
I.J. Information Technology and Computer Science, 2019, 7, 35-42
Published Online July 2019 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2019.07.05

Copyright © 2019 MECS I.J. Information Technology and Computer Science, 2019, 7, 35-42

Evaluating and Comparing Size, Complexity and

Coupling Metrics as Web Applications

Vulnerabilities Predictors

Mohammed Zagane
University of Oran 1 Ahmed Ben Bella, Oran, Algeria

E-mail: m_zagane@esi.dz

Mustapha Kamel Abdi
University of Oran 1 Ahmed Ben Bella, Oran, Algeria

E-mail: abdimk@yahoo.fr

Received: 20 March 2019; Accepted: 21 April 2019; Published: 08 July 2019

Abstract—Most security and privacy issues in software

are related to exploiting code vulnerabilities. Many

studies have tried to find the correlation between the

software characteristics (complexity, coupling, etc.)

quantified by corresponding code metrics and its

vulnerabilities and to propose automatic prediction

models that help developers locate vulnerable

components to minimize maintenance costs. The results

obtained by these studies cannot be applied directly to

web applications because a web application differs in

many ways from a non-web application: development,

use, etc. and a lot of evaluation of these conclusions has

to be made. The purpose of this study is to evaluate and

compare the vulnerabilities prediction power of three

types of code metrics in web applications. There are a

few similar studies that targeted non-web application and

to the best of our knowledge, there are no similar studies

that targeted web applications. The results obtained show

that unlike non-web applications where complexity

metrics have better vulnerability prediction power, in web

applications the metrics that give better prediction are the

coupling metrics with high recall (> 75%) and fewer

costs in terms of inspection (<25%).

Index Terms—Software Vulnerability, Web Application

Security, Information Privacy, Code Metrics, Prediction

Models, Machine Learning, Software Engineering.

I. INTRODUCTION

Automatic software vulnerabilities prediction

minimizes costs and time related to finding and fixing

vulnerabilities. It allows developers to focus their efforts

on most likely vulnerable components. The utility of this

type of prediction becomes necessary when working on

web application, because of its massive use and its online

availability which facilitates the exploitation of its

vulnerabilities.

A software vulnerability is a specific type of software

defect that affects the information security of a software

system. Therefore, defect prediction methods and

approaches are also used to predict vulnerabilities, one of

these methods is using software metrics as indicators of

vulnerabilities, a largely used approach consists in

dealing with the prediction problem as a binary

classification problem where software metrics are used as

training data to build prediction models based on

supervised classification algorithms.

Code metrics are used to quantify some software

features such as size, coupling, and complexity.

Analyzing these code metrics and other categories of

software metrics such as project, process and developer

metrics, allows developers to control the development

process as well as the quality of the software. Several

research works [1-5] have proven through empirical

studies the correlation between code metrics and

vulnerabilities and reported that prediction models built

using code metrics can perfectly indicate vulnerable

components in software projects.

Datasets used to build and evaluate these prediction

models are collected from previous versions of the

studied software; they contain code metrics of each

source file and information about its vulnerabilities if

there are any. In cross-project prediction approach [3,6,7],

datasets collected from other software are used; this type

of prediction is useful when studying new software that

does not have earlier versions or sufficient data on their

vulnerabilities.

Knowing which type of code metrics that give good

prediction results is very necessary to improve the quality

of learning data and consequently the performance of the

prediction models, it also helps to minimize the size of

datasets by leaving only the useful metrics that give good

prediction results. In the field of defect prediction, many

studies targeted this problem and compared the prediction

power of a wide range of software metrics such as [8]

where researchers found that even after having removed

85% of the studied metrics, the performance of the

prediction models was not affected.

36 Evaluating and Comparing Size, Complexity and Coupling Metrics as Web Applications Vulnerabilities Predictors

Copyright © 2019 MECS I.J. Information Technology and Computer Science, 2019, 7, 35-42

In the field of vulnerabilities prediction, a few studies

began comparing models built using different code and

software metrics types. To the best of our knowledge, all

of these studies have addressed non-web applications

which differ in many ways from web applications.

Therefore, the conclusions of these studies cannot be

applied to the web application without further

investigation, and many studies have to be carried out in

this topic that still remains under-researched.

