks ―EMF: Eclipse

Modeling Framework. Eclipse‖, Addison Wesley

Professional, 2009, ISBN 9780321331885.

[35] Eclipse Foundation, Inc: The Eclipse Graphical Editing

Framework (GEF), 2019. https://www.eclipse.org/gef/,

accessed on 2019-03- 12

[36] R. Arnott, T. Rave, & R. Schöb, ―Alleviating urban traffic

https://doi.org/10.1109/TCST.2014.2342664
https://jios.foi.hr/index.php/jios/issue/view/66
http://digitalcommons.fiu.edu/etd/339
https://doi.org/10.1007/978-3-540-27755-2_23
https://doi.org/10.1109/MC.2006.58
https://dl.acm.org/author_page.cfm?id=81100309925&coll=DL&dl=ACM&trk=0
https://dl.acm.org/author_page.cfm?id=81100222173&coll=DL&dl=ACM&trk=0
https://doi.org/10.1109/MS.2003.1231149
http://www.eclipse.org/
https://www.eclipse.org/modeling/gmp/
https://www.eclipse.org/modeling/emf/
http://download.eclipse.org/ocl/doc/6.3.0/ocl.pdf
https://www.omg.org/spec/OCL/2.4/
http://dx.doi.org/10.4236/jsea.2013.69A002
http://163.173.228.40/index.php/labo/membre/marzougb
http://163.173.228.40/index.php/labo/membre/barkaouk
http://163.173.228.40/index.php/publis/article/MHB13
http://163.173.228.40/index.php/publis/article/MHB13
http://dx.doi.org/10.1007/978-3-642-36285-9_54
http://www.fipa.org/
http://163.173.228.40/index.php/labo/membre/marzougb
http://163.173.228.40/index.php/labo/membre/barkaouk
http://163.173.228.40/index.php/publis/article/MB16
http://163.173.228.40/index.php/publis/article/MB16
http://163.173.228.40/index.php/publis/article/MB16
http://dx.doi.org/10.4236/etsn.2016.51003
http://cpntools.org/
http://www.renew.de/
https://doi.org/10.1109/ASE.2009.46

62 Towards a Meta-Modeling and Verification Approach of Multi-Agent Systems Based

on the Agent Petri Net Formalism

Copyright © 2019 MECS I.J. Information Technology and Computer Science, 2019, 6, 50-62

congestion‖. MIT Press Books, number 0262012197,

2005.

[37] A. Koster, F. Koch, & A. L. Bazzan, ―Incentivising

crowdsourced parking solutions‖. In International

Workshop on Citizen in Sensor Networks, Springer,

Cham. 2013, September, pp. 36-43. doi:10.1007/978-3-

319-04178-0_4

[38] D. Shoup, ―The high cost of free parking‖. A Planners

Press Book, Taylor & Francis Group, New York, 2017.

https://doi.org/10.4324/9781351179782

[39] L. F. S. Castro, G. V. Alves, & A.P. Borges, ―Using trust

degree for agents in order to assign spots in a Smart

Parking‖. Advances in Distributed Computing and

Artificial Intelligence Journal, 6(2), 2017, pp. 45-55. DOI:

http://dx.doi.org/10.14201/ADCAIJ2017624555

[40] L. F. S. Castro, G. V. Alves, & A.P Borges ―Developing a

smart parking solution based on a Holonic Multiagent

System using JaCaMo Framework‖. In Anais do XII

Workshop-Escola de Sistemas de Agentes, seus

Ambientes e apliCações - WESAAC 2018, volume XII,

pages 226–231, Fortaleza, CE, 2018.

Authors’ Profiles

Amel Dembri is actually preparing her

PhD in computer science at University 20

Aout 1955, department of computer science,

Skikda, Algeria. She obtained a Master

degree in software engineering from

University of Constantine, Algeria in 2012.

Her research focuses on software

Engineering, formal methods, design and

verification of complex systems.

Mohammed Redjimi is a fulltime

professor at university 20 Aout 1955-

Skikda, Algeria. He obtained a PhD in

Computer Science from Universite des

sciences et techniques, Lille 1, France in

1984 and the ‗Habilitation universitaire‘

from University Badji Mokhtar, Annaba,

Algeria in 2007. His present research interests include modeling

and simulation, software engineering and multi-agent systems.

How to cite this paper: Amel Dembri, Mohammed Redjimi,

"Towards a Meta-Modeling and Verification Approach of

Multi-Agent Systems Based on the Agent Petri Net Formalism",

International Journal of Information Technology and Computer

Science(IJITCS), Vol.11, No.6, pp.50-62, 2019. DOI:

10.5815/ijitcs.2019.06.06

https://doi.org/10.4324/9781351179782
http://dx.doi.org/10.14201/ADCAIJ2017624555

