
I.J. Information Technology and Computer Science, 2019, 8, 9-19
Published Online August 2019 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2019.08.02

Copyright © 2019 MECS I.J. Information Technology and Computer Science, 2019, 8, 9-19

A Parallel Evolutionary Search for Shortest

Vector Problem

Gholam Reza Moghissi
ICT Department, Malek-Ashtar University of Technology, Tehran, Iran

E-mail: fumoghissi@iran.ir

Ali Payandeh
ICT Department, Malek-Ashtar University of Technology, Tehran, Iran

E-mail: payandeh@mut.ac.ir

Received: 29 April 2019; Accepted: 23 May 2019; Published: 08 August 2019

Abstract—The hardness assumption of approximate

shortest vector problem (SVP) within the polynomial

factor in polynomial time reduced to the security of many

lattice-based cryptographic primitives, so solving this

problem, breaks these primitives. In this paper, we

investigate the suitability of combining the best

techniques in general search/optimization, lattice theory

and parallelization technologies for solving the SVP into

a single algorithm. Our proposed algorithm repeats three

steps in a loop: an evolutionary search (a parallelized

Genetic Algorithm), brute-force of tiny full enumeration

(in role of too much local searches with random start

points over the lattice vectors) and a single main

enumeration. The test results showed that our proposed

algorithm is better than LLL reduction and may be worse

than the BKZ variants (except some so small block sizes).

The main drawback for these test results is the not-

sufficient tuning of various parameters for showing the

potential strength of our contribution. Therefore, we

count the entire main problems and weaknesses in our

work for clearer and better results in further studies. Also

it is proposed a pure model of Genetic Algorithm with

more solid/stable design for SVP problem which can be

inspired by future works.

Index Terms—SVP, Lattice reduction, Lattice based

cryptography, Evolutionary Search, Genetic Algorithm,

Parallelization, Graphic card.

I. INTRODUCTION

Lattice-based cryptography is the prominent candidate

in post-quantum cryptography (secure cryptography

against the quantum computers) [1]. Lattice theory

entered in cryptography by the breakthrough paper of

Ajtai [2]. The security in lattice based cryptography come

from the hardness of the lattice problems, where SVP

(Shortest Vector Problem) is the determinative one. In

fact, since different lattice problems (which are the

building blocks of lattice based cryptographic primitives)

can directly or implicitly be reduced to SVP problem in

most times, so the major attacks on this problem (SVP),

consequently threaten these cryptographic constructions.

The NP-hardness of exact SVP was known at first for

infinite norm in 1981 [3] and then, in 1998, for norm 2

(and any norm of p) under randomized reductions [4]. In

other side, NP-hardness of approximate-SVP for constant

factor (typically √) proved in 2001 [5] and

currently it is proved for ()

. Also it is shown

that, the approximate-SVP for factor of √ , is

belonged to co- , and for factor of
 is belonged to P. Also the smallest factor

for cryptographic constructions is ().
In solving SVP, lattice enumeration in a

parallelepiped/ellipsoid bounded region of Euclidean

space is the standard method. Lattice enumeration is the

fastest algorithm in theory and practice for solving exact-

SVP within the polynomial space methods. The

enumeration time is affected by preprocessing the lattice

block, and best theoretical result in this scope get by

Kannan’s algorithm (with time complexity of

 () [6]) which improve for practical use in [7].

Besides the preprocessing, other effective practices for

runtime of enumeration algorithm are suitable order of

lattice points to be enumerated [8], and using the various

pruning techniques [9]. Lattice reduction is other SVP

solver which is often the fundamental technique which

included in various lattice attacks. Some of the lattice

reduction algorithms include: LLL reduction, BKZ

reduction [8,10], slide reduction, HKZ reduction, BKZ

2.0 [11], progressive-BKZ [12]. The combinatorial

methods are other techniques in solving SVP which in

some parameters do better than lattice reductions [1]!

Voronoi cell algorithm is theoretically one of the fastest

deterministic algorithm with time complexity of ()
for solving SVP which needed exponential space of

 () [13]. Using randomization by combinatorial

algorithms, the time complexity of Voronoi cell improved

to (). Also, sieving is the fastest randomized method

with time complexity of () and exponential space

for solving (almost) exact SVP. Two main types of sieve

algorithm are classic sieve and list sieve. Best

improvement in provable version of sieve algorithm

10 A Parallel Evolutionary Search for Shortest Vector Problem

Copyright © 2019 MECS I.J. Information Technology and Computer Science, 2019, 8, 9-19

achieved the time complexity of () by using

combinatorial algorithms [14]. As we know, the best time

complexity for heuristically (not-provable) sieving is

 () [15]. Random sampling reduction is other

technique for solving SVP which be investigated in

lattice theory. Most of these algorithms can be used with

other norms for solving other lattice problems (even by

the same factor proved for SVP) such as closest vector

problem, shortest independent vector problem. The well-

known practical libraries which implemented some of

these algorithms are NTL [16] and fplll [17].

Artificial Intelligence (AI) introduces some SVP

solvers which look at this problem as an input hard

problems which can be solved by general techniques of

search/optimization. In an overall view, the general

techniques can be classified in the search/optimization

domain as follows: (I) the calculus-based search (such as

Gradient decent, Newton method, Fibonacci method), (II)

random-based techniques (such as evolutionary

computations, statistical mechanics), and (III) the

enumerative ones (such as back-tracking search, branch

and bound, dynamic programing). Since the

optimization/search methods introduced by AI to solve

the hard problems, are often known with the class of

randomly-guided searches, so our discussion will be

focused on this class. In this paper, some main techniques

in the class of randomly-guided search is briefly analyzed,

including: evolutionary computations [18], statistical

mechanics [19], fuzzy systems [20], neural networks [21]

and fuzzy neural networks. By using some analysis, it is

selected evolutionary algorithm as the best candidate in

this class to design our SVP solver algorithm based on.

Also, the special feature in our proposed algorithm is the

tight combination of Artificial Intelligence with the lattice

reduction theory and parallelization technologies.