In this empirical study, we aim to fill the gap in this

topic. We evaluate and compare the vulnerability

prediction power of three major types of code metrics

(size, complexity and coupling) in web application

written in PHP which represents the most used

programming language in developing this type of

application. We use a high-quality dataset collected from

three well-known and open source projects, several

machine learning algorithms and a different comparison

approach.

This paper is organized around the following sections:

Section 2 presents the related work, Section 3 presents

the research questions and hypotheses, Section 4

describes the approach adopted and the methodology

followed to carry out the study, Section 5 presents the

experimentations and discusses the obtained results,

Section 6 presents the limitations and threat to validity,

Section 7 summarizes the work done in this study and

indicates some perspectives.

II. RELATED WORKS

A software vulnerability is a specific type of software

defect that affects information security and privacy in a

software system after successful exploitation by attackers.

Therefore, techniques used for defect prediction are also

used for vulnerability prediction.

 Studying vulnerability prediction cannot be made

without addressing the defect prediction. In this section,

we begin by presenting related works on the defect

prediction and then present the works on vulnerability

prediction.

The number of related study on defect and

vulnerability prediction is very large. For the sake of

brevity, we only refer to the most relevant related studies

that used code and software metrics as defect and

vulnerability indicators.

A. Defects Prediction

Many research works have used code metrics for

defects prediction. In [9] researchers used classic code

metrics: Line of code metrics, McCabe metrics [10] and

Halstead metrics [11] for defect prediction. To train and

evaluate prediction models, they used NASA's MDP

(Metrics Data Program) available with other datasets of

other projects in the PCR (Promise Code Repository) [12],

the predictors used were: OneR, J48 and naive Bayes.

Researchers reported that they were able to predict over

71% of vulnerable files with less than 25% of negative

prediction.

In [7] authors addressed several aspects of defect

prediction, they did two types of analysis, the first one

was a cross-project prediction, where the MDP dataset

was used to learn a k-nearest neighbour predictor, which

was then validated using data collected from 25 major

software projects of a telecommunication company. In

addition to classic code metrics available in the MDP

dataset, they also studied call graphs based metrics

CGBR (Call Graph-Based Rankin) [13], FanIn, FanOut

and other metrics. They reported that the positive

prediction rate was 15% using classic metrics and 70%

using call graph based metrics. In the second analysis

they studied defect prediction using decision rules based

on recommended intervals for each metric, authors

reported that the results obtained by this second analysis

were 14% of positive prediction.

Authors in [8] studied the selection of metrics to define

a relevant set of metrics that give a better defects

prediction. They did a comparative study to evaluate their

proposed selection approach. In that hybrid approach,

they started by reducing the search space using feature

ranking techniques. Then used several sub-feature

selection techniques. Algorithms of both methods were

evaluated and compared. Authors reported that even after

removing 85% of studied metrics, the performances of

the defect prediction models were not affected.

B. Vulnerabilities Prediction

The success of prediction methods that use code

metrics as defects indicators has encouraged researchers

to use these approaches for vulnerabilities prediction.

Authors in [13] did a study to determine if VPMs

(Vulnerability Prediction Models) are accurate and

provide relevant recommendations when allocating

maintenance resources. They used several statistical

learning models: LR, NB, RF, RP, SVM, TB, applied on

two versions of the Windows operating system (Windows

7 and Windows 8). Based on the obtained results, the

authors concluded that VPMs need to be refined by using

security-specific metrics.

Authors in [1] also reported that it is difficult to build

good VPMs using limited data on vulnerabilities, in their

study they used a dataset extracted from the NVD

(National Vulnerability Database).

This lack of data on vulnerabilities, motivated

researchers to provide datasets that can be used to

develop and test VPMs. Authors in [2] proposed a public

dataset contains data (code metrics and text mining data)

of 223 vulnerabilities found in three major open source

web applications: Moodle, Drupal and PHPMyAdmin.

They also used this dataset to compare and evaluate

VPMs based on code metrics and text mining. They

reported that models built using text mining are better

than models built using code metrics. They invited the

research community to use this dataset to evaluate more

VPMs. Indeed, Alenezi and Abunadi in [3,4] used the

dataset proposed in [2] to evaluate several VPMs based

on code metrics and cross-project prediction, they

reported that code metrics are good indicators of web

application vulnerabilities.

