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Abstract—Luby Transform (LT) code plays a vital role in 

binary erasure channel. This paper portrays the design 

techniques for implementation of LT codec using 

application specific instruction set processor (ASIP) 

design tools. In ASIP design, a common approach to 

increase the performance of processors is to boost the 

number of concurrent operations. Therefore, 

optimizations like strategy of input design, processor and 

compiler architecture are very useful phenomenon to 

enhance the performance of the application specific 

processor. Using Tensilica and OpenRISC processor 

design tools, this paper shows the response of LT codec 

architectures in terms of cycle counts and simulating time. 

Result shows that, the simulation speed of Tensilica is 

very high compared to the OpenRisc tool. Among 

different configurations of Tensilica tool, proposed 

ConnXD2 design took 1 M cycles per second and 135.66 

ms to execute LT codec processor and XRC_D2MR 

configuration consumed only 9 iterations for successful 

decoding of LT encoded signal. Besides this, OpenRisc 

tool took 142K cycles and 6ms for executing LT encoder. 

 

Index Terms—Luby Transform Code, processor design 

tools, cycle count, Simulation Speed, Custom 

Architecture. 

 

I.  INTRODUCTION 

Luby Transform (LT) code nowadays plays an 

important role in the area of fountain code. This paper 

reports the various techniques for implementation of LT 

codec using application specific instruction set processor 

(ASIP) design tools. In past few decades, researches had 

been carried out to dedicate the operation of processor on 

application specific domain. In past few years, processor 

architectures had been evolved in the area of RISC family. 

Some key concepts like instruction level parallelism 

(ILP), bypassing technique, and multiple instruction 

executions are included with the operation of the RISC 

processors. To build complex systems, designers can 

integrate the pre-designed and pre-verified intellectual 

property (IP) blocks to save the time to market of a 

product. Designers are working hard to meet the 

requirements of embedded system design constrains like 

enhanced performance, less area, low power and less time 

to market. These ASIP architectures can replace multiple 

chip designs implemented as ASIC architecture [2]. 

Based on the coverage of full functionality of input 

application, the main target of ASIP design is to gain the 

highest performance over silicon area and power 

consumption as well as the highest performance over 

design cost [1]. ASIP implementation is perfect for this 

trade off and it is capable for scalable operation in terms 

of performance per area and power consumption factors 

[3]. In ASIP, a custom function unit in specific processor 

architecture is a partly designed application specific 

system that is used to adjust to a custom design with 

minimum cost. Therefore, this platform based system 

design requires minimum design cost during the plugging 

a programmable IP on the platform. This paper shows the 

unique technique to design LT codec processor using 

Tensilica and OpenRisc templates. 

 

II.  RELATED WORKS 

The main contribution of this paper is to design an 

efficient LT processor which is optimized in terms of 

instructions and implementing time. Therefore, it requires 

processor design tool that can be customised as per LT 

codec input application that is known as hardware 

modification. Moreover, besides the modification of 

processor architecture, it is also necessary to write an 

efficient LT codec program using high level language 

which is known as software implementation.  Using 

Tensilica and OpenRISC tools, these hardware and 

software implementation of LT codec are designed in 

terms minimum instructions and low simulation time 

which are the main criterion of application specific 

processors. So, to design an efficient LT codec processor 

is the main aim of this paper.  

There are various approaches of software 

implementation of LT codec program. Systematic 

decoding of LT encoder and decoder is one of the new 

approaches of LT codec architecture [11]. In this paper T. 

D. Nguyen et al. shows that this newly systematic 

approach is very much preventive against a potentially 

avalanche-like inter-packet error while decoding process. 

To achieve the reduced complexity of LT encoder and 

decoder, the activities of check node operation and 

variable node operation are very important [12]. H. 

Hussien et al. proposed an efficient hardware architecture 

to reduce the check node complexity that improves 
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hardware implementation in terms of speed and area. This 

customised architecture is also strong against error 

propagation [12]. To implement of LT codec, degree 

distribution and random number generator are very 

important functions to measure the level of complexity. T. 

