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Abstract—The demand for workload prediction 

approaches has recently increased to manage the cloud 

resources, improve the performance of the cloud services 

and reduce the power consumption. The prediction 

accuracy of these approaches affects the cloud 

performance. In this application paper, we apply an 

enhanced variant of the differential evolution (DE) 

algorithm named MSaDE as a learning algorithm to the 

artificial neural network (ANN) model of the cloud 

workload prediction. The ANN prediction model based 

on MSaDE algorithm is evaluated over two benchmark 

datasets for the workload traces of NASA server and 

Saskatchewan server at different look-ahead times. To 

show the improvement in accuracy of training the ANN 

prediction model using MSaDE algorithm, training is 

performed with other two algorithms: the back 

propagation (BP) algorithm and the self-adaptive 

differential evolution (SaDE) algorithm. Comparisons are 

made in terms of the root mean squared error (RMSE) 

and the average root mean squared error (ARMSE) 

through all prediction intervals. The results show that the 

ANN prediction model based on the MSaDE algorithm 

predicts the cloud workloads with higher prediction 

accuracy than the other algorithms compared with. 

 

Index Terms—Cloud computing, Workload prediction, 

Resource scaling, Artificial neural network, Differential 

evolution. 

 

I.  INTRODUCTION 

Cloud computing is developed to provide on-demand 

computing services for the customers via the Internet, 

through web-based tools and applications, rather than 

having local servers or personal computing resources. The 

word "Cloud" refers to the servers that are connected to 

the Internet and represent data centers for computing 

services [1]. Cloud computing has many advantages like 

high flexibility, scalability, robustness, and cost saving [2]. 

It relies on virtualization technologies that offer virtual 

services, such as hardware virtualization and software 

virtualization, to share different computing resources 

among the customers and concurrently execute several 

work requests. Cloud computing has three main services: 

Software as a Service (SaaS), Platform as a Service (PaaS), 

and Infrastructure as a Service (IaaS) [1, 2].  In the SaaS, 

several software applications are provided to the clients. 

Every application can be accessed by multiple clients at 

the same time and each one is isolated from other clients. 

In the PaaS, the cloud computing provides the clients with 

a platform to develop applications and services. In the 

IaaS, physical or more often virtual computing resources 

are provided as a service to the users. Resource 

management is an important issue in the IaaS cloud 

service models that affects the efficiency of the cloud 

computing [2]. Workload prediction techniques are 

required to manage the cloud resources and increase the 

performance of the cloud computing [3]. According to the 

prediction of the workloads, resources are scaled up or 

down automatically to balance the workload among the 

computing resources. The resource scaling efficiency 

depends on the utilized workload prediction method. The 

future workload prediction methods are classified to 

statistical methods[4] and machine-learning methods [3]. 

In the statistical methods, the prediction is done by 

matching the current workload history with the similar 

workload in the past. Therefore, these methods are 

suitable for short-term workload prediction. They have a 

poor performance for long-term workload predictions [3]. 

In the literature, there are several statistical methods that 

have been applied to the workload prediction in the cloud 

such as: moving average [5], linear regression [6], Monte 

Carlo [7], and quadratic regression [6]. In the machine-

learning methods, historical information about the 

previous workload is used to design a predicted model for 

the future workload. They overcame the problem of 

dealing with the long-term workload prediction that is 

suffered by the statistical methods [3]. There are several 

machine-learning methods that have been applied to the 

workload prediction in the literature such as: support 

vector machine (SVM) [8], regression tree [9], and 

artificial neural network (ANN) [10-12]. In the present 

paper, we propose a workload prediction approach for 

cloud computing using artificial neural network and an 

enhanced self-adapting differential evolution algorithm 

(MSaDE) [17]. This paper is organized as follows. Section 

II presents an overview of the related work. The MSaDE 
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algorithm is reviewed in section III. Section IV presents 

the workload prediction approach. In Section V, the 

approach is tested through two different benchmark 

datasets. Finally, Section VI concludes the paper. 

