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Abstract—The hardness assumption of approximate 

shortest vector problem (SVP) within the polynomial 

factor in polynomial time reduced to the security of many 

lattice-based cryptographic primitives, so solving this 

problem, breaks these primitives. In this paper, we 

investigate the suitability of combining the best 

techniques in general search/optimization, lattice theory 

and parallelization technologies for solving the SVP into 

a single algorithm. Our proposed algorithm repeats three 

steps in a loop: an evolutionary search (a parallelized 

Genetic Algorithm), brute-force of tiny full enumeration 

(in role of too much local searches with random start 

points over the lattice vectors) and a single main 

enumeration.  The test results showed that our proposed 

algorithm is better than LLL reduction and may be worse 

than the BKZ variants (except some so small block sizes). 

The main drawback for these test results is the not-

sufficient tuning of various parameters for showing the 

potential strength of our contribution. Therefore, we 

count the entire main problems and weaknesses in our 

work for clearer and better results in further studies. Also 

it is proposed a pure model of Genetic Algorithm with 

more solid/stable design for SVP problem which can be 

inspired by future works.  

 

Index Terms—SVP, Lattice reduction, Lattice based 

cryptography, Evolutionary Search, Genetic Algorithm, 

Parallelization, Graphic card. 

 

I.  INTRODUCTION 

Lattice-based cryptography is the prominent candidate 

in post-quantum cryptography (secure cryptography 

against the quantum computers) [1]. Lattice theory 

entered in cryptography by the breakthrough paper of 

Ajtai [2]. The security in lattice based cryptography come 

from the hardness of the lattice problems, where SVP 

(Shortest Vector Problem) is the determinative one. In 

fact, since different lattice problems (which are the 

building blocks of lattice based cryptographic primitives) 

can directly or implicitly be reduced to SVP problem in 

most times, so the major attacks on this problem (SVP), 

consequently threaten these cryptographic constructions.    

The NP-hardness of exact SVP was known at first for 

infinite norm in 1981 [3] and then, in 1998, for norm 2 

(and any norm of p) under randomized reductions [4]. In 

other side, NP-hardness of approximate-SVP for constant 

factor (typically   √ ) proved in 2001 [5] and 

currently it is proved for    (    )
   

. Also it is shown 

that, the approximate-SVP for factor of   √ , is 

belonged to     co-   , and for factor of   
               is belonged to P. Also the smallest factor 

for cryptographic constructions is  ( ).  
In solving SVP, lattice enumeration in a 

parallelepiped/ellipsoid bounded region of Euclidean 

space is the standard method. Lattice enumeration is the 

fastest algorithm in theory and practice for solving exact-

SVP within the polynomial space methods. The 

enumeration time is affected by preprocessing the lattice 

block, and best theoretical result in this scope get by 

Kannan’s algorithm (with time complexity of 

  (        )  [6]) which improve for practical use in [7]. 

Besides the preprocessing, other effective practices for 

runtime of enumeration algorithm are suitable order of 

lattice points to be enumerated [8], and using the various 

pruning techniques [9]. Lattice reduction is other SVP 

solver which is often the fundamental technique which 

included in various lattice attacks. Some of the lattice 

reduction algorithms include: LLL reduction, BKZ 

reduction [8,10], slide reduction, HKZ reduction, BKZ 

2.0 [11], progressive-BKZ [12]. The combinatorial 

methods are other techniques in solving SVP which in 

some parameters do better than lattice reductions [1]! 

Voronoi cell algorithm is theoretically one of the fastest 

deterministic algorithm with time complexity of  (   ) 
for solving SVP which needed exponential space of 

 (  )  [13]. Using randomization by combinatorial 

algorithms, the time complexity of Voronoi cell improved 

to  (  ). Also, sieving is the fastest randomized method 

with time complexity of  (    ) and exponential space 

for solving (almost) exact SVP. Two main types of sieve 

algorithm are classic sieve and list sieve. Best 

improvement in provable version of sieve algorithm 
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achieved the time complexity of  (  )  by using 

combinatorial algorithms [14]. As we know, the best time 

complexity for heuristically (not-provable) sieving is 

 (      )  [15]. Random sampling reduction is other 

technique for solving SVP which be investigated in 

lattice theory. Most of these algorithms can be used with 

other norms for solving other lattice problems (even by 

the same factor proved for SVP) such as closest vector 

problem, shortest independent vector problem. The well-

known practical libraries which implemented some of 

these algorithms are NTL [16] and fplll [17].       

Artificial Intelligence (AI) introduces some SVP 

solvers which look at this problem as an input hard 

problems which can be solved by general techniques of 

search/optimization. In an overall view, the general 

techniques can be classified in the search/optimization 

domain as follows: (I) the calculus-based search (such as 

Gradient decent, Newton method, Fibonacci method), (II) 

random-based techniques (such as evolutionary 

computations, statistical mechanics), and (III) the 

enumerative ones (such as back-tracking search, branch 

and bound, dynamic programing). Since the 

optimization/search methods introduced by AI to solve 

the hard problems, are often known with the class of 

randomly-guided searches, so our discussion will be 

focused on this class. In this paper, some main techniques 

in the class of randomly-guided search is briefly analyzed, 

including: evolutionary computations [18], statistical 

mechanics [19], fuzzy systems [20], neural networks [21] 

and fuzzy neural networks. By using some analysis, it is 

selected evolutionary algorithm as the best candidate in 

this class to design our SVP solver algorithm based on. 