Nguyen et al. showed a new approach of an optimized 

degree distribution and random number generator for 

software implementation of LT codec [13]. This newly 

approach of degree distribution is known as Truncated 

Degree Distribution (TDD). In LT decoder, sign of log-

likelihood ratio (LLR) is used in belief propagation (BP) 

decoder structure. C. Albayrak et al. proposes a method 

that has less computational complexity in terms of 

iterations for decoding LT encoded signal [14].  J. He et 

al. discussed regarding Distributed Luby transform (DLT) 

codec and analysed the error floor performance over 

additive white Gaussian noise (AWGN) channels [15]. K. 

Zhang et al. showed an architecture of LT decoder with a 

block length of 1024 bits and 100 iterations [16].  In this 

paper, number of iterations of BP algorithm in LT 

decoding is very high. Based on the discussion on recent 

works, new approach of degree distribution, ASIC 

implementation, and ideal random integer generator of 

LT codec had been proposed. But in my paper I have 

designed an application specific LT codec processor 

which is a new approach in this area.   

The rest of this paper is organized as follows: Section 

III describes the design techniques of LT codec processor 

using different processor templates. In this paper, 

Tensilica and OpenRisc processor tools have studied and 

proposed processor of LT codec has been developed. This 

Section represents the basic theories for developing 

processors using these tools. By using these architectures, 

LT codec program has been simulated which is shown in 

section IV. This section shows these simulation results 

generated by these tools. Here mainly cycle counts and 

simulation time are taken as reference parameters for 

comparing the performance of the tools. After simulating 

using all these tools, then a comparison table is portrayed 

to get the overall scenario of these tools. Finally 

conclusion and future works are discussed in final section. 

 

III.  LT CODEC PROCESSOR DESIGN USING ASIP  

DESIGN TOOLS 

In this paper, we will show the processor design 

techniques using Tensilica and OpenRISC tools. For 

application specific processor design, at first it requires 

two design files: one is input application written in HLL 

(for example in this work ltcodec.c file) and second one is 

processor architecture file (for example architecture 

definition file .adf, configuration file .cfg etc). These two 

design files are key structures for processor design in 

application specific domain. The response of the 

processor depends upon these input design files. For this 

reason, it is very important for designers to make efficient 

architecture of input application and configuration files. 

The proposed architecture of LT codec is discussed in 

author’s paper [4]. It is necessary one tool set for 

implementing application specific processors based on 

the TTA processor template. TTA based Co-Design 

environment (TCE) is one such processor template to 

provide an efficient LT codec processor written in high 

level language (HLL). This toolset is developed by 

Tampere University of Technology [5]. The 

comprehensive design of LT codec using TCE is 

elaborately explained in author’s another paper [6]. Using 

this tool, application written in high level language can be 

implemented in FPGA evaluation board through RTL 

design flow. 

A.  Processor Design Using Tensilica Tool 

Tensilica is very popular in the area of customizable 

processor design. It was founded by former employees of 

Silicon valley and EDA companies like MIPS in 1997. 

Like TCE tool, Tensilica also develops application 

specific processor for use in synthesized chip design for 

embedded system. Under Tensilica, Xtensa Xplorer is 

processor IP architecture used to generate processor for 

input application.  

At first, I will discuss an ASIP oriented design flow 

using Xtensa Xplorer (XX) integrated development 

environment (IDE) as the design framework under 

Tensilica tool [7]. Using the XX, it is possible to integrate 

software development, processor optimization and 

multiple-processor system-on chip (SoC) architecture into 

one common platform. From it, we can profile our input 

application code to identify the cycle consumed by the 

function used in input design. 

 

 

Fig.1. Configuration of Xtensa Xplorer Xtensa architecture [7] 

Then we can make necessary change to speed up that 

code. There are various building blocks in the Xtensa 

architecture.  The preconfigured cores are divided into 

four broad categories such as Communication, 

HiFi/Audio, Video/Imaging and Diamond or General 

Purpose Controller. Figure 1 shows the structure of 

Xtensa architecture. This figure shows the range of 

configurability, extensibility with Xtensa processor. In 

this architecture, system designer should specify the 

different blocks of configuration function units. 

Advanced designer-defined functions are one kind of 

hardware execution units and registers. Figure 2 

represents overall design flow of XX [7]. In this figure, 

the first block contains different configurations selected 
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upon the nature of input application. Based on these 

properties of this architecture, I have taken different 

configurations of architectures to simulate our input 

application. For this reason, I have taken 16 

preconfigured cores and among them the result is 

tabulated for four Xtensa configurations. Then we apply 

some custom logic levels to processor for accelerating the 

processor performance. 