Ding et al. propose a genetic algorithm for the first

time in solving SVP based on sparse integer

representations of short lattice vectors [22]. They suggest

some heuristic techniques which improve their results

[22]. In an independent work, Fukase et al. use

orthogonalized integer representation in sampling

technique to solve SVP [23]. These two papers introduce

promising test results. In [24], it is proposed a new

enumeration by integrating sparse orthogonalized integer

representations for shortest vectors, also proposed a

mixed BKZ method by alternately applying orthognalized

enumeration and other existing enumeration methods.

This methods [24] have exponential speedups both in

theory and in practice for solving SVP. Although the

results of using orthogonalized integer representation in

solving SVP is so hopeful, but our approach in this paper

is to use the plain representation of lattice vectors.

The remainder of this paper is organized as follows. A

description of basic background on lattice theory is

introduced in section II. In section III, it is made a so

brief analysis on using different AI techniques to solve

SVP. The parallelization considerations on multi-

threading technologies, graphic programming, and

vectorization on CPU, described in section IV. We

propose our parallel evolutionary search algorithm in

section V. Also, a pure/novel model of Genetic

Algorithm for SVP proposed in section VI, which we

believe that it is a suitable candidate for further study.

The experimental results and our analysis declared in

section VII. Finally, in section VIII, the conclusion and

further studies be declared.

II. PRILIMINARIES

Lattices are discrete subgroups of which be

defined by a basis. The bases are -linearly independent

vectors
 generating a lattice as follows:

 () *∑

 + (1)

The number of independent vectors in lattice basis was

known as rank of the lattice. The basis of lattice usually

showed by matrix . The volume of a lattice defined as

absolute determinant of basis . Also, the length of

lattice vectors usually measured by Euclidean norm ‖ ‖

which referred as norm and defined by:

‖ ‖

 (2)

Many hard problems can be found in lattices, which

SVP is one of the basic of them. For a given lattice basis,

SVP defined as the problem of finding shortest nonzero

vector in the lattice. The norm of best vector in lattice

be shown by notation of (). For practical purposes,

the approximation version of SVP problem usually be

used, which challenged to find a lattice vector with norm

of at most some approximation factor () times the

norm of the shortest nonzero vector. As be declared,

many techniques introduced to solve SVP, where the

lattice reduction is one of the main ones.

LLL is the most well-known lattice reduction

algorithm which solve SVP with approximation factor of

 () () in a polynomial time. For a given basis

 ()
 , the parameter of ,) ,

the value of
〈

 〉

〈

 〉
 as a Gram-Schmidt coefficient

and
 as the -th vector of Gram-Schmidt

Orthogonalization in basis, the LLL-reduced bases should

satisfy following conditions:

 Size condtion: | |

 for

 Lovasz condtion: ‖
 ‖ .

/ ‖

 ‖

Increasing the block size of 2 in LLL introduces BKZ

algorithm which causes to better approximation factor of

 () for SVP but takes more running cost. BKZ

algorithm proposed by Schnorr in 1987. In other words,

in LLL algorithm, it is tried to find the best norm in

projected lattice block of dimension 2, while in BKZ

algorithm, it is tried to find the best norm in projected

block with dimension .

Lattice enumeration algorithms are the main part of

 A Parallel Evolutionary Search for Shortest Vector Problem 11

Copyright © 2019 MECS I.J. Information Technology and Computer Science, 2019, 8, 9-19

BKZ reduction algorithm. For an input lattice block, the

enumeration function aims to solve SVP. There are

several practical improvements of enumeration algorithm

collectively known as Schnorr-Euchner enumeration.

Schnorr and Euchner proposed enumeration radii for

pruning of enumeration tree [8], just based on some

limited experiments. This pruning was analyzed by

Schnorr and Horner [10] in 1995 which revised by Gama

and et al. [9], who find flaws in it.

Gama, Nguyen and Regev [9] showed that a well-

chosen high probability pruning (such as by)

introduces the speedup of over full enumeration [9],

while their extreme pruning technique (such as by

) giving the speedup of ()
 over full enumerations. In fact, for block size of

and intermediate expected vector (as a candidate of

SVP solution), sound pruning replaces the inequalities of

‖ ()‖ for by ‖ ()‖

 where =1. The vector of

() named as bounding function which can

be extreme pruned bounding function, or not-extreme one.

The extreme pruned enumeration with bounding function

 uses

 ()
 iterations of re-randomization,

preprocessing and enumeration samples of the lattice

block, where the best solution from all the iterations,

returned as the final response. The pseudo-code of sound

pruned enumeration function given at Appendix B from

paper [9]. Note that, the most common technique to

preprocess the lattice blocks before enumerations is the

use of block reduction algorithms (such as BKZ). Also

the initial enumeration radius affects the enumeration

cost, even though this radius is updated during

enumeration [11] (in this paper, the selected enumeration

radii is the one be introduced in [11] with radius

parameter of √).

III. USING DIFFERENT AI TECHNIQUES TO SOLVE SVP

Although exploring deeply the possibility of using the

general techniques in the class of randomly-guided

search/optimization for solving SVP, is beyond the scope

of this paper, but it is discussed briefly this as follows:

 By analysis of design process, structure,

philosophy and application of four approaches of

ES (Evolutionary Search), EA (Evolutionary

Algorithm), EP (Evolutionary Programming) and

GP (Genetic Programming) [18] in solving SVP,

we found that just EA technique has the most

consistency with this problem, therefore it was

used massively in our proposed algorithm in

section V.

 As we know, the fuzzy system can be used in

optimization of practical applications [20], but

using this technique directly for solving basic

mathematical problems such as SVP, causes so

much inefficiencies (against the usual lattice

algorithms)! In fact, we believe that, the fuzzy

systems and fuzzy neural networks may have some

limited applications just in high level managing

the SVP search techniques.

 Even though, some studies such as [19] show the

possible application of statistical mechanics (by

applying the metropolis algorithm for SVP

problem) in solving SVP, but we found some main

drawbacks in this work which encourage us to

correct/improve them with a better underlaying

search technique.

 Although the neural networks can be used for

solving optimization problem, but in systematic

process of designing a Hopefield network [21] for

solving SVP with some standard design process,

we found some main dificulties in the design steps!