Also, the special feature in our proposed algorithm is the 

tight combination of Artificial Intelligence with the lattice 

reduction theory and parallelization technologies. 

Ding et al. propose a genetic algorithm for the first 

time in solving SVP based on sparse integer 

representations of short lattice vectors [22]. They suggest 

some heuristic techniques which improve their results 

[22]. In an independent work, Fukase et al. use 

orthogonalized integer representation in sampling 

technique to solve SVP [23]. These two papers introduce 

promising test results. In [24], it is proposed a new 

enumeration by integrating sparse orthogonalized integer 

representations for shortest vectors, also proposed a 

mixed BKZ method by alternately applying orthognalized 

enumeration and other existing enumeration methods. 

This methods [24] have exponential speedups both in 

theory and in practice for solving SVP. Although the 

results of using orthogonalized integer representation in 

solving SVP is so hopeful, but our approach in this paper 

is to use the plain representation of lattice vectors.   

The remainder of this paper is organized as follows. A 

description of basic background on lattice theory is 

introduced in section II. In section III, it is made a so 

brief analysis on using different AI techniques to solve 

SVP. The parallelization considerations on multi-

threading technologies, graphic programming, and 

vectorization on CPU, described in section IV. We 

propose our parallel evolutionary search algorithm in 

section V. Also, a pure/novel model of Genetic 

Algorithm for SVP proposed in section VI, which we 

believe that it is a suitable candidate for further study. 

The experimental results and our analysis declared in 

section VII. Finally, in section VIII, the conclusion and 

further studies be declared. 

 

II.  PRILIMINARIES 

Lattices are discrete subgroups of    which be 

defined by a basis. The bases are  -linearly independent 

vectors          
  generating a lattice as follows: 

 

 (       )  *∑     
 
        +                (1) 

 

The number of independent vectors in lattice basis was 

known as rank of the lattice. The basis of lattice usually 

showed by matrix  . The volume of a lattice defined as 

absolute determinant of basis  . Also, the length of 

lattice vectors usually measured by Euclidean norm ‖ ‖  

which referred as    norm and defined by: 

 

‖ ‖    
    

      
 
                  (2) 

 

Many hard problems can be found in lattices, which 

SVP is one of the basic of them. For a given lattice basis, 

SVP defined as the problem of finding shortest nonzero 

vector in the lattice. The norm of best vector in lattice   

be shown by notation of   ( ). For practical purposes, 

the approximation version of SVP problem usually be 

used, which challenged to find a lattice vector with norm 

of at most some approximation factor  ( )  times the 

norm of the shortest nonzero vector. As be declared, 

many techniques introduced to solve SVP, where the 

lattice reduction is one of the main ones. 

LLL is the most well-known lattice reduction 

algorithm which solve SVP with approximation factor of 

 ( )    ( )  in a polynomial time. For a given basis 

  (       )   
   , the parameter of   ,     ) , 

the value of      
〈     

 〉

〈  
    

 〉
 as a Gram-Schmidt coefficient 

and   
  as the  -th vector of Gram-Schmidt 

Orthogonalization in basis, the LLL-reduced bases should 

satisfy following conditions: 

 

 Size condtion: |    |  
 

 
 for         

 Lovasz condtion: ‖    
 ‖  .   

     

 
/ ‖  

 ‖  

 

Increasing the block size of 2 in LLL introduces BKZ 

algorithm which causes to better approximation factor of 

 ( )  for SVP but takes more running cost. BKZ 

algorithm proposed by Schnorr in 1987. In other words, 

in LLL algorithm, it is tried to find the best norm in 

projected lattice block of dimension 2, while in BKZ 

algorithm, it is tried to find the best norm in projected 

block with dimension    . 

Lattice enumeration algorithms are the main part of 
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BKZ reduction algorithm. For an input lattice block, the 

enumeration function aims to solve SVP. There are 

several practical improvements of enumeration algorithm 

collectively known as Schnorr-Euchner enumeration. 

Schnorr and Euchner proposed enumeration radii for 

pruning of enumeration tree [8], just based on some 

limited experiments. This pruning was analyzed by 

Schnorr and Horner [10] in 1995 which revised by Gama 

and et al. [9], who find flaws in it. 

Gama, Nguyen and Regev [9] showed that a well-

chosen high probability pruning (such as by          ) 

introduces the speedup of      over full enumeration [9], 

while their extreme pruning technique (such as by 

          ) giving the speedup of (   )    
       over full enumerations. In fact, for block size of   

and intermediate expected vector   (as a candidate of 

SVP solution), sound pruning replaces the inequalities of 

‖      ( )‖    for       by ‖      ( )‖     

  where          =1. The vector of 

(          ) named as bounding function which can 

be extreme pruned bounding function, or not-extreme one. 