 Evaluating and Comparing Size, Complexity and Coupling Metrics as Web Applications Vulnerabilities Predictors 37

Copyright © 2019 MECS I.J. Information Technology and Computer Science, 2019, 7, 35-42

Authors in [14] also used this dataset to develop a

software vulnerability prediction web service based on

deep learning. In this study, we used a dataset extracted

from this dataset to compare the vulnerabilities prediction

power of three types of code metrics (size, complexity

and coupling).

In [15] authors compared the vulnerability prediction

power of complexity, code churn, and developer activity

metrics; they used data from two open source project:

Mozilla Firefox and Linux kernel. Authors in [5]

compared the predictability power of complexity,

coupling and a newly proposed set of coupling metrics,

they used data collected from several open source

software: Apache Tomcat, Eclipse, Mozilla Firefox and

Linux kernel. In both studies [5, 15] that compared

vulnerabilities prediction power of several code metrics

types and focused on non-web applications, it was

concluded that complexity metrics have better correlation

with vulnerabilities than other types of code metrics. To

the best of our knowledge, there are no similar studies

that compared the predictability power of code metrics

types in web application written in PHP and the study

presented in this paper is the first study that focuses on

this subject.

Authors in [16] and as part of their study, they

theoretically examined and reviewed the most significant

attempts in the vulnerability prediction models (VPMs)

mechanisms. The work done, represents a good reference

to gain a solid understanding of existing solutions in the

field of vulnerabilities prediction.

III. RESEARCH QUESTIONS AND HYPOTHESES

In this section, we present the research questions

related to our study and propose the hypotheses.

A. Research Questions

Researchers who did similar studies that compared the

predictability power of code metrics types in non-web

application [5,15,17] validated the hypothesis according

to which the complexity of the code is the cause of most

security problems in software. They concluded that

complexity metrics are stronger vulnerability predictors

than other types of metrics.

Based on the results reported in these studies and the

fact that web applications are different in many ways

from non-web applications: online availability,

programming languages, the execution context, etc.

We formulate the following research questions:

 Question 1: Like non-web applications, are

complexity metrics the best indicators of

vulnerabilities in web applications written in PHP

than other metrics types?

 Question 2: If not, what is the metrics type (Size

or Coupling) that can give a better vulnerability

prediction in web applications written in PHP?

B. Hypothesises

 Hypothesis 1: As in non-web applications, code

complexity is the major cause of vulnerabilities in

web applications written in PHP, and complexity

metrics are the best indicators of web applications

vulnerabilities than coupling and size metrics.

 Hypothesis 2: Large modules are more likely to

be vulnerable and size metrics are the most

powerful in predicting vulnerabilities in web

applications written in PHP.

 Hypothesis 3: High coupling is the source of the

vulnerabilities and the coupling metrics are the

best indicators of vulnerabilities in web

applications written in PHP.

IV. APPROACH AND METHODOLOGY

To answer the research question, we did an empirical

study. This section present the approach adopted and the

methodology followed to carry out this study.

A. Approach

To carry out this study and answer the research

questions asked in the previous section, we have adopted

an approach widely used in the previous works in the

field of defects and vulnerabilities prediction. In this

approach, the prediction problem is treated as a problem

of supervised binary classification [18].

For each of the three applications: Drupal,

PHPMyAdmin and Moodle, all files containing PHP

source code were retained and labelled as either

“vulnerable” or “clean”. The vulnerability status of a file

is the dependent variable. Independent variables are the

code metrics (fan-in, fan-out, lines of code,...) [2]. All

these information were collected in a dataset witch it’s

used to train and validate prediction models based on

supervised classification algorithms(Figure 1).

Fig.1. Approach adopted.

38 Evaluating and Comparing Size, Complexity and Coupling Metrics as Web Applications Vulnerabilities Predictors

Copyright © 2019 MECS I.J. Information Technology and Computer Science, 2019, 7, 35-42

a. Comparison Approach

Previous vulnerabilities prediction studies [2-4, 14]

that targeted web applications and used the same dataset,

evaluated models built using a single type of data

(metrics) and different machine learning algorithms and

techniques.