 

II.  RELATED WORK 

Recently, various prediction approaches have been 

proposed to predict the future work-load per-server 

required. In [13], an adaptive approach is developed for 

workload prediction in the cloud computing applications. 

The workloads are classified into distinct classes and then 

each class is assigned to one of the prediction models 

based on the workload features. The authors in [10] 

introduce a workload prediction model based on self-

adaptive differential evolution (SaDE) algorithm and a 

neural network to predict the future workloads by 

extracting the training patterns from the historical 

information. The SaDE algorithm is used as a learning 

algorithm for the prediction model. A workload prediction 

model using long short term memory (LSTM) networks is 

introduced in [11]. The LSTM network is a special form 

of the recurrent neural network (RNN). In [14], the 

authors propose a dynamic workload prediction 

framework for the web applications using an unsupervised 

learning method. It analyzes the uniform resource 

identifier (URI) of web requests using the response time 

and the size of document features. After that, the 

distribution of the web requests based on historical access 

logs is computed to be used in the workload prediction for 

the future time. In [6], a linear regression model is 

proposed to predict the workload in service clouds. It uses 

an auto-scaling mechanism that scales the virtual 

resources based on the predicted workloads. The authors 

in [15] use statistical models for the resource requirements 

prediction in the cloud services. This prediction helps in 

deployment decisions like capacity, scale and scheduling. 

In [16], the authors use an adaptive model to predict the 

future workloads for web applications using support 

vector regression, linear regression and ARIMA. It uses a 

heuristic approach to select the model parameters.  

In this paper, we use the enhanced self-adapting 

differential evolution algorithm (MSaDE) [17] to optimize 

the parameters of the ANN prediction model for cloud 

computing. Historical information about previous 

workloads is analyzed to extract patterns according to the 

prediction intervals. These patterns are used to train the 

ANN model and predict the future workloads. The 

MSaDE algorithm is applied as a learning algorithm to 

improve the prediction accuracy and efficiency of the 

ANN model for the future workload prediction.                       

The proposed approach is evaluated over two benchmark 

datasets at different look-ahead times. The results show 

that MSaDE trains the artificial neural network efficiently 

to predict the future workloads with high accuracy. 

 

 

 

 

III.  AN ENHANCED DIFFERENTIAL EVOLUTION 

ALGORITHM WITH MULTI-MUTATION STRATEGIES AND 

SELF-ADAPTING CONTROL PARAMETERS 

Storn and Price introduced the differential 

evolution (DE) algorithm in 1995 [18]. DE has been 

successfully applied to various applications such as 

pattern recognition, cloud computing, and neural 

networks [19, 20]. MSaDE is an enhanced variant of 

the DE algorithm with multi-mutation strategies and 

self-adapting control parameters. It has been 

introduced in [17] to dynamically balance the rates 

of exploration and exploitation and improve the 

performance of the DE algorithm. MSaDE uses 

three mutation strategies with their related self-

adapting control parameters. The first mutation 

strategy allows searching search space with a high 

exploration rate, and the second one allows 

searching search space with a high exploitation rate, 

the third one balances exploration and exploitation 

rates. The trial vector is generated in every 

generation through the evolution process using only 

one mutation strategy. The automatic switch 

between these mutation strategies during 

generations is guided using the best and worst 

individuals at the current generation. This achieves a 

dynamic balance between the exploration and 

exploitation rates, which enhances the accuracy and 

convergence rate of DE. The three utilized mutation 

strategies are formed using five randomly chosen 

individuals ( 1 2 3 4, , ,G G G G

r r r rX X X X , and 5

G

rX ) as well as 

the best individual ( G

bestX ) at the current generation 

G. The base vectors of the first and second mutation 

are 
1

G

rX  and G

bestX , respectively. According to the 

these mutation strategies, the mutant vector 1G

iV    (i 

= 1, 2, . . . , NP) is defined as [17]: 
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(1) 

 

where NP is the population size, G

iLDF  is the difference 

vector with higher objective function value and G

iHDF  is 

the difference vector with lower objective function value. 

