
I.J. Information Technology and Computer Science, 2019, 7, 9-16
Published Online July 2019 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2019.07.02

Copyright © 2019 MECS I.J. Information Technology and Computer Science, 2019, 7, 9-16

A Failure Detector for Crash Recovery Systems

in Cloud

Bharati Sinha
National Institute of Technology, Kurukshetra, India, 136119

E-mail: bharatisinha@nitkkr.ac.in

Awadhesh Kumar Singh
National Institute of Technology, Kurukshetra, India, 136119

E-mail: aksinreck@rediffmail.com

Poonam Saini
Punjab Engineering College, Chandigarh, India, 160012

E-mail: nit.sainipoonam@gmail.com

Received: 02 April 2019; Accepted: 19 May 2019; Published: 08 July 2019

Abstract—Cloud computing has offered remarkable

scalability and elasticity to distributed computing

paradigm. It provides implicit fault tolerance through

virtual machine (VM) migration. However, VM

migration needs heavy replication and incurs storage

overhead as well as loss of computation. In early cloud

infrastructure, these factors were ignorable due to light

load conditions; however, nowadays due to exploding

task population, they trigger considerable performance

degradation in cloud. Therefore, fault detection and

recovery is gaining attention in cloud research

community. The Failure Detectors (FDs) are modules

employed at the nodes to perform fault detection. The

paper proposes a failure detector to handle crash

recoverable nodes and the system recovery is performed

by a designated checkpoint in the event of failure. We use

Machine Repairman model to estimate the recovery

latency. The simulation experiments have been carried

out using CloudSim plus.

Index Terms—Failure detectors, Cloud computing, Crash

recovery systems, Machine Repairman model.

I. INTRODUCTION

Cloud computing has gained massive popularity in

recent past owing to its abstraction of resources and on

demand services. However, the high availability is

essential to support reliable computing. Although, the

performance parameters may indicate reliability of

hardware components, wide variation in scalability may

lead to inaccurate failure estimation. Moreover, the fault

tolerance is essential because the computational nodes are

highly dynamic. The effectiveness of a fault tolerance

mechanism is determined by its accuracy and efficiency

in failure detection. Though, cloud is an extension of

conventional distributed systems, it has many added

features, like high scalability, elasticity, and market

driven dynamic pricing, which make it class apart. Hence,

the failure detectors (FDs) as in [1] designed for

conventional distributed systems are insufficient,

inefficient or ineffective in cloud. Therefore, the design

of correct Failure Detectors (FDs) for cloud is

challenging. The paper presents a prospective

implementation of reliable FD in crash-recovery model.

The distributed systems have widely been categorized

as synchronous and asynchronous. In general, the

synchronous systems use timeout mechanisms to detect

failures. However, in a purely asynchronous environment,

such timeout mechanism cannot be implemented as there

is no bound on any kind of latency. Hence, it is

‗impossible‘ to design and implement failure detector for

purely asynchronous environment [2]. The impossibility,

here, stems from the fact that it is not possible to

distinguish between a crashed node and a very slow node

without some time bound on response. Nevertheless, for

all practical purposes it is reasonable to consider

asynchronous model of computation that allows certain

degree of synchrony. The clouds mostly exhibit dynamic

asynchronous properties; however, a partial synchronous

system can be simulated based on upper bounds of time-

constraint as per QoS requirements.

The FD modules are implemented at each computing

node. It detects a crashed node on the basis of time out.

Once a node is detected to be crashed it is prohibited

permanently from participating in the computation.

However, the prohibition is too strong and thus not

preferable because a crashed node may recover soon.

Thus, another class of FDs, termed unreliable FDs, makes

better choice. The unreliable FDs, even after detecting a

node suspected, may allow it to participate again

provided the node recovers soon. In order to implement

this idea, each node maintains a list of correct as well as

suspected processes. A node may even fall in suspected

list if it has become very slow. Thus, in case of unreliable

10 A Failure Detector for Crash Recovery Systems in Cloud

Copyright © 2019 MECS I.J. Information Technology and Computer Science, 2019, 7, 9-16

FD, the list of suspected processes maintained at various

nodes may not be identical. Conventionally, FDs

increment timeout period [3] whenever a process

switches from suspect to correct state. However, such a

mechanism may instigate an unending movement of

nodes from suspect state to correct and vice versa.