 

 

Fig.2. Configuration of Xtensa Xplorer Xtensa design Flow [7]. 

 

Fig.3. A simplified architecture of ConnXD2 DSP engine [8]. 

The Communication configuration core is known as 

ConnX D2 DSP engine. In this paper, two ConnX 

configurations known as XRC_D2MR and XRC_D2SA 

are used for simulation and show very good performance 

between all other configurations. The XRC_D2XX 

configuration includes dual 16-bit multiply-accumulate 

(MAC) units and 40-bit register file to the base RISC 

architecture of the Xtensa LX processor. This engine uses 

two-way SIMD (single instruction, multiple data) 

instructions to provide high performance on vectorizable 

C code. It implements an improved form of VLIW 

instructions and five-stage pipeline. 

Figure 3 shows the basic architecture of the ConnX D2 

engine with two MAC units with register banks [8]. The 

ConnX D2 instruction set is designed for numeric 

computations like add-subtract, add-compare or add-

modulo etc required for digital signal processing. 

This ConnX D2 core exploits seven DSP-centric 

addressing scheme mentioned in figure 3. In order to 

provide excellent performance, it includes data 

manipulation instructions like shifting, swapping, and 

logical operations. Our input design is LT codec and it 

has huge number of shifting, swapping and logical 

operations. So, this processor architecture is suitable for 

our input design[8]. Besides this, I have simulated our LT 

codec design using other configurations. 

Tensilica Instruction Extension (TIE) is a language that 

lets designers incorporate application-specific 

functionality in the processor by adding new instructions. 

To accelerate the speed of the processor, in Tensilica, it is 

possible to apply the custom operation in input design. 

Tensilica Instruction Extension (TIE) language is a 

powerful way to optimize the processor and is used to 

describe new instructions, new registers and execution 

units that are automatically added to the Xtensa processor 

[8]. Xtensa cores take TIE files as input and create a 

version of Xtensa processor to complete the tool chain 

incorporate with new TIE instruction. The processor 

architect’s job is to decide which applications are 

common enough to warrant some level of support 

through dedicated instructions. This TIE can be generated 

automatically or manually, depends on the performance 

of TIE instructions. In this work, we have used TIE 

instructions generated automatically to profile our input 

design and it shows good performance. So using TIE 

instruction, processor creates single instructions that 

perform the multiple general purpose instruction. As 

mentioned above, TIE instructions improve the execution 

speed of the input application running on Xtensa 

processor. Some other techniques like Flexible 

Instruction Extensions (FLIX), Single Instruction 

Multiple Data (SIMD) and Fusion can be executable 

through TIE operation [8]. In this paper, we applied only 

FLIX instruction to the input application. In Xtensa, 

FLIX instructions are multi-operation instructions (32-bit 

or 64-bit long) that allow a processor to perform multiple, 

simultaneous, independent operations. In FLIX, 

processors are encoding the multiple operations into a 

wide instruction word. The XCC compiler takes the FLIX 

operation and converts it into FLIX format instruction as 

per the requirements to accelerate the input code. The 

performance of FLIX instruction is discussed in 

simulation result section. 

B.  Processor design using OpenRisc tool 

The OpenRISC architecture is one of the latest in the 

development of modern open architectures. It consists a 

family of 32- and 64-bit RISC/DSP processors. This kind 

of architecture allows a spectrum of chip and system 

implementations at a variety of price/performance points 

for a range of applications. OpenRISC 1200 is a 
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synthesizable processor developed and managed by  

OpenCores and using this OR 1200 processor, systems 

are designed with emphasis on performance, simplicity, 

low power consumption, scalability, and versatility. It 

targets medium and high performance networking, 

portable, embedded, and automotive applications. 

Therefore, OR 1200 is an open source IP-core available 

from the OpenCores website as a Verilog HDL model. 