T is a predefined threshold, ( ) ( )G G G

i i bestCB f X f X  , 

( ) ( )G G G

i i worstCW f X f X  , f is the objective function, and 

mean( ) is the arithmetic mean. 
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,1

G

iF , 
,2

G

iF , and
,3

G

iF  represent the scaling factors of the 

mutation strategies. They are randomly chosen for every 

mutant vector from three predefined ranges. As the 

performance of the DE algorithm is affected by the control 

parameter values of the scaling factor F and the crossover 

rate CR, so, for every mutation strategy, the predefined 

range is defined for both of the scaling factor and the 

crossover rate as follows [17]. The range of the control 

parameter values for the first mutation strategy is defined 

as F1 = [0.7 0.8 0.9 0.95 1.0] and CR1 = [0.05 0.1 0.2 0.3 

0.4], such that ,1

G

iF   F1 and 
,1

G

iCR   CR1. The range of the 

control parameter values for the second mutation strategy 

is defined as F2 = [0.1 0.2 0.3 0.4 0.5] and CR2 = [0.8 0.85 

0.9 0.95 1.0], such that ,2

G

iF   F2 and 
,2

G

iCR CR2. The 

range of the control parameter values for the third 

mutation strategy is defined as F3 = [0.3 0.4 0.5 0.6 0.7] 

and CR3 = [0.4 0.5 0.6 0.7 0.8], such that ,3

G

iF   F3 and 

,3

G

iCR   CR3. Over the optimization process, the control 

parameters of the next generation (G+1) are updated 

randomly from the predefined ranges if the trial vector 

overcomes the target vector in the selection phase. 

Otherwise, the control parameters are not updated. 

Switching between the mutation strategies of Eq. (1) is 

done using the absolute differences G

iCB and G

iCW with the 

probability threshold condition T. For further details about 

MSaDE algorithm, the complete pseudo-code is given in 

[17]. 

 

IV.  A WORKLOAD PREDICTION APPROACH FOR CLOUD 

COMPUTING 

A workload prediction approach is proposed using an 

artificial neural network (ANN) and the enhanced variant 

of the DE algorithm (MSaDE) [17].  The prediction model 

has two phases. In the first phase, the ANN model is 

constructed with a single hidden layer. In the second 

phase, the network is trained using MSaDE algorithm. 

The patterns that are used as inputs to train the ANN 

model are extracted from the analyzed historical 

information about previous cloud workloads. The training 

process is done using the MSaDE algorithm as a learning 

algorithm to increase the prediction accuracy of the ANN 

model. 

A.  Workload Prediction Algorithm 

A artificial neural networks (ANNs) are widely used in 

prediction problems because of their high accuracy and 

efficiency compared to other prediction algorithms [21]. 

In the proposed prediction approach, we use a single 

hidden layer neural network trained in a supervised 

learning manner using the MSaDE algorithm. The neural 

network prediction model consists of three layers: the 

input layer, the hidden layer, and the output layer. The 

number of neurons in the input and hidden layers is 

determined according to the number of inputs to the neural 

network prediction model. The output layer has only one 

neuron that represents the predicted server workloads in 

future time. We use a linear activation function for the 

neurons of both input and output layers. The neurons of 

the hidden layer have a sigmoidal activation function (f) 

defined as [21]: 
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where v is the sum of the weighted inputs. The training 

dataset of the ANN prediction model is created as follows. 

