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Abstract—Most security and privacy issues in software 

are related to exploiting code vulnerabilities. Many 

studies have tried to find the correlation between the 

software characteristics (complexity, coupling, etc.) 

quantified by corresponding code metrics and its 

vulnerabilities and to propose automatic prediction 

models that help developers locate vulnerable 

components to minimize maintenance costs. The results 

obtained by these studies cannot be applied directly to 

web applications because a web application differs in 

many ways from a non-web application: development, 

use, etc. and a lot of evaluation of these conclusions has 

to be made. The purpose of this study is to evaluate and 

compare the vulnerabilities prediction power of three 

types of code metrics in web applications.  There are a 

few similar studies that targeted non-web application and 

to the best of our knowledge, there are no similar studies 

that targeted web applications. The results obtained show 

that unlike non-web applications where complexity 

metrics have better vulnerability prediction power, in web 

applications the metrics that give better prediction are the 

coupling metrics with high recall (> 75%) and fewer 

costs in terms of inspection (<25%). 

 

Index Terms—Software Vulnerability, Web Application 

Security, Information Privacy, Code Metrics, Prediction 

Models, Machine Learning, Software Engineering. 

 

I.  INTRODUCTION 

Automatic software vulnerabilities prediction 

minimizes costs and time related to finding and fixing 

vulnerabilities. It allows developers to focus their efforts 

on most likely vulnerable components. The utility of this 

type of prediction becomes necessary when working on 

web application, because of its massive use and its online 

availability which facilitates the exploitation of its 

vulnerabilities.  

A software vulnerability is a specific type of software 

defect that affects the information security of a software 

system. Therefore, defect prediction methods and 

approaches are also used to predict vulnerabilities, one of 

these methods is using software metrics as indicators of 

vulnerabilities, a largely used approach consists in 

dealing with the prediction problem as a binary 

classification problem where software metrics are used as 

training data to build prediction models based on 

supervised classification algorithms.  

Code metrics are used to quantify some software 

features such as size, coupling, and complexity. 

Analyzing these code metrics and other categories of 

software metrics such as project, process and developer 

metrics, allows developers to control the development 

process as well as the quality of the software. Several 

research works [1-5] have proven through empirical 

studies the correlation between code metrics and 

vulnerabilities and reported that prediction models built 

using code metrics can perfectly indicate vulnerable 

components in software projects.  

Datasets used to build and evaluate these prediction 

models are collected from previous versions of the 

studied software; they contain code metrics of each 

source file and information about its vulnerabilities if 

there are any. In cross-project prediction approach [3,6,7], 

datasets collected from other software are used; this type 

of prediction is useful when studying new software that 

does not have earlier versions or sufficient data on their 

vulnerabilities.  

Knowing which type of code metrics that give good 

prediction results is very necessary to improve the quality 

of learning data and consequently the performance of the 

prediction models, it also helps to minimize the size of 

datasets by leaving only the useful metrics that give good 

prediction results. In the field of defect prediction, many 

studies targeted this problem and compared the prediction 

power of a wide range of software metrics such as [8] 

where researchers found that even after having removed 

85% of the studied metrics, the performance of the 

prediction models was not affected. 
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In the field of vulnerabilities prediction, a few studies 

began comparing models built using different code and 

software metrics types. To the best of our knowledge, all 

of these studies have addressed non-web applications 

which differ in many ways from web applications. 

Therefore, the conclusions of these studies cannot be 

applied to the web application without further 

investigation, and many studies have to be carried out in 

this topic that still remains under-researched.  

In this empirical study, we aim to fill the gap in this 

topic. We evaluate and compare the vulnerability 

prediction power of three major types of code metrics 

(size, complexity and coupling) in web application 

written in PHP which represents the most used 

programming language in developing this type of 

application. We use a high-quality dataset collected from 

three well-known and open source projects, several 

machine learning algorithms and a different comparison 

approach. 

This paper is organized around the following sections: 

Section 2 presents the related work, Section 3 presents 

the research questions and hypotheses, Section 4 

describes the approach adopted and the methodology 

followed to carry out the study, Section 5 presents the 

experimentations and discusses the obtained results, 

Section 6 presents the limitations and threat to validity, 

Section 7 summarizes the work done in this study and 

indicates some perspectives.  
 

II.  RELATED WORKS 

A software vulnerability is a specific type of software 

defect that affects information security and privacy in a 

software system after successful exploitation by attackers. 

Therefore, techniques used for defect prediction are also 

used for vulnerability prediction. 