The extreme pruned enumeration with bounding function 

   uses 
 

     (  )
 iterations of re-randomization, 

preprocessing and enumeration samples of the lattice 

block, where the best solution from all the iterations, 

returned as the final response. The pseudo-code of sound 

pruned enumeration function given at Appendix B from 

paper [9]. Note that, the most common technique to 

preprocess the lattice blocks before enumerations is the 

use of block reduction algorithms (such as BKZ). Also 

the initial enumeration radius   affects the enumeration 

cost, even though this radius is updated during 

enumeration [11] (in this paper, the selected enumeration 

radii is the one be introduced in [11] with radius 

parameter of √ ).  

 

III.  USING DIFFERENT AI TECHNIQUES TO SOLVE SVP 

Although exploring deeply the possibility of using the 

general techniques in the class of randomly-guided 

search/optimization for solving SVP, is beyond the scope 

of this paper, but it is discussed briefly this as follows: 

 

 By analysis of design process, structure, 

philosophy and application of four approaches of 

ES (Evolutionary Search), EA (Evolutionary 

Algorithm), EP (Evolutionary Programming) and 

GP (Genetic Programming) [18] in solving SVP, 

we found that just EA technique has the most 

consistency with this problem, therefore it was 

used massively in our proposed algorithm in 

section V.  

 As we know, the fuzzy system can be used in 

optimization of practical applications [20], but 

using this technique directly for solving basic 

mathematical problems such as SVP, causes so 

much inefficiencies (against the usual lattice 

algorithms)! In fact, we believe that, the fuzzy 

systems and fuzzy neural networks may have some 

limited applications just in high level managing 

the SVP search techniques.   

 Even though, some studies such as [19] show the 

possible application of statistical mechanics (by 

applying the metropolis algorithm for SVP 

problem) in solving SVP, but we found some main 

drawbacks in this work which encourage us to 

correct/improve them with a better underlaying 

search technique. 

 Although the neural networks can be used for 

solving optimization problem, but in systematic 

process of designing a Hopefield network [21] for 

solving SVP with some standard design process, 

we found some main dificulties in the design steps!  

 

As be declared, EA algorithm is selected for our design 

in section V. Also note that, all declared points on 

problems of using the different AI randomly-guided 

searches for solving SVP, are introduced based on our 

analysis when SVP be represented in its plain model, not 

other representations such as sparse integer 

representations of short lattice vectors.   

 

IV.  PARALLELIZATION CONSIDERATIONS 

In this section, three technologies are described which 

be used to speed-up our proposed algorithm. These three 

technologies includes: MIMD (Multi-Instructions Multi-

Data) technology by multicore-CPU, SIMD (Single-

Instructions Multi-Data) technology by graphic cards, and 

Vectorization technology on CPU. In following sub-

sections these technologies and their applications in this 

research be described. 

A.  MIMD technology by multi-threading over multi-core 

processors 

MIMD technology on the multicore CPU introduces 

the ability of running inhomogeneous instructions over 

different data values. This technology implemented by 

multi-threading which be defined in user-level libraries 

(such as: POSIX Pthread, Mach C-thread, Solaris thread) 

and in the kernel of operating system (such as: Windows 

95/98/NT/2000, Linux, Solaris). The user-level threads 

map to the kernel-level threads in three models of one-to-

one, many-to-one, and many–to-many. These threads can 

be deleted whether in the states of asynchronous 

cancellation or deferred cancellation. 

In practical implementation of block reduction 

algorithms (such as BKZ) on the large lattice challenges, 

the SVP oracles (enumeration function in BKZ) 

determines the total running time. Therefore the 

parallelization of block reduction algorithms focuses on 

the parallelism of these SVP oracles. In paper [26], the 

multi-threading approach is the balanced dedicating of 

enumeration branches in one enumeration tree to different 

processing threads for the maximum speedup. In paper 

[27], the multi-threading approach is massive run of so 

much threads which be dedicated to the extreme pruned 

enumeration samples over one lattice block. Also, newly 
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a lattice basis reduction algorithm suitable for massive 

parallelization be proposed in [28] which experimental 

tests of this algorithm over SVP Challenges with 

dimension of 134, 138, 140, 142, 144, 146, 148 and 150, 

outperform previous world results which was the problem 

of dimension 132. Some considerations on using this 

technology in implementation of our proposed algorithm 

are as follows:  

 

 The OpenMP standard be used to incorporate the 

MIMD in implementation of our algorithm (this 

standard uses Fork-Join model of parallelization). 

 Thread mapping model in windows is one-to-one, 

in which that, every thread has an identification 

and independent thread context, including register 

sets, stacks and private data area (note that, our 

implementations in this paper introduced for 

windows platforms). 

 Our implementation in this paper didn’t use the 

asynchronous cancellation of threads.   

 The synchronization of the parallel threads is 

avoided as much as possible. 

 No assumption on knowing the count of the 

available processors is used.  

 The use of thread pools in the implementation of 

OpenMP in this paper is verified by some 

observed experimental evidences (note, the 

different implementations of OpenMP standards, 

don’t allow to access the internal thread pools).  