In this paper, we propose a different comparison

approach. In our approach, we focus on comparing

models built using several types of data (metrics). For

completeness, we use several machine learning

algorithms. However, this is not used to draw conclusions

in the comparison.

To the best of our knowledge, we are the first to

investigate this comparison approach in the field of web

application vulnerabilities prediction.

B. Methodology

In this subsection, we present the methodology

followed to carry out the study:

 Preparation of the data set,

 Construction of the prediction models,

 Evaluation of the prediction power of each model.

a. Preparation of the Dataset

To learn and validate the prediction models, we

extracted a dataset from the dataset developed by [2],

this dataset was already used in several previous studies

[2–4,14]. It is a hand-curated dataset with a size of over

than 3480 instances. It is built from three large open

source web applications: Moodle, Drupal and

PHPMyAdmin. A well known and largely used set of

code metrics were added to this dataset :

 Lines of code,

 Lines of code non-HTML,

 Number of functions,

 Cyclomatic complexity,

 Maximum nesting complexity,

 Halstead’s volume,

 Total external calls,

 Fan-in,

 Fan-out,

 Internal functions or methods called,

 External functions or methods called,

 External calls to functions or methods.

The nature of this comparative study has forced us to

modify this dataset to prepare a version that meets our

needs. For this, we have done the steps shown in Figure 2

and described in the following paragraphs.

 Combination of all projects data: To increase

the number of instances, which give the models a

lot to learn about the characteristics of PHP files

[3], we combined the data of the three projects into

one set.

 Reorganization of Data: this step consists of

reorganizing and distributing the data in three

parts (files). Each part contains data for a

particular type of metrics: size, complexity, and

coupling as shown in Table1.

Fig.2. Preparation of the dataset

 Evaluating and Comparing Size, Complexity and Coupling Metrics as Web Applications Vulnerabilities Predictors 39

Copyright © 2019 MECS I.J. Information Technology and Computer Science, 2019, 7, 35-42

Table 1. Code metrics types

Category Metrics

Size

M1: Lines of code (LOC)

M2: Lines of code (non-HTML)

M3: Number of functions

Complexity

M4: Cyclomatic complexity

M5: Maximum nesting complexity

M6: Halstead’s volume

Coupling

M7: Total external calls

M8: Fan-in

M9: Fan-out

M10: Internal functions or methods called

M11: External functions or methods called

M12: External calls to functions or methods

b. Prediction Models Construction

To construct prediction models, we used and compared

three well-known algorithms: KNN, Random forest and

Decision Trees. We used the cross-validation technique

used and well described in [2] to learn and validate the

prediction models. In this standard technique, instances

are randomly divided into folds of equal size. Iteratively,

each fold is retained as the testing set. That is, a

prediction model is built starting from the samples in the

other folds (training set), and the model is used to predict

the class of the files in the testing set.

c. Performance Evaluation

The prediction result of a model can be one of four

cases: True Positive (if a vulnerable file is predicted as

vulnerable by the model), True Negative (if a clean file is

predicted as clean by the model), False Positive (if a

clean file is predicted as vulnerable by the model), False

Negative (if a vulnerable file is predicted as clean by the

model).

From the TP, TN, FP, and FN we can calculate several

measures that can be used to evaluate the prediction

performance of each model. We used four well-known

performance indicators and widely used in the field of

security [2]:

 Recall: this indicator gives the percentage of

vulnerable files that are correctly classified by the

model.

TP
Recall= *100

TP+FN
 (1)

 Inspection: Provides an indication of the cost of

the percentage of files that must be inspected to

find the TPs identified by the model.

TP+FP
Inspection= *100

TP+TN+FP+FN
 (2)

 FP Rate: The false positive rate measures the

percentage of misclassification positive among the

real negatives.

FP
FP Rate = *100

FP+TN
 (3)

 FN Rate: The false negative rate measures the

percentage of negatives that are falsely classified

as real positives.

FN
FN Rate = *100

FN+TP
 (4)

V. EXPERIMENTS AND RESULTS DISCUSSION

In this section, we present the experiments carried out

as part of this study and discuss the obtained results.