Generally, such anomalies may be avoided if every FD

satisfies the following two properties to a certain degree

[1]:

(i) Completeness: FD suspects all crashed processes.

(ii) Accuracy: There is a limit on wrong suspicion by

an FD.

Further, above two properties have been reclassified as

follows:

 Strong Completeness: All correct processes

suspect all crashed processes.

 Weak Completeness: Some correct processes

suspect all crashed processes.

 Strong Accuracy: A process is suspected only on

crashing.

 Weak Accuracy: Not all correct processes are

suspected.

 Eventual Strong Accuracy: After certain time, all

correct processes are not suspected by other

correct processes

 Eventual Weak Accuracy: After certain time, some

correct processes are not suspected by other

correct processes.

The above FD mechanism is limited to crash failure

only. The system failure estimation is more challenging

in crash recovery systems. They need checkpointing at

regular intervals to enable rollback recovery. The crash

recovery FD performs detection in two steps; firstly, the

failed processes are declared crashed as and when they

fail. Secondly, after recovery interval, the crashed

processes are checked for possible revival. In literature,

various methods are prevalent to checkpoint as well as

recovery interval estimation. The proposed algorithm can

successfully detect if a node fails to respond within

timeout interval. In the first step, the crashed node is

designated as suspected rather than crashed. Further, if a

node fails to respond after the expiry of recovery interval,

it is marked as crashed. The checkpoints are maintained

to enable the system recovery.

The proposed algorithm considers BCMP [4] mixed

multiclass networks for workflow modeling in cloud.

The Machine Repairman model [5] is used to estimate

checkpointing interval and time to recover. We present an

analytical model in order to validate the theoretical

accuracy of results. Also, the outcome of simulation

experiments is in line with the results of static estimation

for cloud environment.

Section 2 presents the relevant literature. Section 3

illustrates the proposed system model. Section 4 explains

the analytical model followed by the description of

proposed algorithm in section 5. Section 6 presents the

proposed algorithm. Section 7 presents experimental

validation. In the end, section 8 concludes the work.

II. RELATED WORK

The FD in its prevalent form was first proposed by

Chandra and Toueg [1]. The authors classified FD into

eight categories based upon the type of correctness and

accuracy. However, the Chandra-Toueg FD is inherently

unreliable as delayed transmission may lead to incorrect

detection. Further, based on crash failure assumption,

correctness and accuracy have been adapted for recovery

systems accordingly. Later, based on the concept of

reducibility, Chandra et al. [6] proposed weakest failure

detector. Fischer et al. [2] have shown that it is

impossible to handle even a single failure in purely

asynchronous systems. Nevertheless, the partial

synchrony injections make failure detection possible.

Dwork et al. [7] have considered two models of

synchrony based on (upper and lower) bounds on

message transmission delays, speed of processors, and

stabilization interval. The message transmission latency

and node failures have been observed to follow

probabilistic distribution [8]. The registered set of nodes

ping each other and if a node does not respond within

certain timeout, sender node pings another set of k nodes.

These k nodes, in turn, ping the previously non-

responsive node(s). In case of timely response, the

initiator node is informed about its presence in the system.

Any service is qualified by Quality of Service (QoS)

measures. In literature, several QoS metrics have been

proposed to estimate the efficiency of FD [9]. The

primary metrics considered are based upon detection

latency, time required to correct a faulty detection and

frequency of mistaken detection. The proposed metrics

are similar to dependency measures. Also, the metrics

have been designed considering stochastic behavior using

synchronized clocks with no drift. The algorithm

considers variable timeout rather than fixed one.