By using this tool, the design can be simulated by two 

ways. The first uses the RTL simulation of primary 

design by using Icarus Verilog or Mentor Graphic’s 

Modelsim and the second method involves creating a 

cycle accurate from hardware description language using 

verilator tool. In this paper, RTL simulation (Icarus 

Verilog Simulator) is done for reference designs by using 

OpenRisc architecture, which consists 5-stage single-

issue integer pipeline, virtual memory support and basic 

DSP capabilities [10]. Figure 4 shows an overview of 

OpenRisc 1200 core architecture. For RTL 

implementation, all the blocks of OpenRisc 1200 IP core 

are written in Verilog HDL and are published under the 

GNU License. Here the test programs are compiled to 

Executable and Linkable Format (ELF) file format, which 

can be executed both in ISS and RTL simulator. Memory 

Addressing is one of the important operations of 

OpenRisc architecture. The processor computes an 

effective address when memory access instruction is 

executed. This addressing is also applicable for fetching 

the next sequential instruction. Fetching instructions from 

main memory is the main bottleneck of RISC processor. 

OpenRisc 1200 implements 32-bit 32 general-purpose 

registers (GPRs). The Load/Store Unit (LSU) transfers all 

data between the GPRs and CPU’s internal bus. 

 

 

Fig.4. Architecture overview: CPU/DSP block diagram of OpenRisc [9] 

Figure 4 shows the different units of CPU architecture 

in OpenRISC processor. The instruction unit implements 

the basic instruction sets of the OR1200 core. This 

instruction unit fetches instruction from the memory 

system and dispatches them to the available execution 

units like LSU, ALU, MAC units[9]. The basic operation 

of instruction unit is similar to that of the RISC processor. 

But The OpenRISC1000 architecture defines five 

instruction’s formats and two addressing modes those are 

explained elaborately in its product ref manual [9]. In 

figure 5, I have briefly explained these stages. Besides the 

GPRs and SPRs, OR 1200 has some important registers 

like Supervision register, Exception supervision register, 

program counter register, exception program counter 

register and exception effective address registers. 

OR 1200 has LSU which is responsible for transferring 

data between GPRs and the internal data bus of CPU. The 

LSU has been implemented as independent unit OR 1200 

architecture so that if there is a data dependency then 

memory system only be affected. The LSU can execute 

one load instruction every two clock cycles. It has ALU 

like RISC processor architecture. 

MAC unit executes the basic DSP operations and 

MAC instructions. In OR 1200 MAC unit is fully 

pipelined. In every clock cycle, it has ability to accept 

new MAC operation. The MAC instruction has 32-bit 

operands and a 48-bit accumulator. System unit connects 

all the CPU signals to the system signals except those 

which are connected through the Wishbone 

interfaces.The exception unit oversees the exceptions 

generated by the OR1200 processor core. For example 

the system calls, memory access conditions, interrupt 

request etc are handles by the exception units. 

For this OpenRisc processor, there are five-stage 

pipeline named as fetch, decode, execution, memory and 

write-back as mentioned in figure 5. These five 

instructions are in progress at any given clock cycle and 

each stage of the pipeline performs its task in parallel 

with all other stages. So in this paper, the execution clock 

cycles are counted for OpenRisc processor by applying 

two reference designs named as LT encoder and LT 

decoder architectures. The result will be discussed 

elaborately in simulation result section. 

 

 

Fig.5. Architecture overview:  OpenRISC 1200 5 stages pipeline. 

Figure 5 shows the five stages pipeline architecture of 

OpenRISC processor. These stages are mentioned as 

instruction fetch (IF), instruction decode (ID), execute 

(EX), load store (LS), and write back (WB). Pipelining is 

one of the most important phenomenon to verify the 

processor. It has strong effort to speed up the processor. 

Using this pipelining technique an instruction’s execution 

is divided into a number of independent steps to improve 

the throughput of a processor. These independent steps 

are called pipeline stages. Each pipeline stage ends up in 

a storage (pipeline registers) of its execution so that the 

subsequent stages can use the result. Therefore the 

pipelining architecture of OR 1200 processor is similar to 

the pipelining that I have discussed elaborately in 

previous chapters. 

In this section, I have discussed  proposed  architecture  
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of LT codec, processor design using two  different ASIP 

design tools and their architectures. Nevertheless, this 

discussion is not sufficient for understanding the 

complete tools. To get adequate information reference 

manual and user guides of corresponding tools are 

recommended. However, there are many other tools, for 

designing and simulating ASIP work. In this paper, I took 

only two tools for comparing their results. 

 

IV.  SIMULATION RESULT 

I have implemented and generated application specific 

processor for LT codec using Xtensa and OpenRISC 

processor design tools. The simulation results of TCE 

tool set have been shown in author’s another paper in ref 

[6]. 

