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Abstract—The transport or advection-diffusion-reaction 

equation is a well-known partial differential equation 

employed to model several types of flux problems. The 

cooling fin problem is a particular case of such an 

equation. This work presents a straightforward model for 

the rectangular cooling fin in a problem. The model was 

based on the finite differences numerical method and an 

efficient implementation was developed in a high-level 

mathematical programming language.  The accuracy was 

evaluated with different granularity levels of meshes, and 

two distinct boundary conditions are compared. In the 

first one, only prescribed temperatures are assumed at the 

four tips of the domain. For the second scenario, it is 

assumed a heat flux at one tip of a fin with the same 

geometrical shape. The achieved solutions produced by 

the algorithm were able to depict the temperature along 

the whole fin surface accurately. Furthermore, the 

algorithm reaches relevant performance for meshes up to 

4257 points where the CPU time was about 33 seconds. 

 

Index Terms—Finite differences, rectangular cooling fin,  

transport equation, two-dimensional problem, heat flux. 

 

I.  INTRODUCTION 

The study of the transport equation, also known as 

advection-diffusion-reaction equation remains an active 

field of research since such an equation plays a 

fundamental role in a wide variety of modeling problems. 

Some of them are related to aerodynamics, meteorology, 

oceanography, hydrology, and chemical engineering
 
[1]. 

In general terms, the transport equation describes how the 

concentration of one or more elements (pollutants, heat, 

etc.) which are distributed in a medium, change under the 

influence of three physical factors: diffusion, convection, 

and reaction. Convection refers to the movement of an 

element within a medium. Diffusion is the movement of 

the element from an area of high concentration to an area 

of low concentration, resulting in the uniform distribution 

of the element. Reaction is the interaction process that 

results in the involved elements be generated or 

consumed. 

Formally, the two-dimensional version of the transport 

equation is a partial differential equation (PDE) defined 

in a rectangular domain Ω under some boundary 

conditions. Its mathematical formulation is described by 

equations (1), (2), and (3) where u is the physical 

greatness to be evaluated, k is the diffusion coefficient, 

βx(x, y) and βy(x, y) are the velocities in x and y directions 

respectively, γ(x, y) is the function that defines the 

reaction process, f(x, y) is the source term, g is a function 

that defines the values of u in the border Γ, and h(x, y) is 

the function that defines the normal derivative value of u 

along the border Γn
 
[2]. 
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Regardless of the phenomenon modeled by PDEs, in 

particular by the transport equation, the possibility to use 

them for predicting future behaviors is often dependent 

on numerical solutions. Such solutions are commonly 

combined with the analysis of elementary test cases so 

that to design a big picture of the phenomenon under 

study [3]. Nevertheless, the particular characteristics of 

the transport equation difficult its solution by means of 

numerical methods when the problem is strong 

convective. Such conditions are commonly observed in 

the context of cooling fin problems. 

The basic idea behind cooling fins is to constitute a 

physical projection that increases the surface area from 

which heat can be radiated away from a device. Thus, the 

cooling fin problem models a hot mass which must be 

cooled by transferring heat from itself to a cooler 

surrounding region as showed in Fig. 1. Some applied 

fields that deal with this kind of problem include 

computers chips cooling and electrical amplifiers [4]. The 

mathematical formulation describing the heat transfer in 

the directions x and y in a rectangular domain Ω = (0, L) 
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x (0, W) is given by equation (4) 
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where k is the thermal conductivity, c is the heat transfer 

coefficient, T is the cooler height, and uref is the 

temperature of reference. 

 

 

Fig.1. Cooling fin geometry [4] 

Several methods have been developed aiming to 

overcome the numerical limitations imposed by the 

equation. The main techniques rely on converting the 

associated partial differential equation into a system of 

linear equations which may be solved by a mathematical 

software. Nonetheless, it is no rare that to build such a 

linear system constitutes the bulk of effort employed by 

modeling problems like the cooling fin one [5]. Moreover, 

the accuracy of those built models is commonly related to 

the precision into describing the temperature distribution 

along a fin surface which must be validate. Since this 

validation depends on incorporating well-known problem 

instances into the mathematical model for purposes of 

analysis, such a step requires an additional modeling 

effort which is generally prone to error. 

This paper presents a simple and succinct modeling 

approach for the cooling fin problem. Both mathematical 

model and computational implementation offer a baseline 

which may be used as reference for the building of more 

complex scenarios as well as for validating additional 

tests instances of the problem. Therefore, the main 

contributions of this work are: 

 

 A straightforward mathematical model for the 

cooling fin problem based on the finite differences 

numerical method. 