The failure detectors have also been proposed for crash

recovery systems by Aguilera et al. [10]. The frequency

of failure and revival is maintained to establish the

trustworthiness of a node. The suspicion level of a node is

enhanced if the failure count continues to increase and it

is used to declare failure eventually. However, if the

failure count stabilizes, the process is considered trusted

one. Secondly, the detection can be performed even

without stable storage. The FD for crash recovery system

has also been designed using dependability measures for

QoS estimation and the node revival has been considered

a regenerative process [11].

The early FDs were focused on failure detection

mostly for static topology. However, the self-tuning FD

(SFD adjusts time out value in view of QoS metrics and

other system properties [12]. The implementation

proceeds in terms of sliding window where arrival times

are used to compute next fresh point interval for each

message in sliding window. Turchetti et al. [13] proposed

FD for Internet applications. The protocol is capable of

managing multiple applications with varying QoS metrics

 A Failure Detector for Crash Recovery Systems in Cloud 11

Copyright © 2019 MECS I.J. Information Technology and Computer Science, 2019, 7, 9-16

simultaneously. It adjusts the timeout interval either by

tuning it to maximum requirement or by equating it with

GCD of all timeouts for all the components. The assumed

bounds are best suited to the remote applications while

GCD values are more apt for local applications.

Pannu et al. [14] proposed an adaptive FD for cloud

using decision trees. It operates in two phases: adaptive

prediction and decision-making. Wang et al. [15]

proposed FDKeeper, which has a layer based clustered

architecture and takes into account three key parameters

namely speed, scalability and heterogeneity. Liu et al. [16]

proposed an accrual FD for cloud. Authors use heart beat

inter arrival time to compute next timeout interval.

However, unlike previous FDs, they advocate Weibull

distribution instead of normal or exponential one.

In the literature, many failure detectors have been

proposed to detect crash failure. However, crash recovery

FD schemes require checkpointing and replication along

with efficient detection. Checkpointing has been

proposed to be modeled as a service in cloud [17]. VM

replication schemes have been used by Mondal et al. [18]

for recovery in cloud. Further, reactive recovery

algorithms for SDN considering multiple faults have also

been proposed [19]. Euclidean based approximation

methods have also been used [20]. Markov process based

model for failure estimation have also been considered in

recovery systems [21]. However most of the previous

techniques consider migration based approach for

recovery .

The failure in clouds could be at any of the three levels:

virtual machine (VM), processing machine (PM) and host.

Failures at VMs and PMs have been modeled using

Continuous Time Markov Chain (CTMC) [22] but the

CTMC model suffers from state explosion problem.

Nevertheless, our algorithm does not suffer from this

problem because we have considered mixed multiclass

models for performance modeling.

III. THE SYSTEM MODEL

The system consists of two-level hierarchy with broker

at the top entrusted with resource management. The

computational and system tasks are delegated to

datacenters. The server (a.k.a. host) serves as terminal

node in the system that performs the computation. The

FD module at broker node detects failures in host

machines. There are two types of processes, called

computational processes and system processes. The

computational processes, introduced by broker node,

have been modeled as open class of jobs whose arrival

and service times follow exponential distribution. The

system processes comprise of heartbeat messages that

propagate from broker node to the datacenter and further

to respective hosts. At any given time, for each host, one

heartbeat is under circulation. The successive heartbeat

message is initiated only upon successful circulation of

the earlier one. Though single heartbeat transmission

incurs detection latency, the minimum timeout value

compensates for the same. Fig.1 depicts the state diagram

of host nodes. Fig.2 illustrates the system architecture.

Further, a host can be in any of the three states: working,

failed and recovering.

Fig.1. Node States

Fig.2. System Architecture

IV. THE ANALYTICAL MODEL

The proposed algorithm considers mixed multiclass

queuing network [5] to estimate communication latency.

The queue size at one level affects the queue size at the

next level in a multiplicative manner and thus we have

considered product form network. There are two types of

tasks, one with an exponential arrival rate and the other

continue to circulate in the network in order to establish a

mixed network model. The performance parameters are

computed by BCMP theorem using Mean Value Analysis

(MVA) [23]. The waiting and response time values have

been used to estimate task completion time as in [24].