B.  SIMD technology by CUDA programming model 

In November 2006, NVIDIA Inc. introduced CUDA 

(Compute Unified Device Architecture), a general-

purpose parallel computation platform and programming 

model for all NVIDIA GPU processors. In fact, CUDA is 

a graphics development environment [28]. The CUDA 

programming model makes it easier for programmers to 

use the GPU. CUDA supports various languages or APIs 

(Application Programming Interface) such as C, 

FORTRAN, OpenCL and DirectX Compute. In CUDA 

programming model, each thread can be identified by the 

block index (in the grid) and the thread index in the 

corresponding block. By identifying each thread, this 

thread can be dedicated to perform same operation on its 

specified data. 

GPU hardware used more transistors than CPU to 

process data in SIMD mode [28]. The GPU hardware 

consists of several SM (Streaming Multiprocessors). The 

threads in the blocks of a SM run in groups of 32, called 

warp, in which that, at the same time execute the same 

instructions in SIMD mode. One of the main issues in 

warp is to avoid warp divergence (i.e., to maximize 

performance, it is needed to make sure every warp is fully 

active or completely disabled). Another main issue is that, 

if the number of needed registers exceeds the maximum 

number per SM, it may be used the L1 Cash or even 

device memory (in which that, this mechanism of 

registers distribution in different level of graphic cards 

memory architecture is not known exactly), so avoiding 

this problem, is one of the key issues in large-scale 

graphics applications. Also, the size of blocks in a SM 

has a non-negligible impact on the efficiency! 

In some studies (such as [27]), the use of graphic cards 

for solving SVP were discussed. In the case of pruned 

enumeration function as SVP oracle, we faced with the 

worst scenario of warp divergence! So it cannot be 

expected that the pruned enumeration algorithms (such as 

Schnorr-Euchner pruned, Schnorr-Horner pruned and 

GNR
1

 enumeration) achieve to the highest possible 

speedup by graphic cards! Other problems which we 

faced with, in using the graphic cards for solving SVP, 

are synchronization, overclocking, overheating, memory 

constraints and so on.     

C.  Vectorizing technology on CPU platforms 

The vectorization technology is one of most notable 

concepts in performance analysis of current 

cryptographic constructions (see specification of NIST 

candidates at [38]). To have best practice for 

vectorization over CPU, assembly language should be 

used. Although current compilers (such as MSVC) try to 

apply highest optimization by auto-vectorization, but 

expert programmers when need to introduce some non-

trivial speedup, they use the assembly language for 

vectorizing the critical section of codes [29]. 

Unfortunately, assembly language is non-portable for 

different hardware platforms, has maintainability 

problems, error-prone structure
2
, less flexibility and more 

cost in programming [30].  

Since x86-mode dose not support last technologies in 

vectorization, the x64-mode should be used. The x64-

mode assembly used flat memory model [29]. Some 

technologies which currently supported in CPU platforms 

are as follows [31]: SSE, SSE2, SSE3, SSSE3, SSE4.1, 

SSE4.2, AVX, AVX2 (256-bit band-width), AVX512 

(512-bit band-width). Different assemblers support x64-

mode, such as NASM, YASM, FASM and MASM [29], 

and finally the x64-mode MASM assembler (ML64.exe) 

is selected.  

In this research, our proposed algorithm frequently 

calls a modified version of merge-sort, which is one of 

the most costly parts of our algorithm. This sort function 

uses a different and high-speed sorting sub-function for 

sufficiently small blocks in the first step of merge-sort. 

This high-speed sorting sub-function is compiled in x64 

mode MSVC with auto-vectorization of SSE2 [32], and 

compare it’s runtime with a modern vectorization of this 

function by hand (see [37]). By this comparison, it is 

found that, it is so difficult to compete with strong 

compilers in trivial vectorization! In other side, the use of 

Intel C for doing highest performance auto-vectorization 

was not be possible, since in the time of doing this work, 

icc (Intel C compiler) and nvcc (Nvidia CUDA C 

compiler) has some inconsistency in their output codes 

(this part of this research was done in some years ago). 

Finally, it is decided to just use nvcc and MSVC with 

highest auto-vectorization.  

                                                           
1 Gama-Nguyen-Regev 

2 Assembly language has not safe structures such as if-else, while, for. 
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V.  A PARALLEL AND EVOLUTIONARY SEARCH FOR SVP 

In this section, different aspects of our proposed 

algorithm is described, which be named IEnum
 

(Intelligent Enumeration). At first, it is discussed our 

search strategy for SVP problem in this algorithm. In the 

next sub-section, the details of our algorithm is described.   

A.  The search strategy in IEnum 

In this paper, it is tried to collect the best approaches in 

AI (Artificial Intelligence), parallelization and lattice 

reductions into a single algorithm to get the best result. 

As be seen in Fig. 1, a loop of performing three steps is 

used, including: evolutionary search, brute-force of tiny 

full enumeration and a single main enumeration (in the 

next sub-section, the details of these steps are descibed).  

 

 

Fig.1. High level strategy in IEnum search scheme 

In the step of evolutionary search, we faced with a 

Genetic Algorithm which fully parallelized and 

reasonably used the knowledge of the lattice theory in its 

design. The step of brute-force of tiny full enumeration 

just be assumed as too much local searches with random 

start points over the vectors from the previous step. And 

finally, the step of main enumeration just is a pruned 

lattice enumeration on a preprocessed main block from 

the vectors of previous step.    