First, the incoming requests from historical information 

are extracted. Then the workloads are aggregated 

according to the prediction intervals and the patterns of 

workloads are created. Finally, these patterns are 

normalized within the range [0,1] to form the training 

dataset  of the ANN model. Let tWL represent the 

workload vector at the prediction interval t, which is 

defined as: 

 

 1 2 t

t t t t

SWL wl wl wl                    (5) 

 

where the prediction intervals are assumed to be t = 1, 5, 

10, 20, 30, and 60 minutes as in [10].  
tS is the size of tWL  

that represents the overall number of workloads at the 

prediction interval t. The normalized workload vector 
tWLn  is calculated using Eq. (6): 
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where  1 2 t

t t t t

SWLn wln wln wln . 
minWL and 

maxWL are 

the minimum and maximum workloads in the workload 

dataset, respectively. The training dataset is utilized in the 

form of input patterns ( tI ) for the ANN model and their 

corresponding outputs ( tO ) that represent the future 

workloads, where tI and tO are defined as: 
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 1 2 t

T
t t t t

M M SO wln wln wln                 (8) 

 

where M is the number of  normalized workloads in each 

input pattern that represents the number of inputs of the 

ANN model. Fig.1 illustrates the sequence of operations 

for the proposed workload prediction approach. 
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B.  Neural Network Training 

MSaDE is an improved variant of the DE algorithm. It 

has been tested over a wide set of well-known benchmark 

functions with different properties. The results show that 

MSaDE has achieved better performance in terms of 

accuracy and convergence rate compared to other DE 

algorithms [17]. So we propose to use MSaDE as a 

learning algorithm to train the ANN prediction model. The 

training process is considered as one of the optimization 

problems with dimension D, where D is the number of 

parameters to be optimized in the ANN prediction model. 

These parameters represent the synaptic weights of the 

ANN model. The dimension D is determined as: 

 

 2 1D H M                           (9) 

 

where H is the number of the neurons in the hidden layer 

and M is the number of inputs of the ANN model.  

 

 

Fig.1. Proposed workload prediction approach 

The performance of MSaDE is evaluated by using the 

mean squared error (MSE) which is the objective function 

to be minimized, 
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where N=St  M  that represents the number of samples (or 

input patterns)  in the training data set, iO  is the desired 

output and ( ˆ
iO ) is the output of the ANN model. 

C.  Time Complexity of Workload Prediction Approach  

The time complexity of the workload prediction 

approach is based on the time complexity for both the 

MSaDE algorithm and the ANN prediction model. The 

time complexity of the DE algorithm depends on the 

population size (NP), the dimension of the objective 

function (D), and the number of generations (G). It can be 

defined as O(G×NP×D). Although MSaDE uses three 

mutation strategies with their related self-adapting control 

parameters, its trial vector is generated through 

generations using only one mutation strategy of these 

mutations. So MSaDE and DE have the same time 

complexity. Considering the ANN prediction model, the 

dimension D is the number of its synaptic weights to be 

optimized and it is equal to (H×(M+2)+1). Thus, the time 

complexity for one input pattern becomes 

O(G×NP×H×(M+2)+1) and it can be approximated to be 

O(G×NP×H×M). AS H < M, the time complexity can 

also be approximated to be O(G×NP×M
2
) as in [10]. 

Finally, the overall time complexity of the ANN 

prediction model using the MSaDE algorithm for (N) 

input patterns is O(G×NP×M
2
×N). This result shows that 

MSaDE algorithm achieves the same time complexity as 

SaDE algorithm for the ANN workload prediction model. 

 

V.  EXPERIMENTAL STUDY AND DISCUSSION 

The proposed prediction approach is evaluated over two 

benchmark datasets at different look-ahead times, taken 

from [22]. The dataset 1 represents the workload traces of 

NASA server and the dataset 2 represents the workload 

traces of Saskatchewan server. Comparisons are made 

with two well-known algorithms: the back propagation 

(BP) algorithm [12] and the self-adaptive differential 

evolution (SaDE) algorithm [10]. These algorithms are 

used in [10] as learning algorithms to train the neural 

network prediction model. The results are assessed in 

terms of the prediction accuracy represented by the root 

mean squared error (RMSE) and the average root mean 

squared error (ARMSE). where RMSE = MSE , and 
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ARMSE is the average of the RMSE over all prediction 

intervals. The consumed training time of the ANN model 

is also investigated. The results of the learning algorithms 

used for comparison are the same as in [10]. 