However, our system is crash recovery type, the factors

like traffic burst and network congestion, may adversely

affect the system performance. The waiting duration at

broker includes host recovery time too. Fig. 3

demonstrates host recovery in machine repairman model.

Fig.3. Hosts undergoing recovery

12 A Failure Detector for Crash Recovery Systems in Cloud

Copyright © 2019 MECS I.J. Information Technology and Computer Science, 2019, 7, 9-16

Table 1 depicts the symbols with their semantics that

have been used in our illustration.

Table 1. Symbol Definitions

Symbols Semantics

λ Average arrival rate of transactions

Sck
Service time per visit of customer of class c at

node k

Vck
Average no of visits of customer of class c at

node k

Dck Service demand of type c at node k

ρck Utilisation of node k by class c

N=(N1,N2,….NC) Overall population

W Mean response time

L Average number of customers

C Closed class of customers

O Open class customers

The utilisation of server by each customer job is

obtained as follows:

i. For every host k:

 ck c ckD , for all c ε {O} (1)

ii. Service demand of heartbeat for host k

 ,
 / 1 ck ck O k

D D (2)

iii. The response time of a heartbeat at host k,

]]1 1ck ck k cW n D L n (3)

iv. The response time of a particular class c:

 1 c k toK ckW n W n (4)

The above computed response time is valid in a failure

free run of the system. However, in the event of failure,

recovery time too is taken into account for timeout

calculation. Though, the recovery enhances overall

system performance, it increases latency. Thus, a task

operating on a recovery node would require larger

duration for completion as compared to a task allocated to

non-recovery node. Therefore, job completion time

involves failure duration, recovery interval, and the time

required to execute all queued jobs. The recovery time is

computed using machine repairman model. The repair

time at Repairman is the time required for host recovery.

Table 2 describes the semantics of symbols used in the

machine repairman model.

Table 2. Symbol Definitions

Symbols Meaning

M

K

Wr

Wq

Ws

Mean time to failure

Number of hosts

Time spent in repair

Time spent in queue for repair

Time spent in service

The repairman utilisation factor (ρ) and arrival rate (λ)

is given by:

 0 1 ,p B K z (5)

 / sW (6)

where, B[K, z] is Erlang‘s loss formula , z=M/Ws

The arrival rate at repairman is used to compute

cumulative waiting time at repairman, which includes

mean time to failure, waiting time before repair, and

service time to repair. It can be computed as follows:

Average arrival rate:

 / q sK M W W (7)

Since,

 r qW W Ws (8)

Thus,

 / rW K M (9)

The repairman waiting time value obtained from eq (8)

is recovery interval considered in case of failure and

subsequent recovery. Therefore, the new timeout in case

of recovery would be computed as follows:

2new c rT W W (10)

where, Wc is the value obtained from eq (4) for closed

class of jobs (i.e. heartbeat).

V. THE ALGORITHM CONCEPT

A recoverable node could be in any of the three states:

working, failed and recovering. After every timeout

interval, non-responding node is added to suspected list.

The timeout here is twice of response time for heartbeats

considering maximum possible message propagation

 A Failure Detector for Crash Recovery Systems in Cloud 13

Copyright © 2019 MECS I.J. Information Technology and Computer Science, 2019, 7, 9-16

latency. A node once detected as failed is inserted in the

suspected list till expiry of recovery interval. Each node

in suspected list is checked for possible recovery. The

recovered nodes are added in the list of working nodes

and heartbeats are resumed. Thus, the total detection

latency in crash recovery system is sum of timeout

interval and recovery interval. Furthermore, once a node

is suspected, no task is allocated to it until its revival.