A. Experiments

The objective of this study is to compare the

vulnerabilities prediction power of three types of code

metrics: size, complexity, and coupling in web

application. Experiments were performed as follow: we

built three prediction models, the first using size metrics,

the second using complexity metrics and the third using

coupling metrics. Then, the performances of these models

are compared considering four performance indicators:

recall, inspection, FP rate and FN rate. We repeated this

using three well-known classification algorithms: KNN,

Random forest and Decision Trees.

The experiments are carried out using Weka [18, 19]

version 3.8.1 for building and validating the prediction

models and R [20] version 3.4.3 for calculating the

performance indicators. We took shell scripts (.sh files)

provided in the replication dataset available in [21] and

provided by [2]. We modified these scripts, to adapt them

to the objectives of our study.

B. Results and Discussion

Table 2 shows a comparison of the results of the three

types of code metrics (size, complexity and coupling)

using three different classification algorithms (RF, TREE

and KNN). The comparison can be made considering four

performance indicators (Recall: the higher the better,

while Inspection, FP rate and FN rate: the lower the

better).

As can be seen and contrary to what we expected in

hypothesis 1 and hypothesis 2, the best prediction

performances were not given by the complexity metrics,

nor by the size metrics. In fact, coupling metrics achieved

the best performance in all performance indicators using

RF and KNN, the Recall was higher (RF: +8%, +11%;

KNN: +4%, +7%) compared to the complexity metrics

and size metrics respectively. The Inspection was lower

(RF: -12%, -10%; KNN: -9%, -3%) and the same for the

two other indicators : lower FP Rate (RF: -12%, -10%;

KNN: -8%, -3%), lower FN Rate (RF: -8%, -11%; KNN:

-4%, -7%). Coupling metrics also achieved the best value

in Inspection, FP Rate and FN Rate using TREE.

40 Evaluating and Comparing Size, Complexity and Coupling Metrics as Web Applications Vulnerabilities Predictors

Copyright © 2019 MECS I.J. Information Technology and Computer Science, 2019, 7, 35-42

Complexity metrics achieved the best value only in

Recall using TREE (+5) compared to the coupling

metrics, and in some other cases compared to the size

metrics.

Table 2. Results obtained (Performance indicators)

 Metrics Recall (%) Inspection (%) FPR (%) FNR (%)

Random Forest

Size 67 34 33 33

Complexity 70 36 35 30

Coupling 78 24 23 22

Decision Tree

Size 63 25 24 37

Complexity 78 39 38 22

Coupling 73 25 24 27

KNN

Size 65 27 26 35

Complexity 68 33 31 32

Coupling 72 24 23 28

Table 3. Additional performance indicators

 Metrics Precision (%) Accuracy (%)

Random Forest

Size 6 67

Complexity 6 66

Coupling 10 77

Decision Tree

Size 8 75

Complexity 7 63

Coupling 10 76

KNN

Size 8 74

Complexity 7 69

Coupling 10 77

In related work, often additional performance

indicators (precision, accuracy) are reported. For the sake

of completeness, in Table 3 these two additional

indicators are reported. As can be seen, coupling metrics

also achieved the best values in precision and accuracy

with the three used classifiers. On average, we did not

observe major differences between the values obtained by

complexity metrics and size metrics in precision. In the

accuracy, size metrics did better than complexity metrics.

We also tested the potential for using a model built

using data combined from complexity and size metrics.

The results obtained by this model are reported in Table 4.

We can observe an improvement in performance

compared to complexity metrics or size metrics alone.

However, its performance still low than the performance

of coupling metrics alone.

Table 4. Results obtained by combinng complexity and size metrics

 Metrics Recall Inspection FP Rate FN Rate

Random

Forest
Complexity + Size 72% 31% 30% 28%

Decision

Tree
Complexity + Size 70% 34% 33% 30%

KNN Complexity + Size 68% 30% 29% 32%

The results obtained in this empirical study that used a

dataset collected from three popular and open source web

applications, allow us to validate hypothesis 3 and

conclude that: coupling metrics are the best indicators of

vulnerabilities in web applications written in PHP than

complexity and size metrics.

We can interpret these results as follows: web

applications differ in many ways from other types of

applications: online availability, programming languages,

execution context, etc., that's why a type of metrics

cannot give the same prediction performance in web

applications as in other types of applications. The

dynamic nature of dependencies in PHP and a high

coupling increase the complexity of the code which is the

enemy of security in software as it reported in previous

studies; it also increases the effect of vulnerable code and

its execution potential. In addition, a lot of vulnerabilities

in web applications written in PHP are related to the

misuse of inclusion statements like include, which is also

a sign of coupling.