 Studying vulnerability prediction cannot be made 

without addressing the defect prediction. In this section, 

we begin by presenting related works on the defect 

prediction and then present the works on vulnerability 

prediction. 

The number of related study on defect and 

vulnerability prediction is very large. For the sake of 

brevity, we only refer to the most relevant related studies 

that used code and software metrics as defect and 

vulnerability indicators. 

A.  Defects Prediction 

Many research works have used code metrics for 

defects prediction. In [9] researchers used classic code 

metrics: Line of code metrics, McCabe metrics [10] and  

Halstead metrics [11] for defect prediction. To train and 

evaluate prediction models, they used NASA's MDP 

(Metrics Data Program) available with other datasets of 

other projects in the PCR (Promise Code Repository) [12], 

the predictors used were: OneR, J48 and naive Bayes. 

Researchers reported that they were able to predict over 

71% of vulnerable files with less than 25% of negative 

prediction.  

 

In [7] authors addressed several aspects of defect 

prediction, they did two types of analysis, the first one 

was a cross-project prediction, where the MDP dataset 

was used to learn a k-nearest neighbour predictor, which 

was then validated using data collected from 25 major 

software projects of a telecommunication company. In 

addition to classic code metrics available in the MDP 

dataset, they also studied call graphs based metrics 

CGBR (Call Graph-Based Rankin) [13], FanIn, FanOut 

and other metrics. They reported that the positive 

prediction rate was 15% using classic metrics and 70% 

using call graph based metrics. In the second analysis 

they studied defect prediction using decision rules based 

on recommended intervals for each metric, authors 

reported that the results obtained by this second analysis 

were 14% of positive prediction.  

Authors in [8] studied the selection of metrics to define 

a relevant set of metrics that give a better defects 

prediction. They did a comparative study to evaluate their 

proposed selection approach. In that hybrid approach, 

they started by reducing the search space using feature 

ranking techniques. Then used several sub-feature 

selection techniques. Algorithms of both methods were 

evaluated and compared. Authors reported that even after 

removing 85% of studied metrics, the performances of 

the defect prediction models were not affected.  

B.  Vulnerabilities Prediction 

The success of prediction methods that use code 

metrics as defects indicators has encouraged researchers 

to use these approaches for vulnerabilities prediction. 

Authors in [13] did a study to determine if VPMs 

(Vulnerability Prediction Models) are accurate and 

provide relevant recommendations when allocating 

maintenance resources. They used several statistical 

learning models: LR, NB, RF, RP, SVM, TB, applied on 

two versions of the Windows operating system (Windows 

7 and Windows 8). Based on the obtained results, the 

authors concluded that VPMs need to be refined by using 

security-specific metrics.  

Authors in [1] also reported that it is difficult to build 

good VPMs using limited data on vulnerabilities, in their 

study they used a dataset extracted from the NVD 

(National Vulnerability Database).  

This lack of data on vulnerabilities, motivated 

researchers to provide datasets that can be used to 

develop and test VPMs. Authors in [2] proposed a public 

dataset contains data (code metrics and text mining data) 

of 223 vulnerabilities found in three major open source 

web applications: Moodle, Drupal and PHPMyAdmin. 

They also used this dataset to compare and evaluate 

VPMs based on code metrics and text mining. They 

reported that models built using text mining are better 

than models built using code metrics. They invited the 

research community to use this dataset to evaluate more 

VPMs. Indeed, Alenezi and Abunadi in [3,4] used the 

dataset proposed in [2] to evaluate several VPMs based 

on code metrics and cross-project prediction, they 

reported that code metrics are good indicators of web 

application vulnerabilities.  
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Authors in [14] also used this dataset to develop a 

software vulnerability prediction web service based on 

deep learning. In this study, we used a dataset extracted 

from this dataset to compare the vulnerabilities prediction 

power of three types of code metrics (size, complexity 

and coupling).  

In [15] authors compared the vulnerability prediction 

power of complexity, code churn, and developer activity 

metrics; they used data from two open source project: 

Mozilla Firefox and Linux kernel. Authors in [5] 

compared the predictability power of complexity, 

coupling and a newly proposed set of coupling metrics, 

they used data collected from several open source 

software: Apache Tomcat, Eclipse, Mozilla Firefox and 

Linux kernel. In both studies [5, 15] that compared 

vulnerabilities prediction power of several code metrics 

types and focused on non-web applications, it was 

concluded that complexity metrics have better correlation 

with vulnerabilities than other types of code metrics. To 

the best of our knowledge, there are no similar studies 

that compared the predictability power of code metrics 

types in web application written in PHP and the study 

presented in this paper is the first study that focuses on 

this subject.  