The memetic strategy [29,30] was introduced by 

Richard Dawkins, which showed that the evolution not be 

limited to genes (Darwinian principal of natural 

evolutions). The concept of memetic comes from “mem”, 

which is a cultural element and transferring from one 

generation to next ones through non-genetic operations. 

In some views, the main features of memetic algorithm is 

the use of problem knowledge in different phases of 

evolutionary search. So it be seemed that, IEnum can be 

discussed in the context of a memetic algorithm, because 

of some features, including: 

 

 Ability of preprocessing the population (such as by 

functions of               ,    ,    ) before 

different steps; 

 Ability of using different lattice heuristic for 

search (over lattice blocks) and evaluation criteria; 

 Using the problem knowledge in defining genetic 

operators;  

 Using the local search (over a lattice block, not a 

single vector) to improve the children at each 

generation to get away from pre-mature 

convergence;  

 Ability to restart the population; 

 

Algorithm 1 IEnum search 

         (       )   
                       

                                      √                   
                                                   

                                                         

                                         

       

  1:            (         )  

  2:                                 ()  
  3:                                 ()  
  4:     ( ) //                                 
  5:                 ( )        ( )   

  6:      (          ())*//         

  7:                  (   (   )   )    
          //         (   )  
  8:         (   )  //            , -             , -  
  9:                                            
10:          (                                ( )   )* 
11:                     ,   -  

12:                     (       )                   
    

 

 
 

                                  

                           (   )  
13:                            (             )  
14:             (   )  
15:           (   , -                  )* 
16:                                , - + 
17:                       
18:           (                             )* 
19:                           (              )   

20:                                         + 
21:                              
22:                           (             )  
23:                     

          (   )   

                  
        (           (               

      
(   )))  

              //                        

24:           (                     )* 
25:                                      
                                        ++ 
26:                 

              (   )  
27:                *+  
28:          (                               ( )   )* 
29:                              (           (   ))  

30:                
       .     (                 (    (  ))/   

31:           (         , -                  )  
32:                        , -                    + 

33:                     (    (         
    (   )  ))  

34:               (    
 
( ))             (     )  

35:                     (           ) +//           

36:                           ()   
37:                           ()  
38:          , - //The output is the best vector of   

B.  Detailed specification of IEnum search 

The pseudo-code of IEnum search can be seen in 

Algorithm 1. Note that, it is clear that for performance 

issues, the implementation of this pseudo-code is more 

complex than our description in this sub-section, so for 

simplicity, other sub-functions and methods which be 

used for speeding up, are eliminated. Also since this 

algorithm massively uses the parallelization, we specify 

this in the algorithm by coloring the parallelized sub- 

functions (red color for CPU-side multi-threading and 

blue color for GPU-side parallelization). In the reminder 
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of this sub-section, it is focused on details of Algorithm 1 

by using a continuous organization.     

Since a time bound is used to finally abort the 

algorithm, so at beginning of the code, a timer is set (line 

1). Also since there are so much sub-functions in CPU-

side and GPU-side which use many intermediate 

variables (such as vectors and Matrices), the definition 

and memory allocation of them should be used early in 

the algorithm for performance purposes (lines 2, 3). Note 

that, since in this algorithm, it is focused on the 

population of lattice vectors, so instead of Size condition, 

Lovasz condition and so on (see section II), the sorting of 

lattice vectors based on Euclidean norm is considered as 

the main technique for evaluation step (line 4). At this 

point, the rank of the lattice basis should be determined, 

so the function of               ( )  is used for 

eliminating the dependent lattice vectors (line 5) which 

be implemented here by using the function of 

“IncrementalGS” in NTL library [16]. 

Now, the main loop of algorithm is performed which 

tries to improve the best norm of the solution after each 

round. The termination criteria of this loop determined by 

input time bound. This loop includes three main steps: 

 

 Evolutionary Step 

 Brute-Force of Tiny Full Enumerations Step 

 Main Enumeration Step 

Evolutionary Step: 

In this step it is tried to use a smooth evolutionary 

search to maintain all possibilities (in lattice vectors) with 

moderate degree of being greedy. At first, the population 

is generated by using the basis vectors of B (line 7). The 

function of           (   (   )   )  performs cross-

over operation, simply by using add and minus over each 

two basis vectors, in a parallel SIMD way on the graphic 

cards (GPU-side), and finally produce      lattice 

vectors as parents (i.e., with basis vectors, the number of 

parents become   ). Note that, the norm of each vector is 

computed in the function of           on GPU-side.  

After that, the produced population     is sorted 

based on Euclidean norm of vectors (line 8). To have best 

performance, a parallelized merge function (from merge-

sort) is used in our sorting algorithm on CPU-side. The 

termination criteria for the loop of this step (line 10) 

satisfied when the best norm in the population not be 

better (relating to the variable of     ) after some 

specified number of generations (i.e., the violation of 

              ). Some other criteria can be used 

for termination, such as the worst norm in the best   

vectors of population which not be better after some 

specified generations. In the loop of this step, at first, the 

pairs of parents are determined to cross-over, in which 

that, for 
      

 
 times, each   parents randomly be 

paired (see line 12). 

 

Note 1:      is the maximum size of population which 

be assumed to be multiple of  . 