 A flexible and efficient computational 

implementation of the proposed model on a free 

mathematics-oriented programming platform. 

 An accuracy validation of the model through 

different instances of test which were evaluated on 

multiple levels of precision (meshes granularity). 

 

The rest of this paper is organized as follow. Section 2 

reviews the literature related to solving cooling fin 

problems. In Section 3, the mathematical model based on 

the finite differences numerical method is described for 

the cooling fin problem in a rectangular domain. Section 

4 is dedicated to detail the computational 

implementations. Section 5 presents experimental results 

validating both model and implementation considering 

the solutions accuracy and the performance of the 

algorithm. Conclusions and directions for future work are 

included in Section 6. 

 

II.  RELATED WORK 

The widespread use of fins in different applications has 

leveraged the proposition of many distinct approaches 

aiming to achieve models able to simulate the heat 

propagation as faithful as possible. An important 

contribution to solving the problem in a restricted 

rectangular domain was given by [6]. By studying the 

problem with variable heat transfer coefficient, the 

authors showed solutions for tip boundary conditions of 

constant heat flux and constant temperature. Thermally 

non-symmetric rectangular fins were explored by [7]. 

They described a reverse relation between a non-linear 

root temperature and the rate of heat loss from a fin. 

Considering extended general surfaces, [8] analyzed a set 

of distinct approaches for linear and non-linear situations. 

Some of those techniques are complex combinations, 

Laplace transforms, finite differences, finite elements, 

and boundary elements. 

Besides the problem restricted to a rectangular shape, a 

variety of other works have addressed distinct geometry 

of domains. Analytical solutions for cylindrical pin fins 

were studied by [9]. The authors explored the method of 

separation of variables and examined the effects of tip 

convections on the temperature distributions along the 

entire fin and the heat flow rates at the fin base. Spiral 

fins were also analyzed by [10]. In this work, transient 

solutions of the temperature distribution and the heat flux 

at the base of the fin were achieved through Laplace 

transforms. Related to circular fins, [11] presented results 

when there are sinusoidal changes in the fluid 

temperature, and also when the fin is subjected to linear 

and higher order changes of fluid temperature. Another 

embracing study considering multiple fin shapes was 

conducted by [12]. Numerical solutions were shown for 

three types of fins combined with other three types of 

shapes. The results were evaluated according to four 

different initial conditions. 

Alternatives technique have also been employed so that 

obtaining accurate solutions for cooling fin problems. 

Working around the additional effort associated to the 

validation of solutions obtained from numerical methods, 

[5] validated the developed analysis of rectangular fins by 

means of ANSYS® programming software [13]. Another 

approach focused on the heat conduction in tapered 

cooling fins was presented by [14]. The authors applied 

symbolic programming techniques to model the heat 

conduction in fins with triangular profiles. In such a work, 

they presented numerical solutions which fast converge to 

the corresponding analytical solutions. Employing 

calculus of variations, [15] published solutions for a 

rectangular fin submitted to zero surrounding temperature. 
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As a last related work to be cited, the transient analysis of 

two-dimensional cylindrical fin published by [16] 

presented an analytical solution for the cooling fin 

problem with various surface heat effects. The 

temperature distribution and heat rate transfer were 

generalized for a linear combination of the product of 

Bessel function, Fourier series and exponential. 

 

III.  FINITE DIFFERENCES METHOD IN A RECTANGULAR 

DOMAIN 

A traditional manner to solve partial differential 

equations is by the discretization of their domain. This 

process requires a PDE be approximated by equations 

with a finite number of unknowns. Such a discretization 

makes a PDE feasible to be solved by a computer [17]. A 

straightforward tool for the definition of approximations 

for partial derivatives in a PDE is taking their Taylor 

series expansion. Taylor series are able to describe how 

the information about a function at a point x may be used 

to evaluate such a function around the neighborhood of x 

[18]. 

As described by [19], a rectangular domain 
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Such a discretization makes possible each point u(xi, yj) 

of a function u defined in a rectangular domain Ω, be 

approximated by linear equations. In this work, the 

approximation of a point u(xi, yj) will be denoted by ui,j. 

For simplification purposes of notation, each point (i,j) of 

a mesh that discretizes a rectangular domain Ω will be 

rewritten as one-index dependent. Fig.2. depicts the 

mapping of coordinates assumed for each mesh point. 

Based on this new notation, the discretization of a 

rectangular domain Ω may be seen as described by Fig. 3. 

