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Abstract—Cloud computing has offered remarkable 

scalability and elasticity to distributed computing 

paradigm. It provides implicit fault tolerance through 

virtual machine (VM) migration. However, VM 

migration needs heavy replication and incurs storage 

overhead as well as loss of computation. In early cloud 

infrastructure, these factors were ignorable due to light 

load conditions; however, nowadays due to exploding 

task population, they trigger considerable performance 

degradation in cloud. Therefore, fault detection and 

recovery is gaining attention in cloud research 

community. The Failure Detectors (FDs) are modules 

employed at the nodes to perform fault detection. The 

paper proposes a failure detector to handle crash 

recoverable nodes and the system recovery is performed 

by a designated checkpoint in the event of failure. We use 

Machine Repairman model to estimate the recovery 

latency. The simulation experiments have been carried 

out using CloudSim plus.  

 

Index Terms—Failure detectors, Cloud computing, Crash 

recovery systems, Machine Repairman model. 

 

I.  INTRODUCTION 

Cloud computing has gained massive popularity in 

recent past owing to its abstraction of resources and on 

demand services. However, the high availability is 

essential to support reliable computing. Although, the 

performance parameters may indicate reliability of 

hardware components, wide variation in scalability may 

lead to inaccurate failure estimation. Moreover, the fault 

tolerance is essential because the computational nodes are 

highly dynamic. The effectiveness of a fault tolerance 

mechanism is determined by its accuracy and efficiency 

in failure detection. Though, cloud is an extension of 

conventional distributed systems, it has many added 

features, like high scalability, elasticity, and market 

driven dynamic pricing, which make it class apart. Hence, 

the failure detectors (FDs) as in [1] designed for 

conventional distributed systems are insufficient, 

inefficient or ineffective in cloud.  Therefore, the design 

of correct Failure Detectors (FDs) for cloud is 

challenging. The paper presents a prospective 

implementation of reliable FD in crash-recovery model.  

The distributed systems have widely been categorized 

as synchronous and asynchronous. In general, the 

synchronous systems use timeout mechanisms to detect 

failures. However, in a purely asynchronous environment, 

such timeout mechanism cannot be implemented as there 

is no bound on any kind of latency. Hence, it is 

‗impossible‘ to design and implement failure detector for 

purely asynchronous environment [2]. The impossibility, 

here, stems from the fact that it is not possible to 

distinguish between a crashed node and a very slow node 

without some time bound on response. Nevertheless, for 

all practical purposes it is reasonable to consider 

asynchronous model of computation that allows certain 

degree of synchrony. The clouds mostly exhibit dynamic 

asynchronous properties; however, a partial synchronous 

system can be simulated based on upper bounds of time-

constraint as per QoS requirements.  

The FD modules are implemented at each computing 

node. It detects a crashed node on the basis of time out. 

Once a node is detected to be crashed it is prohibited 

permanently from participating in the computation. 

However, the prohibition is too strong and thus not 

preferable because a crashed node may recover soon. 

Thus, another class of FDs, termed unreliable FDs, makes 

better choice. The unreliable FDs, even after detecting a 

node suspected, may allow it to participate again 

provided the node recovers soon. In order to implement 

this idea, each node maintains a list of correct as well as 

suspected processes. A node may even fall in suspected 

list if it has become very slow. Thus, in case of unreliable 
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FD, the list of suspected processes maintained at various 

nodes may not be identical. Conventionally, FDs 

increment timeout period [3] whenever a process 

switches from suspect to correct state. However, such a 

mechanism may instigate an unending movement of 

nodes from suspect state to correct and vice versa. 

Generally, such anomalies may be avoided if every FD 

satisfies the following two properties to a certain degree 

[1]: 

 

(i) Completeness: FD suspects all crashed processes.  

(ii) Accuracy: There is a limit on wrong suspicion by 

an FD. 

 

Further, above two properties have been reclassified as 

follows: 

 

 Strong Completeness: All correct processes 

suspect all crashed processes. 