As be declared, EA algorithm is selected for our design

in section V. Also note that, all declared points on

problems of using the different AI randomly-guided

searches for solving SVP, are introduced based on our

analysis when SVP be represented in its plain model, not

other representations such as sparse integer

representations of short lattice vectors.

IV. PARALLELIZATION CONSIDERATIONS

In this section, three technologies are described which

be used to speed-up our proposed algorithm. These three

technologies includes: MIMD (Multi-Instructions Multi-

Data) technology by multicore-CPU, SIMD (Single-

Instructions Multi-Data) technology by graphic cards, and

Vectorization technology on CPU. In following sub-

sections these technologies and their applications in this

research be described.

A. MIMD technology by multi-threading over multi-core

processors

MIMD technology on the multicore CPU introduces

the ability of running inhomogeneous instructions over

different data values. This technology implemented by

multi-threading which be defined in user-level libraries

(such as: POSIX Pthread, Mach C-thread, Solaris thread)

and in the kernel of operating system (such as: Windows

95/98/NT/2000, Linux, Solaris). The user-level threads

map to the kernel-level threads in three models of one-to-

one, many-to-one, and many–to-many. These threads can

be deleted whether in the states of asynchronous

cancellation or deferred cancellation.

In practical implementation of block reduction

algorithms (such as BKZ) on the large lattice challenges,

the SVP oracles (enumeration function in BKZ)

determines the total running time. Therefore the

parallelization of block reduction algorithms focuses on

the parallelism of these SVP oracles. In paper [26], the

multi-threading approach is the balanced dedicating of

enumeration branches in one enumeration tree to different

processing threads for the maximum speedup. In paper

[27], the multi-threading approach is massive run of so

much threads which be dedicated to the extreme pruned

enumeration samples over one lattice block. Also, newly

12 A Parallel Evolutionary Search for Shortest Vector Problem

Copyright © 2019 MECS I.J. Information Technology and Computer Science, 2019, 8, 9-19

a lattice basis reduction algorithm suitable for massive

parallelization be proposed in [28] which experimental

tests of this algorithm over SVP Challenges with

dimension of 134, 138, 140, 142, 144, 146, 148 and 150,

outperform previous world results which was the problem

of dimension 132. Some considerations on using this

technology in implementation of our proposed algorithm

are as follows:

 The OpenMP standard be used to incorporate the

MIMD in implementation of our algorithm (this

standard uses Fork-Join model of parallelization).

 Thread mapping model in windows is one-to-one,

in which that, every thread has an identification

and independent thread context, including register

sets, stacks and private data area (note that, our

implementations in this paper introduced for

windows platforms).

 Our implementation in this paper didn’t use the

asynchronous cancellation of threads.

 The synchronization of the parallel threads is

avoided as much as possible.

 No assumption on knowing the count of the

available processors is used.

 The use of thread pools in the implementation of

OpenMP in this paper is verified by some

observed experimental evidences (note, the

different implementations of OpenMP standards,

don’t allow to access the internal thread pools).

B. SIMD technology by CUDA programming model

In November 2006, NVIDIA Inc. introduced CUDA

(Compute Unified Device Architecture), a general-

purpose parallel computation platform and programming

model for all NVIDIA GPU processors. In fact, CUDA is

a graphics development environment [28]. The CUDA

programming model makes it easier for programmers to

use the GPU. CUDA supports various languages or APIs

(Application Programming Interface) such as C,

FORTRAN, OpenCL and DirectX Compute. In CUDA

programming model, each thread can be identified by the

block index (in the grid) and the thread index in the

corresponding block. By identifying each thread, this

thread can be dedicated to perform same operation on its

specified data.

GPU hardware used more transistors than CPU to

process data in SIMD mode [28]. The GPU hardware

consists of several SM (Streaming Multiprocessors). The

threads in the blocks of a SM run in groups of 32, called

warp, in which that, at the same time execute the same

instructions in SIMD mode. One of the main issues in

warp is to avoid warp divergence (i.e., to maximize

performance, it is needed to make sure every warp is fully

active or completely disabled). Another main issue is that,

if the number of needed registers exceeds the maximum

number per SM, it may be used the L1 Cash or even

device memory (in which that, this mechanism of

registers distribution in different level of graphic cards

memory architecture is not known exactly), so avoiding

this problem, is one of the key issues in large-scale

graphics applications. Also, the size of blocks in a SM

has a non-negligible impact on the efficiency!

In some studies (such as [27]), the use of graphic cards

for solving SVP were discussed. In the case of pruned

enumeration function as SVP oracle, we faced with the

worst scenario of warp divergence! So it cannot be

expected that the pruned enumeration algorithms (such as

Schnorr-Euchner pruned, Schnorr-Horner pruned and

GNR
1

 enumeration) achieve to the highest possible

speedup by graphic cards! Other problems which we

faced with, in using the graphic cards for solving SVP,

are synchronization, overclocking, overheating, memory

constraints and so on.

C. Vectorizing technology on CPU platforms

The vectorization technology is one of most notable

concepts in performance analysis of current

cryptographic constructions (see specification of NIST

candidates at [38]). To have best practice for

vectorization over CPU, assembly language should be

used. Although current compilers (such as MSVC) try to

apply highest optimization by auto-vectorization, but

expert programmers when need to introduce some non-

trivial speedup, they use the assembly language for

vectorizing the critical section of codes [29].

Unfortunately, assembly language is non-portable for

different hardware platforms, has maintainability

problems, error-prone structure
2
, less flexibility and more

cost in programming [30].

Since x86-mode dose not support last technologies in

vectorization, the x64-mode should be used. The x64-

mode assembly used flat memory model [29]. Some

technologies which currently supported in CPU platforms

are as follows [31]: SSE, SSE2, SSE3, SSSE3, SSE4.1,

SSE4.2, AVX, AVX2 (256-bit band-width), AVX512

(512-bit band-width). Different assemblers support x64-

mode, such as NASM, YASM, FASM and MASM [29],

and finally the x64-mode MASM assembler (ML64.exe)

is selected.

In this research, our proposed algorithm frequently

calls a modified version of merge-sort, which is one of

the most costly parts of our algorithm. This sort function

uses a different and high-speed sorting sub-function for

sufficiently small blocks in the first step of merge-sort.