 

 

Fig.2. Mesh points redefined as one-index dependent 

 

 

Fig.3. Discretization of a rectangular domain 

Using first and second order approximations, the 

replacements which must be done in a partial differential 

equation should corresponds to equations (7), (8), (9), and 

(10), where 
2

xh   and 
2

yh  are related to the 

truncation errors [20]. 
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Applying such approximations in the transport 

equation (1), equation (11) is obtained 
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with the corresponding coefficients 
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where m and n correspond to the number of discretization 

points in the directions x and y respectively. Considering  

equation (4), which describes the cooling fin problem, the 

coefficients generated by the finite differences method – 

equation (11) - should be rewritten as follow. 

 

2I I

y

k
d e

h


 

                             

(17) 

 

2I I

x

k
b c

h


                               (18) 

 

2 2

1 1 2
2I

x y

c
a k

Th h

 
   

 
 

                       (19) 

 

The approximations obtained from the finite 

differences method generate an A pentadiagonal matrix of 

a linear system Ax = B as described by Fig. 4. The 

solution of such a linear system results in a numerical 

solution of the cooling fin problem. 

 

 

Fig.4. Pentadiagonal linear system generated by the finite  
differences method. 

 

IV.  IMPLEMENTATION 

Algorithm 1 (Fig. 5.) details the steps implemented for 

solving the cooling fin problem (CFP). Lines 3 and 4 

define the granularity of the mesh to be used by the 

algorithm. The main loop (lines 6-16) is responsible for 

building both the pentadiagonal stiffness matrix A and the 

vector of independent terms (F). Boundary conditions 

(Line 17) are set by an additional procedure.     

 

Two types of boundary conditions were implemented 

in this work. The first one involves the definition of 

prescribed values for the boundaries of the domain. As 

the analyzed problem is related to a rectangular domain, 

this scenario requires that four values are provided for the 

four respective limits. Moreover, the coefficients of 

equation (11) must be modified as follow. 
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Fig.5. Finite Differences Algorithm for the CFP 

Algorithm 2 (Fig. 6.) describes the auxiliary procedure 

used for setting such prescribed values. This procedure 

should be invoked by Algorithm 1 during the step of 

boundary conditions definition (Line 17). 

Mixed boundary conditions constitute another type of 

cooling fin problem evaluated in this work. In this 

scenario, there is a known linear relation between the 

function u and its derivative, which is described by 

equation (25). 
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Fig.6. Prescribed value of boundary conditions for the CFP 

Since a rectangular domain Ω has been considered, the 

derivative related to the exterior unitary normal is is 

defined as follow. 
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Depending on the position of I in the boundary, one of 

the variables I-n, I-1, I+1, I+n will be out of the domain. 

In this case,  equation (11) should be modified. If I = 1, 

2, …, n, the changes to be carried out on the equation are 

as follow. 
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On the other hand, if I = n, 2*n, …, m*n, the 

modification to be applied on equation (11) are the 

following. 
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Algorithm 3 (Fig. 7.) describes the implementation of 

such changes in order to incorporate a mixed boundary 

condition in the cooling fin equation. 

 

 

Fig.7. Mixed boundary conditions for the CFP 

 

V.  EXPERIMENTAL RESULTS 

The Octave scientific platform [21] was used for the 

implementation of the finite differences method. It is a 

high-level mathematical programming language which 

offers to the programmer a toolkit of implemented 

functions such as the linear systems solver employed in 

the proposed algorithm. The complete source code of the 

implementation was made available on a GitHub 

repository [22]. The experiments were performed on a PC 

running Ubuntu Linux, version 14.04.5 LTS, with Kernel 

version 3.19.0-31. It consists of one Intel i7-3610QM 

processor of 4 cores (two threads per core), operating at 

2.3 GHz. Each core has a unified 256KB L2 cache and 

each processor has a shared 6MB L3 cache. The PC 

contains 8GB of main memory. 

The two instances of the cooling fin problem analyzed 

in this work were proposed by [4]. They differ by the 

type of boundary conditions. The first one consists of 

setting up prescribed values for the boundaries of a 

rectangular domain (PVBC) as follow. 
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Another considered instance of the problem involves 

mixed boundary conditions (MBC), that is, there is a heat 

flux at a tip of the rectangular domain. The setting up of 

such a scenario was modeled by conditions (34).  

Complementary to the definition of those boundary 

conditions cases, the dimensionless physical parameters 

proposed by [4] were also configured into equation (4). 