 Weak Completeness: Some correct processes 

suspect all crashed processes. 

 Strong Accuracy: A process is suspected only on 

crashing. 

 Weak Accuracy: Not all correct processes are 

suspected. 

 Eventual Strong Accuracy: After certain time, all 

correct processes are not suspected by other 

correct processes 

 Eventual Weak Accuracy: After certain time, some 

correct processes are not suspected by other 

correct processes. 

 

The above FD mechanism is limited to crash failure 

only. The system failure estimation is more challenging 

in crash recovery systems. They need checkpointing at 

regular intervals to enable rollback recovery. The crash 

recovery FD performs detection in two steps; firstly, the 

failed processes are declared crashed as and when they 

fail. Secondly, after recovery interval, the crashed 

processes are checked for possible revival. In literature, 

various methods are prevalent to checkpoint as well as 

recovery interval estimation. The proposed algorithm can 

successfully detect if a node fails to respond within 

timeout interval. In the first step, the crashed node is 

designated as suspected rather than crashed. Further, if a 

node fails to respond after the expiry of recovery interval, 

it is marked as crashed. The checkpoints are maintained 

to enable the system recovery. 

The proposed algorithm considers BCMP [4] mixed 

multiclass networks for workflow modeling in cloud.  

The Machine Repairman model [5] is used to estimate 

checkpointing interval and time to recover. We present an 

analytical model in order to validate the theoretical 

accuracy of results. Also, the outcome of simulation 

experiments is in line with the results of static estimation 

for cloud environment.  

Section 2 presents the relevant literature. Section 3 

illustrates the proposed system model. Section 4 explains 

the analytical model followed by the description of 

proposed algorithm in section 5. Section 6 presents the 

proposed algorithm. Section 7 presents experimental 

validation. In the end, section 8 concludes the work. 

 

II.  RELATED WORK 

The FD in its prevalent form was first proposed by 

Chandra and Toueg [1]. The authors classified FD into 

eight categories based upon the type of correctness and 

accuracy. However, the Chandra-Toueg FD is inherently 

unreliable as delayed transmission may lead to incorrect 

detection. Further, based on crash failure assumption, 

correctness and accuracy have been adapted for recovery 

systems accordingly. Later, based on the concept of  

reducibility, Chandra et al. [6] proposed weakest failure 

detector. Fischer et al. [2] have shown that it is 

impossible to handle even a single failure in purely 

asynchronous systems. Nevertheless, the partial 

synchrony injections make failure detection possible. 

Dwork et al. [7] have considered two models of 

synchrony based on (upper and lower) bounds on 

message transmission delays, speed of processors, and 

stabilization interval. The message transmission latency 

and node failures have been observed to follow 

probabilistic distribution [8]. The registered set of nodes 

ping each other and if a node does not respond within 

certain timeout, sender node pings another set of k nodes. 

These k nodes, in turn, ping the previously non-

responsive node(s). In case of timely response, the 

initiator node is informed about its presence in the system. 

Any service is qualified by Quality of Service (QoS) 

measures. In literature, several QoS metrics have been 

proposed to estimate the efficiency of FD [9]. The 

primary metrics considered are based upon detection 

latency, time required to correct a faulty detection and 

frequency of mistaken detection. The proposed metrics 

are similar to dependency measures. Also, the metrics 

have been designed considering stochastic behavior using 

synchronized clocks with no drift. The algorithm 

considers variable timeout rather than fixed one. 

The failure detectors have also been proposed for crash 

recovery systems by Aguilera et al. [10]. The frequency 

of failure and revival is maintained to establish the 

trustworthiness of a node. The suspicion level of a node is 

enhanced if the failure count continues to increase and it 

is used to declare failure eventually. However, if the 

failure count stabilizes, the process is considered trusted 

one. Secondly, the detection can be performed even 

without stable storage. The FD for crash recovery system 

has also been designed using dependability measures for 

QoS estimation and the node revival has been considered 

a regenerative process [11].  