 

 

Fig.6. Simulation model of LT codec communication. 

I have translated the complete encoding and decoding 

algorithm using C program. Before feeding in the 

decoding module, I apply noise to corrupt the transmitted 

signal through the channel. Therefore, the overall 

communication can be modeled by the figure 6. The main 

aim of this paper is to implement figure 6 using ASIP 

design tools. The results of this implementation based 

how efficiently I will produce LT codec processor and its 

efficiency is calculated in terms of cycle count and time 

required for simulation. Area, number of gates and cells 

required to implement this architecture have been 

discussed in reference [4]. 

A.  Simulation Result Using Tensilica Tool 

To compile an application in XX, we required to 

inform the Xplorer project to compile the processor 

configuration and after that the target will be built. A set 

of properties like compiler, assembler and linker contains 

in a target. In this work, we took the “release” version of 

the target library using level 3 optimization and apply 

FLIX & TIE instructions and then add this TIE 

instruction with core processor named as XRC_D2SA. 

Now I am compiling the LTcodec input design as 

reference code along with its library for each of the 

sixteen target cores and then run a profile execution. 

Table 1 represents the comparison of cycle counts for 

all processor configurations. As shown in table 1.1, the 

configuration components are designed according to the 

implementation of input design. From table 1.1, this 

processor is developed using TIE instruction set for LT 

codec input design and then add this TIE instruction with 

core processor named as XRC_D2SA. 

Table 1. Comparison of cycle counts for different configurations  
of Tensilca tool 

Active Processor 

Configuration 
Total cycles Required Time (s) 

DC_C_106micro 229,213,917 163.71 

DC_C_108mini 219,797,553 171.82 

DC_C_212GP 204,964,527 164.23 

DC_C_233L 204,968,307 170.19 

XRC_D2MR 164,231,379 137.86 

XRC_D2MR_FLIX 162,629,766 135.66 

XRC_D2SA 208,465,165 157.37 

XRC_D2SA_FLIX 206,444,710 202.20 

 

Now I am compiling the LTcodec input design as 

reference code along with its library for each of the 

sixteen target cores and then run a profile execution. 

Table 1 represents the comparison of cycle counts for 

eight processor configurations. As shown in table 1.1, the 

configuration components are designed according to the 

implementation of input design. Based on this, ConnXD2 

category processor shows very good result compared to 

the other processor configurations. If we study the cycle 

consumed by different operations using Tensilica tool, 

there are huge addition and logical operations taken by 

the LT codec design. Due to this reason, ConnXD2 type 

processor is suitable for simulating this LT encoder and 

decoder. From table 1, We can see that, without custom 

instruction operation XRC_D2MR is the best in 

comparison to other processors. Moreover, in Diamond 

controller processor, 570T configuration outperforms 

compare to others. We see that, 570T processor contains 

many DSP instruction extensions and SIMD execution 

units. If we see the disassembly information of input 

function, it is easily possible to find the step-by-step 

cycle consumptions by main and children functions as per 

their configuration details. We are not going to discuss all 

these architectural analysis. As it is mentioned earlier that 

ConnX D2 architecture is suitable for communication and 

for its rich hardware resources, XRC_D2MR 

configuration without TIE or FLIX instruction, takes 

164,231,379 total cycles for LT codec application. From 

its profile status, main function consumes highest 

7,585,908 cycles and if we see the disassembly profile of 

main function, it takes many load, add, move and logical 

operations. So, when we think in terms of hardware, these 

operations are rewiring certain bits from input to output. 

For this reason, we develop TIE and FLIX instructions 

and include these custom instructions to the processor. 

Table 1 shows the result of eight target processor in terms 

of cycles. Significant improvement in terms of cycle 

counts was found and from this table, the 

XRC_D2MR_FLIX configuration took 162,629,766 

cycles and main function took only 5,984,295 cycles 

which reduces 1,601,613 cycles compared to without 

FLIX operation. These architectures can be further 

modified by introducing the custom TIE instructions. 

I have generated TIE instruction by using automatic 

TIE generation techniques as mentioned in section III. 