This high-speed sorting sub-function is compiled in x64

mode MSVC with auto-vectorization of SSE2 [32], and

compare it’s runtime with a modern vectorization of this

function by hand (see [37]). By this comparison, it is

found that, it is so difficult to compete with strong

compilers in trivial vectorization! In other side, the use of

Intel C for doing highest performance auto-vectorization

was not be possible, since in the time of doing this work,

icc (Intel C compiler) and nvcc (Nvidia CUDA C

compiler) has some inconsistency in their output codes

(this part of this research was done in some years ago).

Finally, it is decided to just use nvcc and MSVC with

highest auto-vectorization.

1 Gama-Nguyen-Regev

2 Assembly language has not safe structures such as if-else, while, for.

 A Parallel Evolutionary Search for Shortest Vector Problem 13

Copyright © 2019 MECS I.J. Information Technology and Computer Science, 2019, 8, 9-19

V. A PARALLEL AND EVOLUTIONARY SEARCH FOR SVP

In this section, different aspects of our proposed

algorithm is described, which be named IEnum

(Intelligent Enumeration). At first, it is discussed our

search strategy for SVP problem in this algorithm. In the

next sub-section, the details of our algorithm is described.

A. The search strategy in IEnum

In this paper, it is tried to collect the best approaches in

AI (Artificial Intelligence), parallelization and lattice

reductions into a single algorithm to get the best result.

As be seen in Fig. 1, a loop of performing three steps is

used, including: evolutionary search, brute-force of tiny

full enumeration and a single main enumeration (in the

next sub-section, the details of these steps are descibed).

Fig.1. High level strategy in IEnum search scheme

In the step of evolutionary search, we faced with a

Genetic Algorithm which fully parallelized and

reasonably used the knowledge of the lattice theory in its

design. The step of brute-force of tiny full enumeration

just be assumed as too much local searches with random

start points over the vectors from the previous step. And

finally, the step of main enumeration just is a pruned

lattice enumeration on a preprocessed main block from

the vectors of previous step.

The memetic strategy [29,30] was introduced by

Richard Dawkins, which showed that the evolution not be

limited to genes (Darwinian principal of natural

evolutions). The concept of memetic comes from “mem”,

which is a cultural element and transferring from one

generation to next ones through non-genetic operations.

In some views, the main features of memetic algorithm is

the use of problem knowledge in different phases of

evolutionary search. So it be seemed that, IEnum can be

discussed in the context of a memetic algorithm, because

of some features, including:

 Ability of preprocessing the population (such as by

functions of , ,) before

different steps;

 Ability of using different lattice heuristic for

search (over lattice blocks) and evaluation criteria;

 Using the problem knowledge in defining genetic

operators;

 Using the local search (over a lattice block, not a

single vector) to improve the children at each

generation to get away from pre-mature

convergence;

 Ability to restart the population;

Algorithm 1 IEnum search

 ()

 √

 1: ()

 2: ()
 3: ()
 4: () //
 5: () ()

 6: (())*//

 7: (())
 // ()
 8: () // , - , -
 9:
10: (())*
11: , -

12: ()

 ()
13: ()
14: ()
15: (, -)*
16: , - +
17:
18: ()*
19: ()

20: +
21:
22: ()
23:

 ()

 ((

()))

 //

24: ()*
25:
 ++
26:

 ()
27: *+
28: (())*
29: (())

30:
 . ((())/

31: (, -)
32: , - +

33: ((
 ()))

34: (

()) ()

35: () +//

36: ()
37: ()
38: , - //The output is the best vector of

B. Detailed specification of IEnum search

The pseudo-code of IEnum search can be seen in

Algorithm 1. Note that, it is clear that for performance

issues, the implementation of this pseudo-code is more

complex than our description in this sub-section, so for

simplicity, other sub-functions and methods which be

used for speeding up, are eliminated. Also since this

algorithm massively uses the parallelization, we specify

this in the algorithm by coloring the parallelized sub-

functions (red color for CPU-side multi-threading and

blue color for GPU-side parallelization). In the reminder

14 A Parallel Evolutionary Search for Shortest Vector Problem

Copyright © 2019 MECS I.J. Information Technology and Computer Science, 2019, 8, 9-19

of this sub-section, it is focused on details of Algorithm 1

by using a continuous organization.

Since a time bound is used to finally abort the

algorithm, so at beginning of the code, a timer is set (line

1). Also since there are so much sub-functions in CPU-

side and GPU-side which use many intermediate

variables (such as vectors and Matrices), the definition

and memory allocation of them should be used early in

the algorithm for performance purposes (lines 2, 3). Note

that, since in this algorithm, it is focused on the

population of lattice vectors, so instead of Size condition,

Lovasz condition and so on (see section II), the sorting of

lattice vectors based on Euclidean norm is considered as

the main technique for evaluation step (line 4). At this

point, the rank of the lattice basis should be determined,

so the function of () is used for

eliminating the dependent lattice vectors (line 5) which

be implemented here by using the function of

“IncrementalGS” in NTL library [16].

Now, the main loop of algorithm is performed which

tries to improve the best norm of the solution after each

round. The termination criteria of this loop determined by

input time bound. This loop includes three main steps:

 Evolutionary Step

 Brute-Force of Tiny Full Enumerations Step

 Main Enumeration Step

Evolutionary Step:

In this step it is tried to use a smooth evolutionary

search to maintain all possibilities (in lattice vectors) with

moderate degree of being greedy. At first, the population

is generated by using the basis vectors of B (line 7). The

function of (()) performs cross-

over operation, simply by using add and minus over each

two basis vectors, in a parallel SIMD way on the graphic

cards (GPU-side), and finally produce lattice

vectors as parents (i.e., with basis vectors, the number of

parents become). Note that, the norm of each vector is

computed in the function of on GPU-side.