 

Note 2: The function of             in the entire 

Algorithm 1 don’t collapse the sort of population, and 

just return an index array of uniformly random 

permutation of vector andices. 

 

In the way that the parents are generated, the number 

of        children are generated on GPU-side (line 

12). Now, there is a population     with size of      

(line 13). Then this population is sorted in line 14 

(parallelized in CPU-side). After sorting the number of 

     vectors in     (line 14), the termination variable 

of      is updated in lines 15 to 17.  

Also the generations are allowed to have a bounded 

degree of elitism. The value of            show the 

current number of best vectors which can be presented 

directly in the population of next round of this step. By 

cutting the number of            from first (best) 
vectors in sorted population, implicitly the duplication 

(frequency) of best vectors be increased after each round, 

and consequently the chance (probability) of these 

vectors in parent selection be increased. To preserve the 

diversity, the elitist window (          ) is reset after 

each number of                 rounds and the 

similar vectors is eliminated in the elitist window (vector 

index from 1 to           ). As be seen in line 23,   

vectors are selected for the next parents in    , 

including basis vectors (for maintaining   independent 

vectors always in the population), elitist vectors, and 

               random vectors from the vectors of 

             to the index of last vector (with norm of 

             ) in the sorted population. Finally, the 

elitist window size (i.e.,           ) can be increased up 

to            after each round by             (lines 24, 

25). The rounds of this step continue the evolutionary 

search (a Genetic Algorithm) until the termination criteria 

(line 10) be satisfied and break the loop of the 

generations. 

Brute-Force of Tiny Full Enumerations Step:  

In this step, the degree of being exact in local search is 

increased, in the way that, a number of         (GPU 

real Threads Number) from full-enumerations are 

performed with small block size of      (Brute-force 

Enumeration Block Size) on random selected blocks from 

   , instead of cross-over on two vectors.  

 

Note 3: The cross-over on two vectors can be assumed as 

a model of enumeration with the block size of two. 

 

Against the evolutionary search in pervious step, which 

children of a round can be parents of next rounds, in this 

step, we faced with completely independent enumerations 

on random selection of blocks from only last POP in 

previous step.  

The termination criteria be updated in lines 31, 32 and 

check in line 28 (similar to Evolutionary step, some other 

criteria van be used for termination). The function 

                   run number of         GPU 

thread for lattice enumeration in parallel. Since the lattice 



 A Parallel Evolutionary Search for Shortest Vector Problem 15 

Copyright © 2019 MECS                                              I.J. Information Technology and Computer Science, 2019, 8, 9-19 

enumeration has so much unpredicted branches by 

structure of “if-else”, so a full enumeration tree with no 

prune for its branches is used! Also, since GPU cannot 

tolerate long continues sequence of operations, even with 

no branches, we limit the depth of enumeration tree with 

maximum depth which can be tolerated by the used 

Graphic cards.  For our hardware platform in this paper, 

the enumeration tree depth is nearly 9 for all physical 

threads of used GPU (i.e., at each full enumeration tree 

with degree 3 on a real thread of our platform,      
      nodes be processed)

1
. For each selected random 

block, the GSO coefficients are computed fully 

parallelized on GPU-side, and consequently if the lattice 

block is not linear-independent (it can be found by using 

GSO information), this block can be eliminated from the 

spool of random lattice blocks before full enumeration. 

Finally in line 30, all the solution vectors are sorted at 

each round of this step (set   ), and eliminate the similar 

ones in this set, then this set (set   ) is merged with the 

last solutions in this step (set   ) to select the number of 

        first (best) vectors from the resulted set.       

Main Enumeration Step:  

In this step, it is tried to perform a pruned enumeration 

with small success probability of finding the shortest 

vector of a sorted block of the best independent vectors 

from previous steps. It is clear that, the success 

probability of this enumeration cannot be expected for 

high dimensional basis be reasonable (for      )! 

Note that, in this research, a single sound pruned 

enumeration (GNR enumeration) [9] is used, not an 

extreme-pruned enumeration with re-randomization of 

the block.  

At first, the main block should be generated from the 

resulted vectors of the last previous steps. So the vectors 

from the set of   ,   and number of      (Anti-

Dependency Tolerable Size of population) from first 

vectors of     is selected. The resulted collection is 

sorted, then he function of                is performed 

over the sorted vectors. Then the first main block of 

resulted basis (with size of  ) is preprocessed by      

reduction algorithm. A sufficiently big block size of   is 

used, while enumerations of      parallelized on CPU-

side, then performed a single sound pruned GNR 

enumeration with small success probability of finding 

SVP (which also parallelized on CPU-side).  

 

Note 4: since the function of                is fully 

sequential (and cannot be parallelized reasonably), we 

need to cut      number of first vectors from    . 

 

This algorithm continue until the timer reach to the 

time bound          . At the end of the algorithm, all the 

variables, vectors, and matrices which be defined and 

allocated on the GPU-side memory and CPU-side 

memory, should be deleted. 