The early FDs were focused on failure detection 

mostly for static topology. However, the self-tuning FD 

(SFD adjusts time out value in view of QoS metrics and 

other system properties [12]. The implementation 

proceeds in terms of sliding window where arrival times 

are used to compute next fresh point interval for each 

message in sliding window. Turchetti et al. [13] proposed 

FD for Internet applications. The protocol is capable of 

managing multiple applications with varying QoS metrics 
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simultaneously. It adjusts the timeout interval either by 

tuning it to maximum requirement or by equating it with 

GCD of all timeouts for all the components. The assumed 

bounds are best suited to the remote applications while 

GCD values are more apt for local applications. 

Pannu et al. [14] proposed an adaptive FD for cloud 

using decision trees. It operates in two phases: adaptive 

prediction and decision-making. Wang et al. [15] 

proposed FDKeeper, which has a layer based clustered 

architecture and takes into account three key parameters 

namely speed, scalability and heterogeneity. Liu et al. [16] 

proposed an accrual FD for cloud. Authors use heart beat 

inter arrival time to compute next timeout interval. 

However, unlike previous FDs, they advocate Weibull 

distribution instead of normal or exponential one. 

In the literature, many failure detectors have been 

proposed to detect crash failure. However, crash recovery 

FD schemes require checkpointing and replication along 

with efficient detection. Checkpointing has been 

proposed to be modeled as a service in cloud [17]. VM 

replication schemes have been used by Mondal et al. [18] 

for recovery in cloud. Further, reactive recovery 

algorithms for SDN considering multiple faults have also 

been proposed [19]. Euclidean based approximation 

methods have also been used [20]. Markov process based 

model for failure estimation have also been considered in 

recovery systems [21]. However most of the previous 

techniques consider migration based approach for 

recovery . 

The failure in clouds could be at any of the three levels: 

virtual machine (VM), processing machine (PM) and host.  

Failures at VMs and PMs have been modeled using 

Continuous Time Markov Chain (CTMC) [22] but the 

CTMC model suffers from state explosion problem. 

Nevertheless, our algorithm does not suffer from this 

problem because we have considered mixed multiclass 

models for performance modeling. 

 

III.  THE SYSTEM MODEL 

The system consists of two-level hierarchy with broker 

at the top entrusted with resource management. The 

computational and system tasks are delegated to 

datacenters. The server (a.k.a. host) serves as terminal 

node in the system that performs the computation. The 

FD module at broker node detects failures in host 

machines. There are two types of processes, called 

computational processes and system processes. The 

computational processes, introduced by broker node, 

have been modeled as open class of jobs whose arrival 

and service times follow exponential distribution. The 

system processes comprise of heartbeat messages that 

propagate from broker node to the datacenter and further 

to respective hosts. At any given time, for each host, one 

heartbeat is under circulation. The successive heartbeat 

message is initiated only upon successful circulation of 

the earlier one. Though single heartbeat transmission 

incurs detection latency, the minimum timeout value 

compensates for the same. Fig.1 depicts the state diagram 

of host nodes. Fig.2 illustrates the system architecture. 

Further, a host can be in any of the three states: working, 

failed and recovering.  

 

 

Fig.1. Node States 

 

Fig.2. System Architecture 

 

IV.  THE ANALYTICAL MODEL 

The proposed algorithm considers mixed multiclass 

queuing network [5] to estimate communication latency. 

The queue size at one level affects the queue size at the 

next level in a multiplicative manner and thus we have 

considered product form network. There are two types of 

tasks, one with an exponential arrival rate and the other 

continue to circulate in the network in order to establish a 

mixed network model. The performance parameters are 

computed by BCMP theorem using Mean Value Analysis 

(MVA) [23]. The waiting and response time values have 

been used to estimate task completion time as in [24]. 

However, our system is crash recovery type, the factors 

like traffic burst and network congestion, may adversely 

affect the system performance. The waiting duration at 

broker includes host recovery time too. Fig. 3 

demonstrates host recovery in machine repairman model.  

 

 

Fig.3. Hosts undergoing recovery 
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Table 1 depicts the symbols with their semantics that 

have been used in our illustration. 