Such additional conditions are described in (35). 
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Different levels of discretization (meshes) were used in 

the numerical experiments. The granularity of employed 

meshes varied from 3x9 - the most coarse one - up to 

129x33. The execution time achieved for different tested 

meshes is presented in Table 1. In a general way, solving 

both problem instances presented a similar performance 

for all tested meshes. Indeed, the most significant 

performance difference was observed 

with the 33x129 mesh, which was of just 29%. 

Table 1. CPU time comparison: PVBC (Prescribed Values Boundary 

Conditions), MBC (Mixed Boundary Conditions) 

Mesh size (nXm points) 
CPU time (sec.) 

PVBC MBC 

3 x 9 0.012 0.013 

9 x 3 0.016 0.017 

5 x 5 0.015 0.016 

5 x 15 0.053 0.051 

15 x 5 0.052 0.051 

9 x 9 0.057 0.053 

9 x 31 0.207 0.180 

31 x 9 0.201 0.197 

17 x 17 0.197 0.184 

17 x 65 1.206 0.939 

65 x 17 1.213 1.228 

33 x 33 1.045 0.930 

33 x 129 30.582 21.714 

129 x 33 33.693 29.946 

65 x 65 24.830 23.482 

 

Nevertheless, it was noticed a significant impact on the 

CPU time as the mesh granularity was refined. In fact, an 

about fourfold increase in the number of discretization 

points (from 33x33 to 33x129) yielded a CPU time 

increasing of 30X for the PVBC problem and of 21X for 

the MBC problem approximately. Moreover, for meshes 

with the same granularity but with distinct horizontal and 

vertical configurations of points, it was achieved different 

performance rates. An example may be seen with the 

meshes 33x129 and 129x33. With the first one, the 

solutions of both problems were obtained faster than with 

the second one. More precisely, there was a performance 

decreasing of 9.23% for the PVBC problem and  of  

27.49% for the MBC problem. On the other hand, such a 

performance compromising was not noticed with more 

coarse meshes. 

In order to evaluate the quality of the solutions 

achieved for both PVBC and MBC problems, graphics 

were plotted for one of the most refined simulations - 

meshes of 65x65 points. Fig. 8. and Fig. 9. present the 

behavior of the transport equation in the context of the 

cooling fin problem. Different temperatures throughout 

the rectangular domain are depicted in the graphic by 

different colors. 

Since there is no any external influence (heating flux) 

in the first problem instance (Fig. 8.), the temperature in 

the neighborhood near to the boundaries [x, 0], [L, y], 

and [x, W] is the same of the temperature of reference 

(uref = 70). Toward the tip [0, y], the temperature is 

ascending up to the original prescribed value for such a 

boundary. 

 

 

Fig.8. Temperatures from Prescribed Values Boundary Conditions 

 

Fig.9. Temperatures from Mixed Boundary Conditions 

In the mixed boundary conditions instance, there is a 

heat flux at the tip [L, y]. The influence of such a flux in 

the related area may be seen in Fig. 9. which depicts 

higher temperatures like ones observed at the boundary [0, 
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y]. The two other boundaries, that is [x, 0] and [x, W], are 

also affected by the external heat flux. Indeed, the regions 

nearby those two tips present temperatures higher than 

the observed in the same regions from the previous 

instance (PVBC). 

 

VI.  CONCLUSION 

This work presented an implementation of the finite 

differences method for the cooling fin problem in a 

rectangular domain. Two instances of the problem were 

analyzed. The first one considered prescribed values 

conditions in the four boundaries of the domain. The 

second instance was related to mixed boundary 

conditions, that is, a heat flux was assumed in one of the 

boundaries. 

Considering the performance of the proposed 

implementation for solving the problems, there is no 

relevant difference between both instances. Nonetheless, 

the efficiency of the presented implementation degraded 

as the granularity of the employed meshes increased. In 

fact, the CPU time increased up to 30X for a 

corresponding increase of mesh of just 4X. Moreover, it 

was observed that to solve instances which employ 

meshes with more points in the direction X than in the 

direction Y are slower than ones employing meshes in 

reverse setting up (more points in the direction Y than in 

the direction X). Those two features of the proposed 

implementation for the finite differences method indicate 

that the step of solving the linear system resultant from 

the modeled cooling fin problem must be refined. Since it 

is the heaviest step of the presented algorithm, more 

efficient strategies for solve sparse linear systems 

represent a relevant future work. 

Related to the quality of the achieved solutions, the 

plotted graphics endorse their accuracy. In fact, the 

developed model and its respective computational 

implementation were able to describe the temperature 

along the whole rectangular fin surface. Therefore, this 

work may be explored as a baseline for the modeling of 

other distinct and more complex scenarios related to the 

cooling fin problem. 
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