Authors in [16] and as part of their study, they 

theoretically examined and reviewed the most significant 

attempts in the vulnerability prediction models (VPMs) 

mechanisms. The work done, represents a good reference 

to gain a solid understanding of existing solutions in the 

field of vulnerabilities prediction. 

 

III.  RESEARCH QUESTIONS AND HYPOTHESES 

In this section, we present the research questions 

related to our study and propose the hypotheses. 

A.  Research Questions 

Researchers who did similar studies that compared the 

predictability power of code metrics types in non-web 

application [5,15,17] validated the hypothesis according 

to which the complexity of the code is the cause of most 

security problems in software. They concluded that 

complexity metrics are stronger vulnerability predictors 

than other types of metrics.  

Based on the results reported in these studies and the 

fact that web applications are different in many ways 

from non-web applications: online availability, 

programming languages, the execution context, etc. 

We formulate the following research questions: 

 

 Question 1: Like non-web applications, are 

complexity metrics the best indicators of 

vulnerabilities in web applications written in PHP 

than other metrics types? 

 Question 2: If not, what is the metrics type (Size 

or Coupling) that can give a better vulnerability 

prediction in web applications written in PHP? 

 

 

B.  Hypothesises 

 Hypothesis 1: As in non-web applications, code 

complexity is the major cause of vulnerabilities in 

web applications written in PHP, and complexity 

metrics are the best indicators of web applications 

vulnerabilities than coupling and size metrics. 

 Hypothesis 2: Large modules are more likely to 

be vulnerable and size metrics are the most 

powerful in predicting vulnerabilities in web 

applications written in PHP. 

 Hypothesis 3: High coupling is the source of the 

vulnerabilities and the coupling metrics are the 

best indicators of vulnerabilities in web 

applications written in PHP. 

 

IV.  APPROACH AND METHODOLOGY 

To answer the research question, we did an empirical 

study. This section present the approach adopted and the 

methodology followed to carry out this study. 

A.  Approach 

To carry out this study and answer the research 

questions asked in the previous section, we have adopted 

an approach widely used in the previous works in the 

field of defects and vulnerabilities prediction. In this 

approach, the prediction problem is treated as a problem 

of supervised binary classification [18]. 

For each of the three applications: Drupal, 

PHPMyAdmin and Moodle, all files containing PHP 

source code were retained and labelled as either 

“vulnerable” or “clean”. The vulnerability status of a file 

is the dependent variable. Independent variables are the 

code metrics (fan-in, fan-out, lines of code,...) [2]. All 

these information were collected in a dataset witch it’s 

used to train and validate prediction models based on 

supervised classification algorithms(Figure 1). 

 

 

Fig.1. Approach adopted. 
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a.  Comparison Approach 

Previous vulnerabilities prediction studies [2-4, 14] 

that targeted web applications and used the same dataset, 

evaluated models built using a single type of data 

(metrics) and different machine learning algorithms and 

techniques.  

In this paper, we propose a different comparison 

approach. In our approach, we focus on comparing 

models built using several types of data (metrics). For 

completeness, we use several machine learning 

algorithms. However, this is not used to draw conclusions 

in the comparison. 

To the best of our knowledge, we are the first to 

investigate this comparison approach in the field of web 

application vulnerabilities prediction.  

B.  Methodology 

In this subsection, we present the methodology 

followed to carry out the study:  

 

 Preparation of the data set,  

 Construction of the prediction models, 

 Evaluation of the prediction power of each model. 

a.  Preparation of the Dataset 

To learn and validate the prediction models, we 

extracted a dataset from the dataset developed by [2],  

this dataset was already used in several previous studies 

[2–4,14]. It is a hand-curated dataset with a size of over 

than 3480 instances. It is built from three large open 

source web applications: Moodle, Drupal and 

PHPMyAdmin.  A well known and largely used set of 

code metrics were added to this dataset :  

 

 Lines of code,  

 Lines of code non-HTML,  

 Number of functions,  

 Cyclomatic complexity,  

 Maximum nesting complexity,  

 Halstead’s volume,  

 Total external calls,  

 Fan-in,  

 Fan-out, 

  Internal functions or methods called, 

  External functions or methods called, 

  External calls to functions or methods.  

 

The nature of this comparative study has forced us to 

modify this dataset to prepare a version that meets our 

needs. For this, we have done the steps shown in Figure 2 

and described in the following paragraphs. 