A.  Experimental Setup 

The experimental results are obtained on a computer 

with Intel Core i3 processor (2.4 GHz, 3M cache memory) 

and 4 GB of RAM memory in MATLAB R2007b 

Runtime Environment. The settings of the ANN 

prediction model based on the learning algorithms BP and 

SaDE are the same as in [10], where M=10 and H=7. For 

the learning algorithm MSaDE, we use two settings for 

the ANN prediction model. The first setting is the same as 

in [10] (M=10 and H=7) and we refer to the MSaDE 

algorithm as MSaDE1. The population size of the two 

algorithms MSaDE1 and SaDE have the same population 

size NP=20. In the second setting, we perform several 

trials to get suitable values of the parameters M, H, and 

NP that improve the prediction accuracy of the ANN 

model. Based on these trials, we found that the appropriate 

values of M, H, and NP are 5, 3, and 50, respectively. In 

this setting, we refer to the MSaDE algorithm as MSaDE2. 

The maximum number of iterations (Gmax) performed by 

the learning algorithms BP and SaDE is the same as in 

[10]. MSaDE1 uses the same value of Gmax as SaDE. The 

different values of Gmax for the learning algorithms BP, 

SaDE, MSaDE1 and MSaDE2 over the two training 

datasets 1 and 2 are listed in Table 1. All experiments are 

performed over prediction interval values t = 1, 5, 10, 20, 

30, and 60 min as in [10]. The first 60% of the dataset is 

used for training the ANN model and the rest 40% is used 

for testing it. The results are obtained as the average over 

10 independent runs as in [10]. 

B.  Accuracy Results 

The RMSE values of the results achieved by the 

learning algorithms BP, SaDE, MSaDE1 and MSaDE2 

over the training datasets 1 and 2 are listed in Table 2. The 

results are plotted in Fig.2 for the two datasets 1 and 2. 

Comparing MSaDE1 to BP and SaDE, the results show 

that the prediction accuracy of MSaDE1 is the best 

through all prediction intervals over the training dataset 1. 

For the training dataset 2, the accuracy of SaDE is 

slightly better than MSaDE1 over prediction interval t = 1 

and 5 min. MSaDE1 has the best accuracy over the rest 

prediction intervals t = 10, 20, 30, and 60 min. 

Table 1. Gmax of the learning algorithms over datasets 1 and 2. 

Prediction 

Interval (min) 

Dataset 1 Dataset 2 

BP SaDE MSaDE1 MSaDE2 BP SaDE MSaDE1 MSaDE2 

1 250 47 47 250 250 61 61 250 

5 250 39 39 250 250 77 77 250 

10 250 51 51 250 250 51 51 250 

20 250 47 47 250 250 51 51 250 

30 250 26 26 250 250 42 42 250 

60 250 26 26 250 250 21 21 250 

Table 2. Accuracy results in terms of RMSE over datasets 1 and 2. 

Prediction 
Interval (min) 

Dataset 1 Dataset 2 

BP SaDE MSaDE1 MSaDE2 BP SaDE MSaDE1 MSaDE2 

1 0.256 0.013 0.011 0.0011 0.119 0.001 0.002 0.0003 

5 0.311 0.100 0.039 0.0008 0.336 0.002 0.004 0.0005 

10 0.312 0.158 0.043 0.0012 0.313 0.158 0.027 0.0018 

20 0.288 0.158 0.047 0.0020 0.329 0.196 0.035 0.0014 

30 0.292 0.142 0.057 0.0029 0.349 0.209 0.057 0.0013 

60 0.305 0.142 0.063 0.0043 0.323 0.170 0.068 0.0015 

 

Comparing MSaDE2 to BP and SaDE, the results show 

that the prediction accuracy of MSaDE2 is the best 

through all prediction intervals over the two datasets 1 

and 2. The accuracy results in terms of ARMSE are listed 

in Table 3, where MSaDE1 and MSaDE2 achieve the 

best accuracy with a clear difference than BP and SaDE. 