Now I will show the behavior of iteration vs cycle counts 

of LT codec implementation.  It  is  mentioned earlier that  
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the decoding complexities depend on the number of 

iterations required for recovering message from encoded 

signal. For XX it takes 9 iterations for successfully 

decoding the encoded signal. However, it is possible to 

reduce the number of required iterations by modifying the 

degree distribution in the encoder. Table 2 was simulated 

for fixed degree distributions using highest and lowest 

configurations. Therefore, number of cycles is increasing 

exponentially with respect to the number of iterations. So 

it is very important to trade off between several issues: 

degree distribution, architecture structure of processor 

configuration, architecture of LT encoder and decoder, 

and finally the status of binary erasure channel (BEC). 

Because, the value of failure probability (δ) depends on 

the characteristics of the channel and the average number 

of degree connected with variable node depends on the 

value of δ. 

Table 1.1. Processor configuration of ltcodec_tie architecture 

Configuration Overview 

User Name chosun_ice_edu/sub2 

Core Name ltcodec_tie 

Core Description XRC_D2SA 

Configuration Detail 

TIE sources for 

configuration 

ltcodec.tdb contains 

ltcodec.tie 

Xtensa ISA version LX4.0 

Instruction options 

16-bit MAC with 40 

bit Accumulator 
no 

MUL 32 no 

32 bit integer divider  no 

Single Precision FP no 

Double Precision FP 

Accelerator 
no 

Synchronize 
instruction 

no 

Conditional store 

synchronize 
instruction 

no 

MUL 16 yes 

CLAMPS yes 

NSA/NSAU yes 

MIN/MAX and 

MINU/MAXU 
yes 

SEXT yes 

Boolean Registers yes 

Number of  

Coprocessor(NCP) 
3 

Enable Density 

Instruction 
yes 

Enable Processor ID yes 

Zero-overhead loop 

instruction 
yes 

TIE arbitrary byte 
enables  

yes 

 

For example, according to the table 2, for fixed value 

of δ, XRC_D2MR takes more that 340M cycles for 16 

iterations on the other hand for diamond controller 

106mico, it takes more than 475M cycles for 16 iterations. 

Moreover, simulating time behaves same as the manner 

of cycle counts. 

Table 2. Simulation for different number of iteration  
using Tensilica tool 

# of 
Iterations 

XRC_D2MR_MAC DC_C_106micro 

Cycle 

Count  

Time 

Count (s) 

Cycle 

Count 

Time 

Count (s) 

1 5,204,861 4.43 6,983,593 4.97 

2 19,182,518 15.60 26,034,519 18.31 

3 35,128,884 27.71 48,036,337 33.79 

4 52,840,982 42.21 72,696,444 50.98 

5 71,951,305 57.18 99,135,487 69.74 

6 92,160,200 74.41 127,678,043 90.72 

7 115,082,566 92.73 159,731,114 113.43 

8 164,837,807 128.70 194,314,345 137.03 

10 189,915,708 151.39 264,271,320 185.73 

16 340,940,055 283.37 475,626,960 335.57 

B.  Simulation result using OpenRisc tool 

For OpenRisc processor, “.cfg” file contains the default 

configurations and a set of simulation environments, 

which are similar to the actual hardware situation. For 

RTL simulator, the verilog files of all IP cores are 

included by using MAKE file. So once the environment 

is configured then the simulator generated the “.log” files 

under “out” and “run” folder. The minimal architecture of 

reference design is shown in table 3. In the OpenRisc 

processor, the reference design is compiled using 

OpenRisc tool chain (or32-elf) and a memory image is 

generated (.vmem). Then this program image is used in 

simulation to fill the RAM. Next, the verilog RTL 

sources check, compile, and simulate the result. 

Therefore, the OpenRISC processor will generate all the 

required signals to execute the operation. 

Table 3. Simulation result by using OpenRisc processor  

encoder and decoder 

OpenRISC Processor 

Encoder Decoder 

cycle Time (ns) cycle Time (ns) 

142,015 6,174,570 153,353 6,712,850 

 

In OpenRisc tool only modifying the CPU 

configuration is not sufficient to reduce the cycle count. 

For implementing the technique of sum product algorithm, 

it is required to use the sign function (tanh or tanh
-1

) in 

LT decoding algorithm. Therefore, I modify the decoding 

architecture of LTcodec design as per requirements of 

OR C compiler by including the LUTs. But these LUTs 

are not efficient because of random number generator. 

For each new simulation this LUT should be changed due 

to change of RNG. But for implementing the LT encoder, 

it does not require any mathematical operation. So it is 

easily synthesized by OpenRisc core. However table 4 

represents the simulation result using this processor. 