 

 

                                                           
1 The depth of lattice enumeration is equal to size of lattice block 

VI.  A PURE MODEL OF GENETIC ALGORITHM FOR SVP 

In this section, a pure model of Genetic Algorithm is 

proposed for SVP problem which we believed that it has 

more solid/stable design than IEnum. Against the IEnum 

algorithm, in this model, all the ordinary and standard 

concepts/techniques from Genetic Algorithm can be used. 

The principal difference is that, we use a combination 

operator, where different number of parents can be 

attended in the production of just one child, in which that 

this child is at least better than these parents! In fact, by 

accepting this operator as a combination operator in GA, 

we can re-define different techniques of parent selection, 

the elitism techniques, the selection of survivors, and so 

on. Against the IEnum algorithm, we don’t need to trim 

the population into   independent lattice basis vectors 

(i.e., in all the steps of this model, we faced with a 

population of lattice vectors, not a basis in some times). 

The pseudo-code of this algorithm is introduced in 

Algorithm 2.   

 

Algorithm 2 GA-Enum search 

               (       )   
                   

                                            , 

                                        

                                      √   
             

  1:                   ( )  //                 

  2:      (                     ())*//         

  3:       (                    ())* 
  4:                              (     ) + 
  5:                               (     )  
  6:     Combination Operator: 

                       
                              *  
                            (     )  

                           ()  

                     ,  -(               0    ,  -1    √ )  

                       (          ,  -   √ )  

                              (   ) + 
  7:                         ()  
  8:                  (             )  + 
  9:                    ()  

 

Here the Genetic functions of               ( ) , 

                    ( ),                     ( ), 
                 ( ) and so on are used as the black 

boxes (except Combination operator). It is tried to clear 

the combination operator in this pseudo-code (line 6) to 

give a better sense of the algorithm, so different parts of 

this operator can be altered in further studies. Note that, 

in this operator,      is an array of bounding functions 

for different block sizes and      is an array of 

preprocess block sizes for different main block sizes of 

  . Note that, all the parallelization considerations in 

IEnum, can be applied in this model.       

 

VII.  EXPRIMENTAL RESULTS AND DISCUSSION 

In this section, some experimental results are shown on 

running time and quality of output solutions in IEnum 

algorithm and be compared with the results of LLL and 
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BKZ algorithms. The results were organized in 3 figures, 

which compared the Euclidean norm of IEnum output 

solutions with solution vector from LLL and BKZ 

algorithms.  

We believe that, using the lattice bases with small 

dimension (as be used in [19]) cannot represent the entire 

potential and strength of our contribution over the lattice 

reduction algorithms. By using LLL algorithm in 

polynomial time, the norm of best vector which be found, 

was limited by the bound of    ( )  ( ). Also the use 

of polynomial-time      which need to a limited block 

size of  , lead to the best norm of    (   )  ( ) . 

Therefore, it is clear that, for small dimension of lattice 

basis, even LLL algorithm with parameter of       

may solve approximate-SVP, while for high dimensional 

lattice basis (which be used for practical secure 

cryptographic constructions), even the best variants of 

block reduction algorithms may not lead to sufficiently 

small norm of solutions! Therefore, we preferred to show 

the test results of our contribution for sufficiently high 

dimensional lattice basis. Consequently, against the 

results of [19], all the tests in this paper performed on 

randomized basis of Darmestadt lattice challenges [35] 

with dimensions of 300. This challenge re-randomized by 

a function inspired by “                 ( )” in fplll 

library [17].  

Table 1. Parameter set of IEnum for test results 

Parameter Value 

  (lattice basis dimension) 300 

           

     (integer times of  )              

  (LLL arg.) 0.99 

  (preprocess block size) 40 

  (main block size) 60 

√  (radius parameter) 1.05 

  (bounding function) with success prob. of     

                       

          400 

          2000 

Number of blocks 13 

Thread per block 1024 

        13*1024=13312 

     9 

        50 

                        

                        

                30 

            18 

                

 

All the implementations were compiled with MSVC 

x64 bit C++ (which tuned for high optimized output and 

auto-vectorization by SSE2), together with nvcc compiler. 

Host hardware platform (CPU-side) which be used, 

specified as follows: ASUS motherboard series Z97-K, 

Intel® Core™ i7-4790K processor with base frequency 

of 4 GHz, 16 GB RAM. Also the hardware platform in 

GPU-side specified as follows: GeForce GTX 970, 

Maxwell
TM 

architecture, 1253 MHz base clock, 4 GB 

GDDR5 memory. Data types of RR and ZZ (in NTL 

library [16]) respectively be used for big real and integer 

numerical data. Also for better comparisons in diagrams, 

it is assumed that the termination conditions of BKZ and 

LLL algorithm are same which equal to time bound of 

600000 s (  7 days). The parameter set which be used for 

running of IEnum algorithm be shown in Table 1. 

In Fig. 2, the comparison of output norm (   norm) of 

IEnum (with parameter set which be introduced in Table 

1) and LLL reduction with various parameters of 

      ,    ,     ,      is shown. This test result show 

that, IEnum always can be better than LLL reduction.     

 

 

Fig.2. The results of    norm for IEnum and LLL reduction algorithm 

In Fig. 3, the comparison of output norm (   norm) of 

IEnum and full-BKZ reduction (i.e., NTL BKZ with 

      ) with parameters of       , and various 

block sizes of    ,  ,  ,   ,   ,   ,    is shown. This 

test result show that, IEnum (except for so small block 

sizes) may be worse than full BKZ reduction.      