This improvises accuracy in being able to tolerate larger

delay. Nevertheless, the node is detected crashed, in case,

there is any further delay in the execution. Meanwhile,

the system snapshots are taken at the interval same as the

mean time between failures so that on occurrence of crash,

execution resumes from the state just before the crash

point. The broker reschedules the tasks that were

scheduled initially on a node that was suspected later.

Table 3 describes the events and functions used in

proposed algorithm.

Table 3. Events/Functions used in algorithm

Function/Events Description

initialise_ host(h);
Create hosts with provided

specifications.

add(h->host_list);
Create a list of hosts available with

each datacenter.

mount_vm(); Mount VMs on hosts available.

job_creation;
Create tasks according to arrival rate

of tasks.

initialise_datacenter
Event sent from broker to datacenter

to initiate execution

assign_task(c)
Assign task to VMs for execution

according to space shared policy.

add(c->task_list)
Create a list of tasks to be executed by

the system.

allocate_heartbeat(h)
Schedule one heartbeat at each of the

tasks.

check_progress()
Checks the progress of the heartbeat at

each of the host.

update_pulse
Sends an event to broker to update

about status of each heartbeat.

update_pulse
Sends an event to broker to update

about status of suspected node.

check_pulse()

Sends an event from broker to

datacenter to query about the status of

heartbeat progress.

check_crash()

Sends an event from broker to

datacenter to query about the status of

heartbeat progress in a suspected

node .

check_task_status()
Returns the status of the tasks

allocated.

task_replication()

Event sent from broker to datacenter

upon timeout to take snapshot of task

state still running on system.

replicate_task();

Pending tasks after a given timeout

are replicated and scheduled by the

broker.

add(h->suspect_list);
The detected nodes are enlisted in the

suspected category upon timeout.

suspect_count(h)
List to maintain count of suspected

nodes.

add(h->crashed_list);
List of crashed nodes is updated after

recovery interval.

crashed_count(h)
List to maintain count of crashed

nodes.

stop_execution();

Detection is stopped when either all

tasks are completed or all hosts have

failed.

VI. ALGORITHM

A. Algorithm for broker node

The proposed algorithm for failure detection

considering possible recovery at broker node is as follows:

Initiate computation:

initialise_datacenter();

Periodic job_creation event:

for every unit time interval

 assign_task(c);

 add(c->task_list);

Heartbeat creation:

for every host h

allocate_heartbeat(h);// one cloudlet is

created for each host//

Periodic detection event:

After every timeout interval delay

for every host h

check_pulse();

task_replication();

On receiving update_pulse event:

if (pulse_status!=SUCCESS)

add(h->suspect_list);

suspect_count(h)=suspect_count(h)++;

if (pulse_status==SUCCESS)

remove(h->suspect_list);

After every recovery interval delay:

for every host h

check_crash();

On receiving update_crash event:

if (pulse_status!=SUCCESS&& h ε suspect_list)

add(h->crashed_list);

crashed_count= crashed_count++;

if(crashed_count(h)>number_of_hosts)

abort();

// Completion//

if (crashed_list==host_list)

stop_execution();

else

for every c ε task_list

if (task_status==Success)

stop_execution();

B. Algorithm for datacenter node

Algorithm for failure detection considering possible

recovery at datacenter node is as follows:

Upon Receivinginitialise_datacenter:

initialise_ host(h);

add(h->host_list);

mount_vm();

job_creation;

After every periodic interval :

inject_fault();//(considering mean failure

distribution)

On receiving check_pulse event:

check_progress();

update_pulse;

On receiving check_crash event:

check_progress();

update_crash;

14 A Failure Detector for Crash Recovery Systems in Cloud

Copyright © 2019 MECS I.J. Information Technology and Computer Science, 2019, 7, 9-16

On receiving task_replication event:

for every task c

check_task_status();

if(task_status!=SUCCESS)

replicate_task();

VII. EXPERIMENTAL SETUP

The above mentioned analytical model was computed

for the following set of values provided in Table 4.