Table 1. Symbol Definitions 

Symbols Semantics 

λ Average arrival rate of transactions 

Sck 
Service time per visit of customer of class c at 

node k 

Vck 
Average no of visits of customer of class c at 

node k 

Dck Service demand of type c at node k 

ρck Utilisation of node k by class c 

N=(N1,N2,….NC) Overall population 

W Mean response time 

L Average number of customers 

C Closed class of customers 

O Open class customers 

 

The utilisation of server by each customer job is 

obtained as follows: 

 

i. For every host k: 

 

 ck c ckD  , for all c ε {O}                (1) 

 

ii. Service demand of heartbeat for host k 

 

  ,
 / 1  ck ck O k

D D                       (2) 

 

iii. The response time of a heartbeat at host k,  

 

   ]]1 1ck ck k cW n D L n                   (3) 

 

iv. The response time of a particular class c: 

 

   1 c k toK ckW n W n                      (4) 

 

The above computed response time is valid in a failure 

free run of the system. However, in the event of failure, 

recovery time too is taken into account for timeout 

calculation. Though, the recovery enhances overall 

system performance, it increases latency. Thus, a task 

operating on a recovery node would require larger 

duration for completion as compared to a task allocated to 

non-recovery node. Therefore, job completion time 

involves failure duration, recovery interval, and the time 

required to execute all queued jobs. The recovery time is 

computed using machine repairman model. The repair 

time at Repairman is the time required for host recovery. 

Table 2 describes the semantics of symbols used in the 

machine repairman model. 

 

 

 

 

 

 

Table 2. Symbol Definitions 

Symbols Meaning 

M 

K 

Wr 

Wq 

Ws 

Mean time to failure 

Number of hosts 

Time spent in repair 

Time spent in queue for repair 

Time spent in service 

 

The repairman utilisation factor (ρ) and arrival rate (λ) 

is given by: 

 

 0 1  ,p B K z                            (5) 

 

 / sW                                  (6) 

 

where, B[K, z] is Erlang‘s loss formula , z=M/Ws 

The arrival rate at repairman is used to compute 

cumulative waiting time at repairman, which includes 

mean time to failure, waiting time before repair, and 

service time to repair. It can be computed as follows:  

 

Average arrival rate:  

 

 / q sK M W W                           (7) 

 

Since,  

 

 r qW W Ws                              (8) 

 

Thus,  

 

 /  rW K M                           (9) 

 

The repairman waiting time value obtained from eq (8) 

is recovery interval considered in case of failure and 

subsequent recovery. Therefore, the new timeout in case 

of recovery would be computed as follows: 

 

2new c rT W W                            (10) 

 

where, Wc is the value obtained from eq (4)  for closed 

class of jobs (i.e. heartbeat). 

 

V.  THE ALGORITHM CONCEPT 

A recoverable node could be in any of the three states: 

working, failed and recovering. After every timeout 

interval, non-responding node is added to suspected list. 

The timeout here is twice of response time for heartbeats 

considering maximum possible message propagation 
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latency. A node once detected as failed is inserted in the 

suspected list till expiry of recovery interval. Each node 

in suspected list is checked for possible recovery. The 

recovered nodes are added in the list of working nodes 

and heartbeats are resumed. Thus, the total detection 

latency in crash recovery system is sum of timeout 

interval and recovery interval. Furthermore, once a node 

is suspected, no task is allocated to it until its revival. 

This improvises accuracy in being able to tolerate larger 

delay. Nevertheless, the node is detected crashed, in case, 

there is any further delay in the execution. Meanwhile, 

the system snapshots are taken at the interval same as the 

mean time between failures so that on occurrence of crash, 

execution resumes from the state just before the crash 

point. The broker reschedules the tasks that were 

scheduled initially on a node that was suspected later. 

Table 3 describes the events and functions used in 

proposed algorithm. 