 

 Combination of all projects data: To increase 

the number of instances, which give the models a 

lot to learn about the characteristics of PHP files 

[3], we combined the data of the three projects into 

one set. 

 Reorganization of Data: this step consists of 

reorganizing and distributing the data in three 

parts (files). Each part contains data for a 

particular type of metrics: size, complexity, and 

coupling as shown in Table1. 

 

 

Fig.2. Preparation of the dataset 
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Table 1. Code metrics types 

Category Metrics 

Size 

M1: Lines of code (LOC) 

M2: Lines of code (non-HTML) 

M3: Number of functions 

Complexity 

M4: Cyclomatic complexity 

M5: Maximum nesting complexity 

M6: Halstead’s volume 

Coupling 

M7: Total external calls 

M8: Fan-in 

M9: Fan-out 

M10: Internal functions or methods called 

M11: External functions or methods called 

M12: External calls to functions or methods 

b.  Prediction Models Construction 

To construct prediction models, we used and compared 

three well-known algorithms: KNN,  Random forest and 

Decision Trees. We used the cross-validation technique 

used and well described in [2] to learn and validate the 

prediction models. In this standard technique, instances 

are randomly divided into folds of equal size. Iteratively, 

each fold is retained as the testing set. That is, a 

prediction model is built starting from the samples in the 

other folds (training set), and the model is used to predict 

the class of the files in the testing set. 

c.  Performance Evaluation 

The prediction result of a model can be one of four 

cases: True Positive (if a vulnerable file is predicted as 

vulnerable by the model), True Negative (if a clean file is 

predicted as clean by the model), False Positive (if a 

clean file is predicted as vulnerable by the model), False 

Negative (if a vulnerable file is predicted as clean by the 

model). 

From the TP, TN, FP, and FN we can calculate several 

measures that can be used to evaluate the prediction 

performance of each model. We used four well-known 

performance indicators and widely used in the field of 

security [2]: 

 

 Recall: this indicator gives the percentage of 

vulnerable files that are correctly classified by the 

model. 

 

TP
Recall= *100

TP+FN
                        (1) 

 

 Inspection: Provides an indication of the cost of 

the percentage of files that must be inspected to 

find the TPs identified by the model. 

 

TP+FP
Inspection= *100

TP+TN+FP+FN
            (2) 

 

 FP Rate: The false positive rate measures the 

percentage of misclassification positive among the 

real negatives. 

 

FP
FP Rate = *100

FP+TN
                      (3) 

 

 FN Rate: The false negative rate measures the 

percentage of negatives that are falsely classified 

as real positives. 

 

FN
FN Rate = *100

FN+TP
                     (4) 

 

V.  EXPERIMENTS AND RESULTS DISCUSSION 

In this section, we present the experiments carried out 

as part of this study and discuss the obtained results. 

A.  Experiments 

The objective of this study is to compare the 

vulnerabilities prediction power of three types of code 

metrics: size, complexity, and coupling in web 

application. Experiments were performed as follow: we 

built three prediction models, the first using size metrics, 

the second using complexity metrics and the third using 

coupling metrics. Then, the performances of these models 

are compared considering four performance indicators: 

recall, inspection, FP rate and FN rate.  We repeated this 

using three well-known classification algorithms: KNN, 

Random forest and Decision Trees. 

The experiments are carried out using Weka [18, 19] 

version 3.8.1 for building and validating the prediction 

models and R [20] version 3.4.3 for calculating the 

performance indicators. We took shell scripts (.sh files) 

provided in the replication dataset available in [21] and 

provided by [2]. We modified these scripts, to adapt them 

to the objectives of our study. 

B.  Results and Discussion 

Table 2 shows a comparison of the results of the three 

types of code metrics (size, complexity and coupling) 

using three different classification algorithms (RF, TREE 

and KNN). The comparison can be made considering four 

performance indicators (Recall: the higher the better, 

while Inspection, FP rate and FN rate: the lower the 

better).  

As can be seen and contrary to what we expected in 

hypothesis 1 and hypothesis 2, the best prediction 

performances were not given by the complexity metrics, 

nor by the size metrics. In fact, coupling metrics achieved 

the best performance in all performance indicators using 

RF and KNN, the Recall was higher (RF: +8%, +11%; 

KNN: +4%, +7%) compared to the complexity metrics 

and size metrics respectively. The Inspection was lower 

(RF: -12%, -10%; KNN: -9%, -3%) and the same for the 

two other indicators : lower FP Rate (RF: -12%, -10%; 

KNN: -8%, -3%), lower FN Rate (RF: -8%, -11%; KNN: 

-4%, -7%). Coupling metrics also achieved the best value 

in Inspection, FP Rate and FN Rate using TREE.  
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Complexity metrics achieved the best value only in 

Recall using TREE (+5) compared to the coupling 

metrics, and in some other cases compared to the size 

metrics.  