Table 4. Simulation values

Hosts 10 50 100

λ 10 50 100

NC 10 50 100

Do 0.05 0.01 0.005

Dc 0.5 0.1 0.05

Parameters required for Recovery

M 72s 360s 720s

Ws 10s 10s 10s

Using above values, the following performance

parameters are computed:

i. Response time for heartbeat using eq (4).

ii. In case of a crash followed by recovery, total

time spent in recovery is computed using eq (8).

iii. From above calculated parameters, timeout

value in case of a crash followed by recovery is

computed from eq.(10).

The proposed model is implemented using CloudSim

plus [25], which is an event driven tool and closely

resembles distributed computing environment. Table 5

briefly describes basic terminologies used in our

simulation:

Table 5. Basic Terms

Terms Functionality

Broker
Resource management entity. Initiates tasks into

the system.

Datacenter Entity responsible for working of physical hosts.

Host Execution node where tasks are performed.

VM Virtualization level to emulate resource scaling.

Cloudlet Task to be executed by the system.

Following fig. 4 depicts the actual time of crash along

with the detected time for 10 hosts.

Fig.4. Detection time for each host

Blue cones in fig.4 represents time of occurrence of

failure, red indicates time when they are suspected, green

cones are for time of crash declaration whereas violet

ones are to indicate recovery. As is evident from fig. 4

there are no cases of false detection or missed detection,

since a blue cone precedes the red and green ones in all

the cases. Thus, ensuring that a failure is detected, in case,

it occurs. Further, the proposed algorithm has been

simulated when scaled to 50 and then 100 hosts. It has

been observed that completeness and accuracy is

preserved even after scaling of resources. Fig. 5 and fig. 6

illustrates the simulation results for 50 and 100 hosts

respectively. The occurrence of blue cones before red and

red cones before green in fig.5. and fig.6. indicates the

sequence of detection mechanism. Hence, a node is

suspected when failure occurs and is declared crashed

only if it fails to respond within timeout interval. Thus,

our algorithm satisfies preliminary requirements of

accuracy and completeness that is essential for any failure

detection mechanism.

Fig.5. Detection time for 50 hosts

0

200

400

600

800

1000

1 2 3 4 5 6 7 8 9 10

Ti
m

e

Host Id

Actually failed

Suspected

Crashed

Recovered

0

500

1000

1 5 9 131721 25 29 33 37 41 45 49

T
im

e

Host Id

Actually

failed
Suspected

Crashed

Recovered

 A Failure Detector for Crash Recovery Systems in Cloud 15

Copyright © 2019 MECS I.J. Information Technology and Computer Science, 2019, 7, 9-16

Fig.6. Detection time for 100 hosts

VIII. CONCLUSION

The proposed algorithm considers failure detection

problem in crash recoverable cloud nodes. We have

abstracted the recovery part though it uses an underlying

checkpointing mechanism. In simulation, we assumed

jobs having common service requirement however it can

also handle jobs with diverse service needs because we

have considered mixed multiclass BCMP networks

during experimentation. Secondly, in BCMP networks,

the response time does not merely reflect detection

latency rather it also includes recovery interval. Therefore,

our time out calculation is more realistic as well as

methodical and more importantly its value is minimal.

The algorithm satisfies safety as well as liveness

requirements. Our simulation results confirm that there is

no false detection. Furthermore, the latency beyond

timeout guarantees truthful fault detection. However, the

impact of inexplicable traffic burst on the precise fault

detection needs further investigation.

REFERENCES

[1] T.D.Chandra and S. Toueg, ―Unreliable failure detectors

for reliable distributed systems,‖ Journal of the ACM

(JACM), vol.43(2), pp. 225-267,1996.

[2] M. J. Fischer, N. A. Lynch and M. S. Paterson,

―Impossibility of distributed consensus with one faulty

process,‖ Journal of the ACM (JACM), vol. 32(2), pp.

374-382, 1985.

[3] M. Larrea, A. Fernández and S. Arévalo, ―Eventually

consistent failure detectors,‖ In Proceedings 10th

Euromicro Workshop on Parallel, Distributed and

Network-based Processing. IEEE, 2002.