Table 3. Events/Functions used in algorithm 

Function/Events Description 

initialise_ host(h); 
Create hosts with provided 

specifications. 

add(h->host_list); 
Create a list of hosts available with 

each datacenter. 

mount_vm(); Mount VMs on hosts available. 

job_creation; 
Create tasks according to arrival rate 

of tasks. 

initialise_datacenter 
Event sent from broker to datacenter 

to initiate execution 

assign_task(c) 
Assign task to VMs for execution 

according to space shared policy. 

add(c->task_list) 
Create a list of tasks to be executed by 

the system. 

allocate_heartbeat(h) 
Schedule one heartbeat at each of the 

tasks. 

check_progress() 
Checks the progress of the heartbeat at 

each of the host. 

update_pulse 
Sends an event to broker to update 

about status of each heartbeat. 

update_pulse 
Sends an event to broker to update 

about status of suspected node. 

check_pulse() 

Sends an event from broker to 

datacenter to query about the status of 

heartbeat progress. 

check_crash() 

Sends an event from broker to 

datacenter to query about the status of 

heartbeat progress in a suspected 

node . 

check_task_status() 
Returns the status of the tasks 

allocated. 

task_replication() 

Event sent from broker to datacenter 

upon timeout to take snapshot of task 

state still running on system. 

replicate_task(); 

Pending tasks after a given timeout 

are replicated and scheduled by the 

broker. 

add(h->suspect_list); 
The detected nodes are enlisted in the 

suspected category upon timeout. 

suspect_count(h) 
List to maintain count of suspected 

nodes. 

add(h->crashed_list); 
List of crashed nodes is updated after 

recovery interval. 

crashed_count(h) 
List to maintain count of crashed 

nodes. 

stop_execution(); 

Detection is stopped when either all 

tasks are completed or all hosts have 

failed. 

VI.  ALGORITHM  

A.  Algorithm for broker node 

The proposed algorithm for failure detection 

considering possible recovery at broker node is as follows: 

 
Initiate computation: 

initialise_datacenter(); 

 

Periodic job_creation event: 

for every unit time interval 

 assign_task(c); 

 add(c->task_list); 

 

Heartbeat creation: 

for every host h 

allocate_heartbeat(h);// one cloudlet is 

created for each host// 

 

Periodic detection event: 

After every timeout interval delay 

for every host h 

check_pulse(); 

task_replication(); 

 

On receiving update_pulse event: 

if (pulse_status!=SUCCESS) 

add(h->suspect_list); 

suspect_count(h)=suspect_count(h)++; 

if (pulse_status==SUCCESS) 

remove(h->suspect_list); 

 

After every recovery interval delay: 

for every host h 

check_crash(); 

 

On receiving update_crash event: 

if (pulse_status!=SUCCESS&& h ε suspect_list) 

add(h->crashed_list); 

crashed_count= crashed_count++; 

if(crashed_count(h)>number_of_hosts) 

abort(); 

 

// Completion// 

if (crashed_list==host_list )  

stop_execution(); 

else 

for every c ε task_list 

if (task_status==Success ) 

stop_execution(); 

B.  Algorithm for datacenter node 

Algorithm for failure detection considering possible 

recovery at datacenter node is as follows: 

 
Upon Receivinginitialise_datacenter: 

initialise_ host(h); 

add(h->host_list); 

mount_vm(); 

job_creation; 

 

After every periodic interval : 

inject_fault();//(considering mean failure 

distribution) 

 

On receiving check_pulse event: 

check_progress(); 

update_pulse; 

 

On receiving check_crash event: 

check_progress(); 

update_crash; 
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On receiving task_replication event: 

for every task c 

check_task_status(); 

if(task_status!=SUCCESS) 

replicate_task(); 

 

VII.  EXPERIMENTAL SETUP 

The above mentioned analytical model was computed 

for the following set of values provided in Table 4. 