After that, the produced population is sorted

based on Euclidean norm of vectors (line 8). To have best

performance, a parallelized merge function (from merge-

sort) is used in our sorting algorithm on CPU-side. The

termination criteria for the loop of this step (line 10)

satisfied when the best norm in the population not be

better (relating to the variable of) after some

specified number of generations (i.e., the violation of

). Some other criteria can be used

for termination, such as the worst norm in the best

vectors of population which not be better after some

specified generations. In the loop of this step, at first, the

pairs of parents are determined to cross-over, in which

that, for

 times, each parents randomly be

paired (see line 12).

Note 1: is the maximum size of population which

be assumed to be multiple of .

Note 2: The function of in the entire

Algorithm 1 don’t collapse the sort of population, and

just return an index array of uniformly random

permutation of vector andices.

In the way that the parents are generated, the number

of children are generated on GPU-side (line

12). Now, there is a population with size of

(line 13). Then this population is sorted in line 14

(parallelized in CPU-side). After sorting the number of

 vectors in (line 14), the termination variable

of is updated in lines 15 to 17.

Also the generations are allowed to have a bounded

degree of elitism. The value of show the

current number of best vectors which can be presented

directly in the population of next round of this step. By

cutting the number of from first (best)
vectors in sorted population, implicitly the duplication

(frequency) of best vectors be increased after each round,

and consequently the chance (probability) of these

vectors in parent selection be increased. To preserve the

diversity, the elitist window () is reset after

each number of rounds and the

similar vectors is eliminated in the elitist window (vector

index from 1 to). As be seen in line 23,

vectors are selected for the next parents in ,

including basis vectors (for maintaining independent

vectors always in the population), elitist vectors, and

 random vectors from the vectors of

 to the index of last vector (with norm of

) in the sorted population. Finally, the

elitist window size (i.e.,) can be increased up

to after each round by (lines 24,

25). The rounds of this step continue the evolutionary

search (a Genetic Algorithm) until the termination criteria

(line 10) be satisfied and break the loop of the

generations.

Brute-Force of Tiny Full Enumerations Step:

In this step, the degree of being exact in local search is

increased, in the way that, a number of (GPU

real Threads Number) from full-enumerations are

performed with small block size of (Brute-force

Enumeration Block Size) on random selected blocks from

 , instead of cross-over on two vectors.

Note 3: The cross-over on two vectors can be assumed as

a model of enumeration with the block size of two.

Against the evolutionary search in pervious step, which

children of a round can be parents of next rounds, in this

step, we faced with completely independent enumerations

on random selection of blocks from only last POP in

previous step.

The termination criteria be updated in lines 31, 32 and

check in line 28 (similar to Evolutionary step, some other

criteria van be used for termination). The function

 run number of GPU

thread for lattice enumeration in parallel. Since the lattice

 A Parallel Evolutionary Search for Shortest Vector Problem 15

Copyright © 2019 MECS I.J. Information Technology and Computer Science, 2019, 8, 9-19

enumeration has so much unpredicted branches by

structure of “if-else”, so a full enumeration tree with no

prune for its branches is used! Also, since GPU cannot

tolerate long continues sequence of operations, even with

no branches, we limit the depth of enumeration tree with

maximum depth which can be tolerated by the used

Graphic cards. For our hardware platform in this paper,

the enumeration tree depth is nearly 9 for all physical

threads of used GPU (i.e., at each full enumeration tree

with degree 3 on a real thread of our platform,
 nodes be processed)

1
. For each selected random

block, the GSO coefficients are computed fully

parallelized on GPU-side, and consequently if the lattice

block is not linear-independent (it can be found by using

GSO information), this block can be eliminated from the

spool of random lattice blocks before full enumeration.

Finally in line 30, all the solution vectors are sorted at

each round of this step (set), and eliminate the similar

ones in this set, then this set (set) is merged with the

last solutions in this step (set) to select the number of

 first (best) vectors from the resulted set.

Main Enumeration Step:

In this step, it is tried to perform a pruned enumeration

with small success probability of finding the shortest

vector of a sorted block of the best independent vectors

from previous steps. It is clear that, the success

probability of this enumeration cannot be expected for

high dimensional basis be reasonable (for)!

Note that, in this research, a single sound pruned

enumeration (GNR enumeration) [9] is used, not an

extreme-pruned enumeration with re-randomization of

the block.

At first, the main block should be generated from the

resulted vectors of the last previous steps. So the vectors

from the set of , and number of (Anti-

Dependency Tolerable Size of population) from first

vectors of is selected. The resulted collection is

sorted, then he function of is performed

over the sorted vectors. Then the first main block of

resulted basis (with size of) is preprocessed by

reduction algorithm. A sufficiently big block size of is

used, while enumerations of parallelized on CPU-

side, then performed a single sound pruned GNR

enumeration with small success probability of finding

SVP (which also parallelized on CPU-side).

Note 4: since the function of is fully

sequential (and cannot be parallelized reasonably), we

need to cut number of first vectors from .

This algorithm continue until the timer reach to the

time bound . At the end of the algorithm, all the

variables, vectors, and matrices which be defined and

allocated on the GPU-side memory and CPU-side

memory, should be deleted.

1 The depth of lattice enumeration is equal to size of lattice block

VI. A PURE MODEL OF GENETIC ALGORITHM FOR SVP

In this section, a pure model of Genetic Algorithm is

proposed for SVP problem which we believed that it has

more solid/stable design than IEnum. Against the IEnum

algorithm, in this model, all the ordinary and standard

concepts/techniques from Genetic Algorithm can be used.

The principal difference is that, we use a combination

operator, where different number of parents can be

attended in the production of just one child, in which that

this child is at least better than these parents! In fact, by

accepting this operator as a combination operator in GA,

we can re-define different techniques of parent selection,

the elitism techniques, the selection of survivors, and so

on. Against the IEnum algorithm, we don’t need to trim

the population into independent lattice basis vectors

(i.e., in all the steps of this model, we faced with a

population of lattice vectors, not a basis in some times).

The pseudo-code of this algorithm is introduced in

Algorithm 2.