[4] F. Baskett, K. Chandy, R. Muntz, and F. Palacios, ―Open,

Closed,and Mixed Networks of Queues with Different

Classes of Customers,‖ Journal of the ACM, vol. 22(2),

pp.248-260, 1975.

[5] A. O. Allen, ―Probability, Statistics, and Queuing Theory

with Computer Science Applications,‖ second edition,

Academic Press, Inc., Boston, Massachusetts, 1990.

[6] T. D. Chandra, V. Hadzilacos and S. Toueg, ―The weakest

failure detector for solving consensus,‖ Journal of the

ACM (JACM), vol.43(4), pp. 685-722, 1996.

[7] C. Dwork, N. Lynch and L. Stockmeyer, ―Consensus in

the presence of partial synchrony,‖ Journal of the ACM

(JACM), vol.35(2), pp.288-323, 1988.

[8] I. Gupta, T. D. Chandra and G. S. Goldszmidt, ―On

scalable and efficient distributed failure detectors,‖ In

Proceedings of the twentieth annual ACM symposium on

Principles of distributed computing, pp. 170-179, 2001.

[9] W. Chen, S. Toueg and M. K. Aguilera, ―On the quality of

service of failure detectors,‖ IEEE Transactions on

computers, 51(1), 13-32, 2002.

[10] M. K. Aguilera, S. Toueg and B. Deianov, ―Revisiting the

weakest failure detector for uniform reliable broadcast,‖

In Proceedings of the 13th International Symposium on

Distributed Computing, pp.19-33,1999.

[11] T. Ma, J. Hillston and S, Anderson, ―On the quality of

service of crash-recovery failure detectors‖, IEEE

Transactions on Dependable and Secure Computing,

vol.7(3), pp.271-283, 2010.

[12] N. Xiong, A.V. Vasilakos, J. Wu, Y.R. Yang, A. Rindos,

Y. Zhou, W. Song and Y. Pan, ―A self-tuning failure

detection scheme for cloud computing service,‖ In

Parallel & Distributed Processing Symposium (IPDPS),

pp. 668-679, 2012.

[13] R. C. Turchetti, E. P. Duarte, L. Arantes, and P. Sens, ―A

QoS-configurable failure detection service for internet

applications,‖ Journal of Internet Services and

Applications, vol.7(1), 2016.

[14] H. S. Pannu, J. Liu, Q. Guan and S. Fu, ―AFD: adaptive

failure detection system for cloud computing

infrastructures,‖ Performance Computing and

Communications Conference (IPCCC), IEEE, pp. 71‐80,

2012.

[15] F. Wang, H. Jin, D. Zou, and W. Qiang, ―A Quick and

Open Failure Detector for Cloud Computing System,‖ In

Proceedings of the International Conference on Computer

Science & Software Engineering, ACM, 2014.

[16] J. Liu, Z. Wu, J. Wu, J. Dong, Y. Zhao and D. Wen, ―A

Weibull distribution accrual failure detector for cloud

computing,‖ PloS one, vol.12(3), 2017.

[17] Cao, Jiajun, et al. ―Checkpointing as a service in

heterogeneous cloud environments,‖2015 15th

IEEE/ACM International Symposium on Cluster, Cloud

and Grid Computing. IEEE, 2015.

[18] S. K. Mondal, F. Machida, J. K. Muppala, ― Service

Reliability Enhancement in Cloud by Checkpointing and

Replication,‖ In Principles of Performance and

Reliability Modeling and Evaluation, Springer, pp. 425–

448, 2016.

[19] H. Amarasinghe, A. Jarray, and A. Karmouch, ―Fault-

tolerant IaaS management for networked cloud

infrastructure with SDN,‖ IEEE International

Conference on Communications (ICC). IEEE, 2017.

[20] C. Yang, X. Xu, K. Ramamohanrao and J. Chen, ―A

Scalable Multi-Data Sources based Recursive

Approximation Approach for Fast Error Recovery in Big

Sensing Data on Cloud,‖ IEEE Transactions on

Knowledge and Data Engineering, 2019.