The consumed training time in seconds of the ANN 

model based on the learning algorithms over the training 

datasets 1 and 2 are listed in Table 4. SaDE and MSaDE 

are population-based optimization algorithms, so they 

consume larger training time during iterations than the 

BP algorithm. MSaDE2 consumes less training time than 

SaDE algorithm over all prediction intervals. The trained 

ANN model based on MSaDE2 algorithm will have faster 

response than other algorithms as it has less number of 

neurons in the hidden layer and also less number of 

inputs. Fig.3 shows the predicted workload traces that 

represent the output of the trained ANN model based on 

MSaDE2 algorithm and the actual workload traces over 

the two datasets 1 and 2. The workload traces of this 

figure are obtained at the prediction interval t = 20 min. It 

can be observed that the predicted workloads are very 

close to the actual workloads over the two datasets.  

The errors between the predicted and actual output of 

the ANN model over the two datasets 1 and 2 are plotted 

in Fig.4. 
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(a) Dataset 1                                                                      (b) Dataset 2 

Fig.2. RMSE vs. prediction intervals over datasets 1 and 2 

Table 3. Accuracy results in terms of ARMSE. 

Dataset BP SaDE MSaDE1 MSaDE2 

1 0.294 0.11883 0.04333 0.00205 

2 0.29483 0.12267 0.03217 0.00113 

Table 4. Training time in seconds consumed by the learning algorithms over datasets 1 and 2. 

Prediction 
Interval (min) 

Dataset 1 Dataset 2 

BP SaDE MSaDE1 MSaDE2 BP SaDE MSaDE1 MSaDE2 

1 121.3 290.8 235.0 175.67 661.6 1949.6 1590.3 1126.6 

5 24.11 48.53 41.97 30.45 132.6 498.45 347.26 195.06 

10 12.14 31.70 25.32 18.25 64.80 168.66 122.17 96.45 

20 6.35 14.75 13.16 10.34 33.37 85.49 62.86 45.31 

30 4.27 5.50 7.71 5.22 21.42 46.74 39.34 26.49 

60 2.90 3.50 4.31 3.43 10.73 12.23 15.06 11.47 
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Fig.3. ANN model trained by MSaDE2 at prediction interval t = 20 min over datasets 1 and 2 
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Fig.4. Error of ANN model trained by MSaDE2 at prediction interval t = 20 min over datasets 1 and 2 
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VI.  CONCLUSIONS 

In this paper, we propose a workload prediction 

approach based on an artificial neural network (ANN) 

and an enhanced variant of the DE algorithm denoted by 

MSaDE. To show the accuracy and responsiveness of the 

ANN prediction model that is trained by the MSaDE 

algorithm, comparisons are made with two different 

learning algorithms: the back propagation (BP) algorithm 

and the self-adaptive differential evolution (SaDE) 

algorithm. Comparisons are made using two benchmark 

datasets over different prediction interval values (t = 1, 5, 

10, 20, 30, and 60 min). We use two settings for the ANN 

prediction model that is based on the learning algorithm 

MSaDE. MSaDE1 and MSaDE2 are used to refer to 

MSaDE in the first and second settings, respectively. The 

prediction accuracy results in terms of ARMSE show that 

learning the ANN model using MSaDE1 or MSaDE2 

achieves high accuracy over datasets 1 and 2 compared to 

BP and SaDE. Based on the ARMSE values over dataset 

1, the percentages of accuracy enhancement achieved by 

MSaDE1 and MSaDE2 compared to BP and SaDE are 

85.26%, 63.53%, 99.30% and 98.27%, respectively. For 

dataset 2, these percentages are 89.08%, 73.77%, 99.61% 

and 99.07%, respectively. The performance of the 

proposed MSaDE2 model depends on two elements: the 

network structure, and the training algorithm. The 

MSaDE2 model has faster response than other models as 

it has less number of neurons in the hidden layer and also 

less number of inputs. The MSaDE algorithm is used to 

train the proposed ANN prediction model that improved 

the prediction accuracy and efficiency of the ANN model 

for the future workload prediction. 
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