There are some limitations for simulating LT codec 

design using OpenRisc processor. I successfully 

completed the implementation of encoder but in the 

decoding part implementation didn’t work properly. Due 

to the  problem  of  header  file, I  mentioned  earlier  that  
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LUTs had been used there and these LUTs have been 

changed in each simulation because of random degree 

distribution. So it is not possible to calculate the error 

calculation of the LT codec. Since there is no option to 

transfer load from input design to compiler or simulator, 

so it is not possible to include the custom FU like TCE or 

custom instruction set like TIE and FLIX in OpenRisc 

processor. Only modification can be achievable by 

designing LTcodec architecture as input design or 

changing the CPU architecture of the processor. But the 

effect of changing CPU or simulation architecture shows 

very less impact on cycles count or simulation time. For 

this reason I didn’t represent the CPU architecture 

modification in this paper, although I have done this by 

changing setting the enable condition of different 

parameters under CPU section in reference configuration. 

C.  Comparison between LT codec processors 

Now, it is necessary to mention that we already 

developed hierarchy of different architectures for LT 

codec by using Tensilica and OpenRisc tools. The 

comparison between Tensilica and OpenRisc will be 

displayed. 

Table 4. Comparison of cycle counts for the Tensilica  

and OpenRISC processors 

Tensilica OpenRISC 

Cyc. Cnt. Time(s) Cyc. Cnt. Time (ns) 

142,557 0.11 142,015 6,174,570 

 

It is mentioned earlier that the TTA structure has more 

benefits compared to the OTA processor domain. In OTA 

domain, it takes separate instructions for executing the 

instructions using ISS environment. For this reason 

Xtensa tool takes more cycles for implementation.  

Tensilica runs 1 M cycles per second using ConnX D2 

engine. Now to make a fair comparison with three tools I 

have simulated encoder part of LT codec by using these 

tools. Table VI shows this comparison result, which is 

responsible for getting the scenario of these three tools. 

OpenRisc takes separate cycles for executing the 

instructions, which is a common behavior of the OTA 

class processor tools. However, all the architectures of 

these tools can be further modified by using their own 

techniques. Besides this, the modifications of LT codec 

i.e. degree distribution, number of decoding iteration, or 

input and encoded message length have huge influence 

on this hardware throughput. Within these three tools, 

Tensilica tool is very easy in terms of use and 

optimization. In this paper, I have used the Optimization 

level 3, automatic TIE and FLIX options of Tensilica tool. 

Moreover, the modification of configuration parameters 

of XX is not sufficient for designing the high 

performance LT codec design. 

 

V.  CONCLUSIONS 

The step by step techniques of application specific 

processor design using Tensilica and OpenRISC tools 

have been discussed elaborately in the previous sections. 

Finally in the result, the comparisons of these tools are 

presented in different aspects.  

OpenRISC tool is executing under the concept of pure 

pipelined RISC processor. On the other hand, XX of 

Tensilica shows the behavior like VLIW processor. As 

we discussed earlier that TTA is very suitable for 

applying custom FU to the architecture. Therefore, I have 

designed different custom FU for LT encoder and 

decoder. Similarly, in Tensilica tool, the processor 

configuration can be modified as per the input application 

in various ways. In this paper, TIE and FLIX technique 

are applied to improve the performance of processor in 

terms of cycle count. Finally the performance of the 

OpenRISC processor has been studied. I find some 

limitations while using the OpenRISC processor. For 

simulating the input design written in HLL, it does not 

support many of the header files. As a result, there should 

take some alternative solutions like LUTs or other 

functional program based on mathematical operations for 

generating the processor. However, the response of the 

processor are not solely depends on the processor 

architecture. This performance also depends on the input 

design architecture. Therefore, besides the designing of 

custom processor part, we need to design LT codec as a 

reference input efficiently. In this paper work, there are 

some observations I find during simulation time. There 

are many reconfigurable techniques for every tool. It is 

not possible to take all these optimization techniques. For 

example, I have used the Optimization level 3, automatic 

TIE and FLIX options for Tensilica tool. Moreover, the 

modification of configuration parameters of XX is not 

sufficient for designing the high performance LT codec 

design. Therefore, an efficient trade off is required 

between all these observations to satisfy an excellent 

processor based on the input application. 
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