Table 4. Simulation values 

Hosts 10 50 100 

λ 10 50 100 

NC 10 50 100 

Do 0.05 0.01 0.005 

Dc 0.5 0.1 0.05 

Parameters required for Recovery 

M 72s 360s 720s 

Ws 10s 10s 10s 

 

Using above values, the following performance 

parameters are computed: 

 

i. Response time for heartbeat using eq (4). 

ii. In case of a crash followed by recovery, total 

time spent in recovery is computed using eq (8).      

iii. From above calculated parameters, timeout 

value in case of a crash followed by recovery is 

computed from eq.(10). 

   

The proposed model is implemented using CloudSim 

plus [25], which is an event driven tool and closely 

resembles distributed computing environment. Table 5 

briefly describes basic terminologies used in our 

simulation:  

Table 5. Basic Terms 

Terms Functionality 

Broker 
Resource management entity. Initiates tasks into 

the system. 

Datacenter Entity responsible for working of physical hosts. 

Host Execution node where tasks are performed. 

VM Virtualization level to emulate resource scaling. 

Cloudlet Task to be executed by the system. 

 

Following fig. 4 depicts the actual time of crash along 

with the detected time for 10 hosts. 

 

 

Fig.4. Detection time for each host 

Blue cones in fig.4 represents time of occurrence of 

failure, red indicates time when they are suspected, green 

cones are for time of crash declaration whereas violet 

ones are to indicate recovery. As is evident from fig. 4 

there are no cases of false detection or missed detection, 

since a blue cone precedes the red and green ones in all 

the cases. Thus, ensuring that a failure is detected, in case, 

it occurs. Further, the proposed algorithm has been 

simulated when scaled to 50 and then 100 hosts. It has 

been observed that completeness and accuracy is 

preserved even after scaling of resources. Fig. 5 and fig. 6 

illustrates the simulation results for 50 and 100 hosts 

respectively. The occurrence of blue cones before red and 

red cones before green in fig.5. and fig.6. indicates the 

sequence of detection mechanism. Hence, a node is 

suspected when failure occurs and is declared crashed 

only if it fails to respond within timeout interval. Thus, 

our algorithm satisfies preliminary requirements of 

accuracy and completeness that is essential for any failure 

detection mechanism. 

 

 

Fig.5. Detection time for 50 hosts
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Fig.6. Detection time for 100 hosts  

 

VIII.  CONCLUSION 

The proposed algorithm considers failure detection 

problem in crash recoverable cloud nodes. We have 

abstracted the recovery part though it uses an underlying 

checkpointing mechanism. In simulation, we assumed 

jobs having common service requirement however it can 

also handle jobs with diverse service needs because we 

have considered mixed multiclass BCMP networks 

during experimentation. Secondly, in BCMP networks, 

the response time does not merely reflect detection 

latency rather it also includes recovery interval. Therefore, 

our time out calculation is more realistic as well as 

methodical and more importantly its value is minimal. 

The algorithm satisfies safety as well as liveness 

requirements. Our simulation results confirm that there is 

no false detection. Furthermore, the latency beyond 

timeout guarantees truthful fault detection. However, the 

impact of inexplicable traffic burst on the precise fault 

detection needs further investigation. 

REFERENCES 

[1] T.D.Chandra and S.  Toueg, ―Unreliable failure detectors 

for reliable distributed systems,‖ Journal of the ACM 

(JACM), vol.43(2), pp. 225-267,1996. 

[2] M. J. Fischer, N. A. Lynch and M. S. Paterson, 

―Impossibility of distributed consensus with one faulty 

process,‖ Journal of the ACM (JACM), vol. 32(2), pp. 

374-382, 1985. 

[3] M. Larrea, A. Fernández and S. Arévalo, ―Eventually 

consistent failure detectors,‖ In Proceedings 10th 

Euromicro Workshop on Parallel, Distributed and 

Network-based Processing. IEEE, 2002. 

[4] F. Baskett, K. Chandy, R. Muntz, and F. Palacios, ―Open, 

Closed,and Mixed Networks of Queues with Different 

Classes of Customers,‖ Journal of the ACM, vol. 22(2), 

pp.248-260, 1975. 