Algorithm 2 GA-Enum search

 ()

 ,

 √

 1: () //

 2: (())*//

 3: (())*
 4: () +
 5: ()
 6: Combination Operator:

 *
 ()

 ()

 , -(0 , -1 √)

 (, - √)

 () +
 7: ()
 8: () +
 9: ()

Here the Genetic functions of () ,

 (), (),
 () and so on are used as the black

boxes (except Combination operator). It is tried to clear

the combination operator in this pseudo-code (line 6) to

give a better sense of the algorithm, so different parts of

this operator can be altered in further studies. Note that,

in this operator, is an array of bounding functions

for different block sizes and is an array of

preprocess block sizes for different main block sizes of

 . Note that, all the parallelization considerations in

IEnum, can be applied in this model.

VII. EXPRIMENTAL RESULTS AND DISCUSSION

In this section, some experimental results are shown on

running time and quality of output solutions in IEnum

algorithm and be compared with the results of LLL and

16 A Parallel Evolutionary Search for Shortest Vector Problem

Copyright © 2019 MECS I.J. Information Technology and Computer Science, 2019, 8, 9-19

BKZ algorithms. The results were organized in 3 figures,

which compared the Euclidean norm of IEnum output

solutions with solution vector from LLL and BKZ

algorithms.

We believe that, using the lattice bases with small

dimension (as be used in [19]) cannot represent the entire

potential and strength of our contribution over the lattice

reduction algorithms. By using LLL algorithm in

polynomial time, the norm of best vector which be found,

was limited by the bound of () (). Also the use

of polynomial-time which need to a limited block

size of , lead to the best norm of () () .

Therefore, it is clear that, for small dimension of lattice

basis, even LLL algorithm with parameter of

may solve approximate-SVP, while for high dimensional

lattice basis (which be used for practical secure

cryptographic constructions), even the best variants of

block reduction algorithms may not lead to sufficiently

small norm of solutions! Therefore, we preferred to show

the test results of our contribution for sufficiently high

dimensional lattice basis. Consequently, against the

results of [19], all the tests in this paper performed on

randomized basis of Darmestadt lattice challenges [35]

with dimensions of 300. This challenge re-randomized by

a function inspired by “ ()” in fplll

library [17].

Table 1. Parameter set of IEnum for test results

Parameter Value

 (lattice basis dimension) 300

 (integer times of)

 (LLL arg.) 0.99

 (preprocess block size) 40

 (main block size) 60

√ (radius parameter) 1.05

 (bounding function) with success prob. of

 400

 2000

Number of blocks 13

Thread per block 1024

 13*1024=13312

 9

 50

 30

 18

All the implementations were compiled with MSVC

x64 bit C++ (which tuned for high optimized output and

auto-vectorization by SSE2), together with nvcc compiler.

Host hardware platform (CPU-side) which be used,

specified as follows: ASUS motherboard series Z97-K,

Intel® Core™ i7-4790K processor with base frequency

of 4 GHz, 16 GB RAM. Also the hardware platform in

GPU-side specified as follows: GeForce GTX 970,

Maxwell
TM

architecture, 1253 MHz base clock, 4 GB

GDDR5 memory. Data types of RR and ZZ (in NTL

library [16]) respectively be used for big real and integer

numerical data. Also for better comparisons in diagrams,

it is assumed that the termination conditions of BKZ and

LLL algorithm are same which equal to time bound of

600000 s (7 days). The parameter set which be used for

running of IEnum algorithm be shown in Table 1.

In Fig. 2, the comparison of output norm (norm) of

IEnum (with parameter set which be introduced in Table

1) and LLL reduction with various parameters of

 , , , is shown. This test result show

that, IEnum always can be better than LLL reduction.

Fig.2. The results of norm for IEnum and LLL reduction algorithm

In Fig. 3, the comparison of output norm (norm) of

IEnum and full-BKZ reduction (i.e., NTL BKZ with

) with parameters of , and various

block sizes of , , , , , , is shown. This

test result show that, IEnum (except for so small block

sizes) may be worse than full BKZ reduction.

Fig.3. The results of norm for IEnum and full BKZ reduction

In Fig. 4, the comparison of output norm (norm) of

IEnum and pruned-BKZ reduction with parameters of

 , block size of , and various pruning

 A Parallel Evolutionary Search for Shortest Vector Problem 17

Copyright © 2019 MECS I.J. Information Technology and Computer Science, 2019, 8, 9-19

parameter of prun= , , , is shown. This test

result show that, IEnum may be worse than pruned-BKZ

reduction with sufficiently big block sizes.

Fig.4. The results of norm for IEnum and pruned BKZ reduction

The slope of diagrams for BKZ (and LLL) algorithm

verify this fact that, if BKZ algorithm is aborted after a

polynomial number of SVP oracles over lattice blocks,

then it was proved that the this output solution has the

norm which slightly bigger than the output vector

returned by fully finish of BKZ [36]. In other side, the

slope of IEnum is smoother during the running time.

VIII. CONCLUSION AND FURTURE STUDIES

The approximate-SVP within the polynomial factor

directly or implicitly reduced to the security of many

lattice-based cryptographic constructions, so achieving to

these factors in polynomial time, break these

constructions! In this paper, the best techniques of AI in

general search/optimization combined with lattice theory

techniques and parallelization technologies for solving

the SVP. In the scope of AI, the possibility of using the

general techniques in the class of randomly-guided

search/optimization for solving SVP is briefly analyzed,

and consequently EA is selected as the best candidate for

our design. Then three technologies of multi-threading on

multicore-CPU, graphic programming, and vectorization

of program instructions is considered for implementation.

By combining the knowledge of EA, parallelization and

lattice theory, IEnum SVP solver is designed. IEnum

algorithm uses a loop of performing three steps:

evolutionary search, brute-force of tiny full enumeration

and a single main enumeration. The evolutionary search,

only is a Genetic Algorithm which fully parallelized and

reasonably used the knowledge of the lattice theory in its

design. The step of brute-force of tiny full enumeration

just be performed in the role of too much local searches

with random start points over the vectors from the

previous step (inspired by memetic algorithms). Also, the

step of main enumeration just is a GNR sound pruned

lattice enumeration on a preprocessed main block of

lattice vectors from the previous step. Besides our

proposed algorithm, a pure model of Genetic Algorithm

with more solid/stable design for SVP problem is

proposed which can be inspired by future works.