 

 

Fig.3. The results of    norm for IEnum and full BKZ reduction 

In Fig. 4, the comparison of output norm (   norm) of 

IEnum and pruned-BKZ reduction with parameters of 

      , block size of     , and various pruning 
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parameter of prun=  ,   ,   ,    is shown. This test 

result show that, IEnum may be worse than pruned-BKZ 

reduction with sufficiently big block sizes.    

 

 

Fig.4. The results of    norm for IEnum and pruned BKZ reduction 

The slope of diagrams for BKZ (and LLL) algorithm 

verify this fact that, if BKZ algorithm is aborted after a 

polynomial number of SVP oracles over lattice blocks, 

then it was proved that the this output solution has the 

norm which slightly bigger than the output vector 

returned by fully finish of BKZ [36]. In other side, the 

slope of IEnum is smoother during the running time.   

 

VIII.  CONCLUSION AND FURTURE STUDIES 

The approximate-SVP within the polynomial factor 

directly or implicitly reduced to the security of many 

lattice-based cryptographic constructions, so achieving to 

these factors in polynomial time, break these 

constructions! In this paper, the best techniques of AI in 

general search/optimization combined with lattice theory 

techniques and parallelization technologies for solving 

the SVP. In the scope of AI, the possibility of using the 

general techniques in the class of randomly-guided 

search/optimization for solving SVP is briefly analyzed, 

and consequently EA is selected as the best candidate for 

our design. Then three technologies of multi-threading on 

multicore-CPU, graphic programming, and vectorization 

of program instructions is considered for implementation. 

By combining the knowledge of EA, parallelization and 

lattice theory, IEnum SVP solver is designed. IEnum 

algorithm uses a loop of performing three steps: 

evolutionary search, brute-force of tiny full enumeration 

and a single main enumeration. The evolutionary search, 

only is a Genetic Algorithm which fully parallelized and 

reasonably used the knowledge of the lattice theory in its 

design. The step of brute-force of tiny full enumeration 

just be performed in the role of too much local searches 

with random start points over the vectors from the 

previous step (inspired by memetic algorithms). Also, the 

step of main enumeration just is a GNR sound pruned 

lattice enumeration on a preprocessed main block of 

lattice vectors from the previous step. Besides our 

proposed algorithm, a pure model of Genetic Algorithm 

with more solid/stable design for SVP problem is 

proposed which can be inspired by future works. 

The test results showed that our proposed algorithm is 

better than LLL reduction in different parameters, but it 

may be worse than the BKZ variants (except some so 

small block sizes). We believe that, these test results is 

not sufficient for showing the entire potential strength of 

our contribution. Therefore, here it is tried to enumerate 

the possible further studies in the context of the problems 

and weaknesses of our work, as follows: 

 

1. We believe that, our proposed pure model of 

Genetic Algorithm for SVP problem (Algorithm 2) 

in section VI, can lead to better results than our 

main algorithm (Algorithm 1), so we prefer to 

suggest this model to study and analyze more in 

the next researches. 

 

Note 5: We believe that, it is a weakness in the step of 

brute-force of tiny full-enumerations in Algorithm 1, 

which introduced fully independent enumerations on 

random selection of blocks from only last POP, while in 

Algorithm 2, this full-independency be eliminated. 

 

2. We suggest that, in further studies, the 

parallelization considerations introduced in the 

level of super-computers or cloud (instead of low-

level one, which be discussed in this paper), to 

have more practical view to parallel SVP solvers.     

3. Since our contributions (in this paper) and the 

proposed algorithm in [19] defined their 

operations on pure lattice vectors (not projected 

lattice basis vectors), so these algorithms cannot 

be used as the SVP oracle for projected lattice 

blocks in block reduction algorithms (such as 

BKZ).   

 

Suggestion 1: It may be a suitable candidate to use 

orthogonalized integer representations of lattice vectors, 

for perform our proposed algorithm over projected 

lattice blocks (see [34]).    

 

4. By using sufficiently high dimensional lattice 

challenges, our proposed algorithm cannot be 

tuned for optimized parameter sets, so the output 

results which be introduced in this section cannot 

fully represent the strength of our contribution.  

 

Suggestion 2: We hope that this algorithm can be 

compete with BKZ reduction, by using the idea which 

introduced in section VI, and tuning the parameter sets 

of proposed algorithm to be optimized. 

Suggestion 3: For tuning the parameter sets of proposed 

algorithm, some techniques can be suggested such as: 

offline preprocess, offline/online neural network, fuzzy 

system and so on. 

 

5. The performance ratio of parallelization 

technologies used in proposed algorithm (in three 

classes which introduced in section IV) should be 
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compared to single thread and not-vectorized 

compiled code of the program (which can be test 

in further studies).    

6. We suggest that, for further studies other lattice 

challenges be used (such as SVP challenges in the 

sense of Goldstein and Mayer) in various 

dimensions. 

7. Also we suggest that for further studies use other 

SVP solvers, such as slide reduction, Voronoi cell, 

sieve algorithms, RSR reduction and so on. 
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