[5] A. O. Allen, ―Probability, Statistics, and Queuing Theory 

with Computer Science Applications,‖ second edition, 

Academic Press, Inc., Boston, Massachusetts, 1990. 

[6] T. D. Chandra, V. Hadzilacos and S. Toueg, ―The weakest 

failure detector for solving consensus,‖ Journal of the 

ACM (JACM), vol.43(4), pp. 685-722, 1996. 

[7] C. Dwork, N. Lynch and L. Stockmeyer, ―Consensus in 

the presence of partial synchrony,‖ Journal of the ACM 

(JACM), vol.35(2), pp.288-323, 1988. 

[8] I. Gupta, T. D. Chandra and G. S. Goldszmidt, ―On 

scalable and efficient distributed failure detectors,‖ In 

Proceedings of the twentieth annual ACM symposium on 

Principles of distributed computing, pp. 170-179, 2001. 

[9] W. Chen, S. Toueg and M. K. Aguilera, ―On the quality of 

service of failure detectors,‖ IEEE Transactions on 

computers, 51(1), 13-32, 2002. 

[10] M. K. Aguilera, S. Toueg and B. Deianov, ―Revisiting the 

weakest failure detector for uniform reliable broadcast,‖ 

In Proceedings of the 13th International Symposium on 

Distributed Computing, pp.19-33,1999.  

[11] T. Ma, J. Hillston and S, Anderson, ―On the quality of 

service of crash-recovery failure detectors‖, IEEE 

Transactions on Dependable and Secure Computing, 

vol.7(3), pp.271-283, 2010. 

[12] N. Xiong, A.V. Vasilakos, J. Wu,  Y.R. Yang, A. Rindos, 

Y. Zhou, W. Song and Y. Pan, ―A self-tuning failure 

detection scheme for cloud computing service,‖ In 

Parallel & Distributed Processing Symposium (IPDPS), 

pp. 668-679, 2012. 

[13] R. C. Turchetti, E. P. Duarte, L. Arantes, and P. Sens, ―A 

QoS-configurable failure detection service for internet 

applications,‖ Journal of Internet Services and 

Applications, vol.7(1), 2016. 

[14] H. S. Pannu, J. Liu, Q. Guan and S. Fu, ―AFD: adaptive 

failure detection system for cloud computing 

infrastructures,‖ Performance Computing and 

Communications Conference (IPCCC), IEEE, pp. 71‐80, 

2012.  

[15] F. Wang, H. Jin, D. Zou, and W. Qiang, ―A Quick and 

Open Failure Detector for Cloud Computing System,‖ In 

Proceedings of the International Conference on Computer 

Science & Software Engineering, ACM, 2014. 

[16] J. Liu, Z. Wu, J. Wu, J. Dong, Y. Zhao and D. Wen, ―A 

Weibull distribution accrual failure detector for cloud 

computing,‖ PloS one, vol.12(3), 2017. 

[17] Cao, Jiajun, et al. ―Checkpointing as a service in 

heterogeneous cloud environments,‖2015 15th 

IEEE/ACM International Symposium on Cluster, Cloud 

and Grid Computing. IEEE, 2015. 

[18] S. K. Mondal, F. Machida, J. K. Muppala, ― Service 

Reliability Enhancement in Cloud by Checkpointing and 

Replication,‖ In Principles of Performance and 

Reliability Modeling and Evaluation, Springer, pp. 425–

448, 2016. 

[19] H. Amarasinghe, A. Jarray, and A. Karmouch, ―Fault-

tolerant IaaS management for networked cloud 

infrastructure with SDN,‖ IEEE International 

Conference on Communications (ICC). IEEE, 2017. 

[20] C. Yang, X. Xu, K. Ramamohanrao and J. Chen, ―A 

Scalable Multi-Data Sources based Recursive 

Approximation Approach for Fast Error Recovery in Big 

Sensing Data on Cloud,‖ IEEE Transactions on 

Knowledge and Data Engineering, 2019. 

[21] L. Luo, S. Meng, X. Qiu and Y. Dai, ―Improving Failure 

Tolerance in Large-Scale Cloud Computing Systems,‖ 

IEEE Transactions on Reliability, 2019. 