The test results showed that our proposed algorithm is

better than LLL reduction in different parameters, but it

may be worse than the BKZ variants (except some so

small block sizes). We believe that, these test results is

not sufficient for showing the entire potential strength of

our contribution. Therefore, here it is tried to enumerate

the possible further studies in the context of the problems

and weaknesses of our work, as follows:

1. We believe that, our proposed pure model of

Genetic Algorithm for SVP problem (Algorithm 2)

in section VI, can lead to better results than our

main algorithm (Algorithm 1), so we prefer to

suggest this model to study and analyze more in

the next researches.

Note 5: We believe that, it is a weakness in the step of

brute-force of tiny full-enumerations in Algorithm 1,

which introduced fully independent enumerations on

random selection of blocks from only last POP, while in

Algorithm 2, this full-independency be eliminated.

2. We suggest that, in further studies, the

parallelization considerations introduced in the

level of super-computers or cloud (instead of low-

level one, which be discussed in this paper), to

have more practical view to parallel SVP solvers.

3. Since our contributions (in this paper) and the

proposed algorithm in [19] defined their

operations on pure lattice vectors (not projected

lattice basis vectors), so these algorithms cannot

be used as the SVP oracle for projected lattice

blocks in block reduction algorithms (such as

BKZ).

Suggestion 1: It may be a suitable candidate to use

orthogonalized integer representations of lattice vectors,

for perform our proposed algorithm over projected

lattice blocks (see [34]).

4. By using sufficiently high dimensional lattice

challenges, our proposed algorithm cannot be

tuned for optimized parameter sets, so the output

results which be introduced in this section cannot

fully represent the strength of our contribution.

Suggestion 2: We hope that this algorithm can be

compete with BKZ reduction, by using the idea which

introduced in section VI, and tuning the parameter sets

of proposed algorithm to be optimized.

Suggestion 3: For tuning the parameter sets of proposed

algorithm, some techniques can be suggested such as:

offline preprocess, offline/online neural network, fuzzy

system and so on.

5. The performance ratio of parallelization

technologies used in proposed algorithm (in three

classes which introduced in section IV) should be

18 A Parallel Evolutionary Search for Shortest Vector Problem

Copyright © 2019 MECS I.J. Information Technology and Computer Science, 2019, 8, 9-19

compared to single thread and not-vectorized

compiled code of the program (which can be test

in further studies).

6. We suggest that, for further studies other lattice

challenges be used (such as SVP challenges in the

sense of Goldstein and Mayer) in various

dimensions.

7. Also we suggest that for further studies use other

SVP solvers, such as slide reduction, Voronoi cell,

sieve algorithms, RSR reduction and so on.

REFERENCES

[1] Daniele Micciancio, Oded Regev, “Lattice-based

cryptography”, In Post-quantum cryptography, pp. 147-

191, Springer Berlin Heidelberg, 2009.

[2] Ajtai, M., “Generating hard instances of lattice problems”,

In Complexity of computations and proofs, volume 13 of

Quad. Mat., pages 1–32. Dept. Math., Seconda Univ.

Napoli, Caserta (2004). Preliminary version in STOC

1996.

[3] P. V. E. Boas, “Another np-complete problem and the

complexity of computing short vector in a lattice”, in Tech.

rep 8104, University of Amsterdam, Department of

Mathematics, Netherlands, 1981.

[4] M. Ajtai, “The shortest vector problem in l2 is np-hard for

randomized reductions”, in STOC 98: Proceedings of the

30th Annual ACM Symposium on Theory of Computing,

New York, NY, USA, 1998, pp. 10–19.

[5] D. Micciancio, “The shortest vector in a lattice is hard to

approximate to within some constant”, SIAM Journal of

Computing, vol. 30(6), pp. 2008–2035, 2001.

[6] Hanrot, Guillaume, Damien Stehlé, “Improved analysis of

Kannan’s shortest lattice vector algorithm”, In Annual

International Cryptology Conference, pp. 170-186.

Springer, Berlin, Heidelberg, 2007.

[7] D. Micciancio, Michael Walter, “Fast lattice point

enumeration with minimal overhead”, In Proceedings of

the twenty-sixth annual ACM-SIAM symposium on

Discrete algorithms, pp. 276-294. Society for Industrial

and Applied Mathematics, 2014.

[8] C. P. Schnorr, M. Euchner, “Lattice Basis Reduction:

Improved Practical Algorithms and Solving Subset Sum

Problems”, Math. Programming, 66:181–199, 1994.

[9] N. Gama, P. Q. Nguyen, O. Regev, “Lattice enumeration

using extreme pruning”, In Proc. EUROCRYPT ’10,

volume 6110 of LNCS. Springer, 2010.

[10] C.-P. Schnorr, H. Horner, “Attacking the Chor-Rivest

cryptosystem by improved lattice reduction”, In Proc. of

Eurocrypt ’95, volume 921 of LNCS, Springer, 1995.

[11] Yuanmi Chen, Phong Q. Nguyen, “BKZ 2.0: Better lattice

security estimates”, In International Conference on the

Theory and Application of Cryptology and Information

Security, pp. 1-20. Springer Berlin Heidelberg, 2011.

[12] Y. Aono, Y. Wang, T. Hayashi, T. Takagi, “Improved

progressive BKZ algorithms and their precise cost

estimation by sharp simulator”, In Annual International

Conference on the Theory and Applications of

Cryptographic Techniques, pp. 789-819. Springer, Berlin,

Heidelberg, 2016.

[13] Micciancio, Daniele, Panagiotis Voulgaris, “A

deterministic single exponential time algorithm for most

lattice problems based on Voronoi cell

computations”, SIAM Journal on Computing 42, no. 3

(2013): 1364-1391.

[14] Aggarwal, Divesh, Daniel Dadush, Oded Regev, Noah

Stephens-Davidowitz, “Solving the shortest vector

problem in 2^n time using discrete Gaussian sampling” In

Proceedings of the forty-seventh annual ACM symposium

on Theory of computing, pp. 733-742. ACM, 2015.

[15] Anja Becker, Leo Ducas, Nicolas Gama, Thijs Laarhoven,

“New directions in nearest neighbor searching with

applications to lattice sieving”, In Robert Krauthgamer,

editor, 27th SODA, pages 10-24. ACM-SIAM, January

2016.