 Evaluating and Comparing Size, Complexity and Coupling Metrics as Web Applications Vulnerabilities Predictors 41

Copyright © 2019 MECS I.J. Information Technology and Computer Science, 2019, 7, 35-42

VI. LIMITATIONS AND THREATS TO VALIDITY

In this study, we used a dataset extracted from a dataset

proposed by [2] and already used in several previous

studies [2-4, 14]. Since all the steps of experiments and

especially the steps of preparing the modified dataset

were well-explained and the original dataset is publicly

available [21] we believe that our results are credible and

can be reproduced.

This study concerned web application written in the

PHP programming language. We cannot say whether

these results generalize outside of all web application

(including those which are written in other languages).

In this study, we explored three well-known and major

types of code metrics: complexity, size and coupling.

However, other types of code and software metrics

should be considered in future work.

VII. CONCLUSIONS

In this study, we evaluated and compared the

vulnerabilities prediction power of three types of code

metrics (size, complexity, and coupling) in web

applications written in PHP. We used a dataset collected

from three major and open source applications (Moodle,

Drupal and PHPMyAdmin). We treated the prediction

problem as a binary supervised classification problem.

Three well-known classifiers (RF, TREE and KNN) are

used to build prediction models, which evaluated using

cross-validation technique and considering several

performance indicators.

The results showed that unlike other types of

applications where complexity metrics are the best

indicators of vulnerabilities, the coupling metrics

achieved the best performance than complexity metrics

and size metrics.

As we said in limitation and threats to validity section,

we used a well-known and widely used set of code

metrics in this empirical study. However, the future work

will be devoted to other similar studies on other systems

considering other types of metrics and using advanced

techniques of deep learning.

REFERENCES

[1] S. Zhang, D. Caragea, and X. Ou, “An empirical study on

using the national vulnerability database to predict

software vulnerabilities,” Lect. Notes Comput. Sci.

(including Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics), vol. 6860 LNCS, no. PART 1, pp. 217–

231, 2011.

[2] J. Walden, J. Stuckman, and R. Scandariato, “Predicting

vulnerable components: Software metrics vs text mining,”

Proc. - Int. Symp. Softw. Reliab. Eng. ISSRE, pp. 23–33,

2014.

[3] M. Alenezi and I. Abunadi, “Evaluating software metrics

as predictors of software vulnerabilities,” Int. J. Secur. its

Appl., vol. 9, no. 10, pp. 231–240, 2015.

[4] I. Abunadi and M. Alenezi, “Towards Cross Project

Vulnerability Prediction in Open Source Web

Applications,” in Proceedings of the The International

Conference on Engineering & MIS 2015 - ICEMIS ’15,

2015, pp. 1–5.

[5] S. Moshtari and A. Sami, “Evaluating and comparing

complexity, coupling and a new proposed set of coupling

metrics in cross-project vulnerability prediction,” in

Proceedings of the 31st Annual ACM Symposium on

Applied Computing - SAC ’16, 2016, pp. 1415–1421.

[6] B. Turhan, A. Bener, and T. Menzies, “Nearest neighbor

sampling for cross company defect predictors,” in

Proceedings of the 1st International Workshop on Defects

in Large Software Systems (DEFECTS’08), 2008, p. 26.

[7] B. Turhan, G. Kocak, and A. Bener, “Data mining source

code for locating software bugs: A case study in

telecommunication industry,” Expert Syst. Appl., vol. 36,

no. 6, pp. 9986–9990, 2009.

[8] K. Gao, T. M. Khoshgoftaar, H. Wang, and N. Seliya,

“Choosing software metrics for defect prediction: an

investigation on feature selection techniques,” Softw.

Pract. Exp., vol. 41, no. 5, pp. 579–606, Apr. 2011.

[9] T. Menzies, J. Greenwald, and A. Frank, “Data Mining

Static Code Attributes to Learn Defect Predictors,” IEEE

Trans. Softw. Eng., vol. 33, no. 1, pp. 2–14, 2007.