[22] Al-Sayed, Mustafa M., Sherif Khattab, and Fatma A. 

Omara, ―Prediction mechanisms for monitoring state of 

cloud resources using Markov chain model,‖ Journal of 

Parallel and Distributed Computing, vol.96, pp. 163-

171, 2016. 

[23] E. Lazowska, J. Zahorjan, G. Graham and K. Sevcik, 

0

500

1000

1500

1

1
0

1
9

2
8

3
7

4
6

5
5

6
4

7
3

8
2

9
1

1
0
0

T
im

e 

Host Id 

Actually failed

Suspected

Crashed

Recovered



16 A Failure Detector for Crash Recovery Systems in Cloud  

Copyright © 2019 MECS                                              I.J. Information Technology and Computer Science, 2019, 7, 9-16 

―Quantitative System Performance ~ Computer System 

Analysis UsingQueueing Network Models,‖ Prentice-Hall, 

1984. 

[24] B. Sinha, A. K. Singh and P. Saini, ―Failure detectors for 

crash faults in cloud,‖ Journal of Ambient Intelligence and 

Humanized Computing, 2018. 

[25] M. C. Silva Filho, R. L. Oliveira, C. C. Monteiro, Pedro. 

R. M. Inacio,  Manoel, ―CloudSim plus: a cloud 

computing simulation framework pursuing software 

engineering principles for improved modularity, 

extensibility and correctness,‖ FIP/IEEE Symposium on 

Integrated Network and Service Management (IM), IEEE, 

2017. 

 

 

 

Authors’ Profiles 

 
Bharati Sinha received her Bachelor of 

Technology (B.Tech.) degree in Computer 

Science Engineering from Bhagalpur College 

of Engineering, Bhagalpur, Bihar, India in 

2010 and her M.Tech. from NIT Rourkela, 

India in 2012. She joined as Assistant 

Professor at the Department of Computer 

Engineering (COE) at the National Institute of Technology, 

Kurukshetra, India, in 2013 and is pursuing part-time Ph.D. 

from the Department of Computer Engineering at National 

Institute of Technology, Kurukshetra, India. Her research 

interests include cloud computing and distributed systems. 

 

 

Awadhesh Kumar Singh received his 

Bachelor of Technology (B.Tech.) degree in 

Computer Science from Madan Mohan 

Malaviya University of Technology, 

Gorakhpur, India, in 1988, and his MTech 

and Ph.D. degrees in Computer Science from 

Jadavpur University, Kolkata, India, in 1998 

and 2004, respectively. He joined the Department of Computer 

Engineering at the National Institute of Technology, 

Kurukshetra, India, in 1991, where he is presently a Professor. 

Earlier, he also served as head of the Computer Engineering 

Department during 2007–2009 and 2013–2015. His research 

interests include distributed algorithms, mobile computing and 

radio networks.  

 

 

Poonam Saini received her Ph.D. degree in 

Computer Engineering from National 

Institute of Technology, Kurukshetra, India 

in 2013 and M.Tech from UIET, 

Kurukshetra University, Kurukshetra, India 

in 2006. She has received B. Tech. in 

Information Technology from Kurukshetra 

University, Kurukshetra, India in 2003. 

She is currently working as Assistant Professor in Computer 

Science and Engineering at PEC University of Technology 

(formerly Punjab Engineering College), Chandigarh, India. Her 

research interest includes Fault-Tolerant Distributed Computing 

Systems, Mobile Computing, Ad hoc Networks, Wireless 

Sensors Networks, Cloud Computing and Security. 

 

 

 

How to cite this paper: Bharati Sinha, Awadhesh Kumar Singh, 

Poonam Saini, "A Failure Detector for Crash Recovery Systems 

in Cloud", International Journal of Information Technology and 

Computer Science(IJITCS), Vol.11, No.7, pp.9-16, 2019. DOI: 

10.5815/ijitcs.2019.07.02 

 