[16] Victor Shoup, “NTL vs FLINT”, available at

http://www.shoup.net/ntl/benchmarks.pdf.

[17] GitHub hosting service, fplll library project, available at

https://github.com/fplll/.

[18] Eiben, Agoston E., James E. Smith, “Introduction to

evolutionary computing”, Vol. 53. Heidelberg: springer,

2003.

[19] Shenoy, K. B. A., Somenath Biswas, Piyush P. Kurur,

“Metropolis algorithm for solving shortest lattice vector

problem (SVP)”, Hybrid Intelligent Systems (HIS), 2011

11th International Conference on. IEEE, 2011.

[20] Oltean, Gabriel, “Fuzzy Techniques in Optimization-

Based Analog Design”, WSEAS International Conference,

Proceedings. Mathematics and Computers in Science and

Engineering. Eds. W. B. Mikhael, et al. No. 10. World

Scientific and Engineering Academy and Society, 2008.

[21] Hopfield J., Tank D., “Neural Computation of Decisions

in Optimization Problems”, Biological Cybernetics, Vol.

52, pp 141-152, 1985.

[22] Ding D, Zhu G Z, Wang X Y., “A genetic algorithm for

searching the shortest lattice vector of SVP challenge”, In:

Proceedings of the 2015 Annual Conference on Genetic

and Evolutionary Computation, Madrid, 2015, 823–830.

[23] Fukase M, Kashiwabara K., “An accelerated algorithm for

solving SVP based on statistical analysis”, J Inf Process,

2015, 23: 67–80.

[24] Zhongxiang Zheng, Xiaoyun Wang, Yang Yu,

“Orthogonalized lattice enumeration for solving SVP”,

Science China Information Sciences 2018.

[25] Aono, Yoshinori, Phong Q. Nguyen, Yixin Shen,

“Quantum lattice enumeration and tweaking discrete

pruning”, International Conference on the Theory and

Application of Cryptology and Information Security.

Springer, Cham, 2018.

[26] Fabio Correia, Artur Mariano, Alberto Proenca, Christian

Bischof, Erik Agrell, “Parallel improved Schnorr-

Euchner enumeration SE++ for the CVP and SVP”, In

24th Euromicro International Conference on Parallel,

Distributed and Network-based Processing, 2016.

[27] Kuo, Po-Chun, Michael Schneider, Özgür Dagdelen, Jan

Reichelt, Johannes Buchmann, Chen-Mou Cheng, Bo-Yin

Yang, “Extreme Enumeration on GPU and in Clouds”, In

International Workshop on Cryptographic Hardware and

Embedded Systems, pp. 176-191, Springer Berlin

Heidelberg, 2011.

[28] T Teruya, K Kashiwabara, G Hanaoka, “Fast lattice basis

reduction suitable for massive parallelization and its

application to the shortest vector problem”, PKC 2018:

Public-Key Cryptography – PKC 2018 pp 437-460

[29] “CUDA C Programming Guide”, eBook, NVIDIA

Corporation, available at www.nvidia.com, July 19, 2013.

[30] Chris Lomont, “Introduction to x64 Assembly”, Intel®

Corporation, available at

https://software.intel.com/sites/default/files/m/d/4/1/d/8/In

troduction_to_x64_Assembly.pdf, February 27, 2014.

[31] Ray Seyfarth, “Introduction to 64 Bit Windows Assembly

Programming”, eBook, CreateSpace Independent

Publishing Platform, October 6, 2014.

 A Parallel Evolutionary Search for Shortest Vector Problem 19

Copyright © 2019 MECS I.J. Information Technology and Computer Science, 2019, 8, 9-19

[32] Chris Lomont, “Introduction to Intel® Advanced Vector

Extensions”, Intel White Paper, 23 May, 2011.

[33] Guide, P., “Intel® 64 and IA-32 Architectures Software

Developer’s Manual”, Intel® Corporation, available at

http://download.intel.com/design/processor/manuals/2536

65.pdf, Vol.1, May 2011.

[34] Auger, Anne, Benjamin Doerr, “Theory of randomized

search heuristics: Foundations and recent developments”,

Vol. 1. World Scientific, 2011.

[35] Ong, Yew-Soon, Meng-Hiot Lim, Ning Zhu, Kok-Wai

Wong, “Classification of adaptive memetic algorithms: a

comparative study”, IEEE Transactions on Systems, Man,

and Cybernetics, Part B (Cybernetics) 36, no. 1: 141-152,

2006.

[36] R. Lindner, M. Ruckert, “TU Darmstadt lattice challenge”,

available at www.latticechallenge.org.

[37] G. Hanrot, X. Pujol, D. Stehle, “Analyzing blockwise

lattice algorithms using dynamical systems”, In Proc.

CRYPTO ’11, LNCS. Springer, 2011.

[38] “Implementing Bubble Sort with SSE”, available at

http://www.codeproject.com/Articles/23558/Implementin

g-Bubble-Sort-with-SSE.

[39] NIST post-quantum candidates, available at

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography.

Authors’ Profiles

Gholam Reza Moghissi, received the M.S.

degree in ICT Department at Malek-e-Ashtar

University of Technology, Tehran, Iran, in

2016. He is intrested in the application of

cryptography in computer science.

Ali Payandeh, received the M.S. degree in

Electrical Engineering from Tarbiat Modares

University in 1994, and the Ph.D. degree in

Electrical Engineering from K.N. Toosi

University of Technology (Tehran, Iran) in

2006. He is now an assistant professor in the

Department of Information and

Communications Technology at Malek-e-Ashtar University of

Technology, Iran. He has published many papers in

international journals and conferences. His research interests

include information theory, coding theory, cryptography,

security protocols, secure communications, and satellite

communications.

How to cite this paper: Gholam Reza Moghissi, Ali Payandeh,

"A Parallel Evolutionary Search for Shortest Vector Problem",

International Journal of Information Technology and Computer

Science(IJITCS), Vol.11, No.8, pp.9-19, 2019. DOI:

10.5815/ijitcs.2019.08.02