[10] H. Watson, T. J. McCabe, and D. R. Wallace, “Structured

Testing: A Testing Methodology Using the Cyclomatic

Complexity Metric,” NIST Spec. Publ., pp. 1–114, 1996.

[11] V. Y. Shen, S. D. Conte, and H. E. Dunsmore, “Software

Science Revisited: A Critical Analysis of the Theory and

Its Empirical Support,” IEEE Trans. Softw. Eng., vol. SE-

9, no. 2, pp. 155–165, 1983.

[12] “Promise software engineering repository.”

[online]http://promise.site.uottawa.ca/SERepository/datas

ets-page.html (Accessed 20 July 2018).

[13] P. Morrison, K. Herzig, B. Murphy, and L. Williams,

“Challenges with applying vulnerability prediction

models,” in Proceedings of the 2015 Symposium and

Bootcamp on the Science of Security - HotSoS ’15, 2015,

vol. 14, no. 2, pp. 1–9.

[14] C. Catal, A. Akbulut, E. Ekenoglu, and M. Alemdaroglu,

“Development of a Software Vulnerability Prediction

Web Service Based on Artificial Neural Networks,” in

Pacific-Asia Conference on Knowledge Discovery and

Data Mining, 2017, pp. 59–67.

[15] Y. Shin, A. Meneely, L. Williams, and J. A. Osborne,

“Evaluating complexity, code churn, and developer

activity metrics as indicators of software vulnerabilities,”

IEEE Trans. Softw. Eng., vol. 37, no. 6, pp. 772–787,

2011.

[16] M. Siavvas, E. Gelenbe, D. Kehagias, and D. Tzovaras,

“Static analysis-based approaches for secure software

development,” Commun. Comput. Inf. Sci., vol. 821, no.

April, pp. 142–157, 2018.

[17] Y. Shin and L. Williams, “An empirical model to predict

security vulnerabilities using code complexity metrics,” in

Proceedings of the Second ACM-IEEE international

symposium on Empirical software engineering and

measurement - ESEM ’08, 2008, p. 315.

[18] A. Nakra, “Comparative Analysis of Bayes Net Classifier ,

Naive Bayes Classifier and Combination of both

Classifiers using WEKA,” I.J. Inf. Technol. Comput. Sci.,

vol. 11, no. March, pp. 38–45, 2019.

[19] G. Holmes, A. Donkin, and I. H. Witten, “WEKA: a

machine learning workbench,” in Proceedings of

ANZIIS ’94 - Australian New Zealnd Intelligent

Information Systems Conference, pp. 357–361.

[20] R. Ihaka and R. Gentleman, “R: A Language for Data

Analysis and Graphics,” J. Comput. Graph. Stat., vol. 5,

no. 3, p. 299, Sep. 1996.

42 Evaluating and Comparing Size, Complexity and Coupling Metrics as Web Applications Vulnerabilities Predictors

Copyright © 2019 MECS I.J. Information Technology and Computer Science, 2019, 7, 35-42

[21] “Vulnerability dataset.” [online]

http://seam.cs.umd.edu/webvuldata (Accessed 01 July

2018).

Authors’ Profiles

Mohammed Zagane Holds a magister

degree in computer science from the higher

school of computer science, Algiers, Algeria.

He is currently, assistant professor for the

computer science department at Mascara

University, Mascara, Algeria, and researcher

in RIIR laboratory at University of Oran 1

Ahmed Ben Bella, Oran, Algeria. His research interests include:

software engineering, computer security, machine and deep

learning.

Mustapha Kamel Abdi: Holds a master

degree and a PhD degree in computer science

from Department of Computer Science at the

Oran 1 University, Algeria. He is currently,

professor for the same Department, and

researcher in RIIR laboratory. His research

interests include the application of artificial

intelligence techniques to software engineering, software

quality, software evolution, formal specification, Systems

analysis and simulations, Data-Mining and Information

Research.

How to cite this paper: Mohammed Zagane, Mustapha Kamel

Abdi, "Evaluating and Comparing Size, Complexity and

Coupling Metrics as Web Applications Vulnerabilities

Predictors", International Journal of Information Technology

and Computer Science(IJITCS), Vol.11, No.7, pp.35-42, 2019.

DOI: 10.5815/ijitcs.2019.07.05