[21] L. Luo, S. Meng, X. Qiu and Y. Dai, ―Improving Failure

Tolerance in Large-Scale Cloud Computing Systems,‖

IEEE Transactions on Reliability, 2019.

[22] Al-Sayed, Mustafa M., Sherif Khattab, and Fatma A.

Omara, ―Prediction mechanisms for monitoring state of

cloud resources using Markov chain model,‖ Journal of

Parallel and Distributed Computing, vol.96, pp. 163-

171, 2016.

[23] E. Lazowska, J. Zahorjan, G. Graham and K. Sevcik,

0

500

1000

1500

1

1
0

1
9

2
8

3
7

4
6

5
5

6
4

7
3

8
2

9
1

1
0
0

T
im

e

Host Id

Actually failed

Suspected

Crashed

Recovered

16 A Failure Detector for Crash Recovery Systems in Cloud

Copyright © 2019 MECS I.J. Information Technology and Computer Science, 2019, 7, 9-16

―Quantitative System Performance ~ Computer System

Analysis UsingQueueing Network Models,‖ Prentice-Hall,

1984.

[24] B. Sinha, A. K. Singh and P. Saini, ―Failure detectors for

crash faults in cloud,‖ Journal of Ambient Intelligence and

Humanized Computing, 2018.

[25] M. C. Silva Filho, R. L. Oliveira, C. C. Monteiro, Pedro.

R. M. Inacio, Manoel, ―CloudSim plus: a cloud

computing simulation framework pursuing software

engineering principles for improved modularity,

extensibility and correctness,‖ FIP/IEEE Symposium on

Integrated Network and Service Management (IM), IEEE,

2017.

Authors’ Profiles

Bharati Sinha received her Bachelor of

Technology (B.Tech.) degree in Computer

Science Engineering from Bhagalpur College

of Engineering, Bhagalpur, Bihar, India in

2010 and her M.Tech. from NIT Rourkela,

India in 2012. She joined as Assistant

Professor at the Department of Computer

Engineering (COE) at the National Institute of Technology,

Kurukshetra, India, in 2013 and is pursuing part-time Ph.D.

from the Department of Computer Engineering at National

Institute of Technology, Kurukshetra, India. Her research

interests include cloud computing and distributed systems.

Awadhesh Kumar Singh received his

Bachelor of Technology (B.Tech.) degree in

Computer Science from Madan Mohan

Malaviya University of Technology,

Gorakhpur, India, in 1988, and his MTech

and Ph.D. degrees in Computer Science from

Jadavpur University, Kolkata, India, in 1998

and 2004, respectively. He joined the Department of Computer

Engineering at the National Institute of Technology,

Kurukshetra, India, in 1991, where he is presently a Professor.

Earlier, he also served as head of the Computer Engineering

Department during 2007–2009 and 2013–2015. His research

interests include distributed algorithms, mobile computing and

radio networks.

Poonam Saini received her Ph.D. degree in

Computer Engineering from National

Institute of Technology, Kurukshetra, India

in 2013 and M.Tech from UIET,

Kurukshetra University, Kurukshetra, India

in 2006. She has received B. Tech. in

Information Technology from Kurukshetra

University, Kurukshetra, India in 2003.

She is currently working as Assistant Professor in Computer

Science and Engineering at PEC University of Technology

(formerly Punjab Engineering College), Chandigarh, India. Her

research interest includes Fault-Tolerant Distributed Computing

Systems, Mobile Computing, Ad hoc Networks, Wireless

Sensors Networks, Cloud Computing and Security.

How to cite this paper: Bharati Sinha, Awadhesh Kumar Singh,

Poonam Saini, "A Failure Detector for Crash Recovery Systems

in Cloud", International Journal of Information Technology and

Computer Science(IJITCS), Vol.11, No.7, pp.9-16, 2019. DOI:

10.5815/ijitcs.2019.07.02