Table 2. Results obtained (Performance indicators) 

 Metrics Recall (%) Inspection (%) FPR (%) FNR (%) 

Random Forest 

Size 67 34 33 33 

Complexity 70 36 35 30 

Coupling 78 24 23 22 

Decision Tree 

Size 63 25 24 37 

Complexity 78 39 38 22 

Coupling 73 25 24 27 

KNN 

Size 65 27 26 35 

Complexity 68 33 31 32 

Coupling 72 24 23 28 

Table 3. Additional performance indicators 

 Metrics Precision (%) Accuracy (%) 

Random Forest 

Size 6 67 

Complexity 6 66 

Coupling 10 77 

Decision Tree 

Size 8 75 

Complexity 7 63 

Coupling 10 76 

KNN 

Size 8 74 

Complexity 7 69 

Coupling 10 77 

 

In related work, often additional performance 

indicators (precision, accuracy) are reported. For the sake 

of completeness, in Table 3 these two additional 

indicators are reported. As can be seen, coupling metrics 

also achieved the best values in precision and accuracy 

with the three used classifiers. On average, we did not 

observe major differences between the values obtained by 

complexity metrics and size metrics in precision. In the 

accuracy, size metrics did better than complexity metrics. 

We also tested the potential for using a model built 

using data combined from complexity and size metrics. 

The results obtained by this model are reported in Table 4. 

We can observe an improvement in performance 

compared to complexity metrics or size metrics alone. 

However, its performance still low than the performance 

of coupling metrics alone.  

Table 4. Results obtained by combinng complexity and size metrics 

 Metrics Recall Inspection FP Rate FN Rate 

Random 

Forest 
Complexity + Size 72% 31% 30% 28% 

Decision 

Tree 
Complexity + Size 70% 34% 33% 30% 

KNN Complexity + Size 68% 30% 29% 32% 

 

The results obtained in this empirical study that used a 

dataset collected from three popular and open source web 

applications, allow us to validate hypothesis 3 and 

conclude that: coupling metrics are the best indicators of 

vulnerabilities in web applications written in PHP than 

complexity and size metrics. 

We can interpret these results as follows: web 

applications differ in many ways from other types of 

applications: online availability, programming languages, 

execution context, etc., that's why a type of metrics 

cannot give the same prediction performance in web 

applications as in other types of applications. The 

dynamic nature of dependencies in PHP and a high 

coupling increase the complexity of the code which is the 

enemy of security in software as it reported in previous 

studies; it also increases the effect of vulnerable code and 

its execution potential. In addition, a lot of vulnerabilities 

in web applications written in PHP are related to the 

misuse of inclusion statements like include, which is also 

a sign of coupling.   
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VI.  LIMITATIONS AND THREATS TO VALIDITY 

In this study, we used a dataset extracted from a dataset 

proposed by [2] and already used in several previous 

studies [2-4, 14]. Since all the steps of experiments and 

especially the steps of preparing the modified dataset 

were well-explained and the original dataset is publicly 

available [21] we believe that our results are credible and 

can be reproduced.  

This study concerned web application written in the 

PHP programming language. We cannot say whether 

these results generalize outside of all web application 

(including those which are written in other languages).  

In this study, we explored three well-known and major 

types of code metrics: complexity, size and coupling. 

However, other types of code and software metrics 

should be considered in future work. 

 

VII.  CONCLUSIONS 

In this study, we evaluated and compared the 

vulnerabilities prediction power of three types of code 

metrics (size, complexity, and coupling) in web 

applications written in PHP. We used a dataset collected 

from three major and open source applications (Moodle, 

Drupal and PHPMyAdmin). We treated the prediction 

problem as a binary supervised classification problem. 

Three well-known classifiers (RF, TREE and KNN) are 

used to build prediction models, which evaluated using 

cross-validation technique and considering several 

performance indicators. 

The results showed that unlike other types of 

applications where complexity metrics are the best 

indicators of vulnerabilities, the coupling metrics 

achieved the best performance than complexity metrics 

and size metrics.  

As we said in limitation and threats to validity section, 

we used a well-known and widely used set of code 

metrics in this empirical study. However, the future work 

will be devoted to other similar studies on other systems 

considering other types of metrics and using advanced 

techniques of deep learning. 
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