
I.J. Information Technology and Computer Science, 2020, 3, 26-31
Published Online June 2020 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2020.03.04

Copyright © 2020 MECS I.J. Information Technology and Computer Science, 2020, 3, 26-31

Prediction of Defect Prone Software Modules

using MLP based Ensemble Techniques

Ahmed Iqbal, Shabib Aftab
Department of Computer Science, Virtual University of Pakistan, Lahore, Pakistan

E-mail: ahmedeqbal@gmail.com, shabib.aftab@gmail.com

Received: 09 November 2019; Accepted: 27 November 2019; Published: 08 June 2020

Abstract—Prediction of defect prone software modules is

now considered as an important activity of software

quality assurance. This approach uses the software

metrics to predict whether the developed module is

defective or not. This research presents MLP based

ensemble classification framework to predict the defect

prone software modules. The framework predicts the

defective modules by using three dimensions: 1) Tuned

MLP, 2) Tuned MLP with Bagging 3) Tuned MLP with
Boosting. In first dimension only the MLP is used for the

classification after optimization. In second dimension,

the optimized MLP is integrated with bagging technique.

In third dimension, the optimized MLP is integrated with

boosting technique. Four publically available cleaned

NASA MDP datasets are used for the implementation of

proposed framework and the performance is evaluated by

using F-measure, Accuracy, Roc Area and MCC. The

performance of the proposed framework is compared

with ten widely used supervised classification techniques

by using Scott-Knott ESD test and the results reflects the
high performance of the proposed framework.

Index Terms—Software Defect Prediction, MLP,

Ensemble Classification techniques, Software Metrics.

I. INTRODUCTION

Testing is one of the important activities of Software

Development Life Cycle which ensures the delivery of

high quality product. However, it has been reported that

software testing is also considered as one of the

expensive activities of development lifecycle as it

consumes more resources as compare to any other
activities [8,9,10]. To produce high quality product, all

the modules of developing software should be thoroughly

tested [7,10] and that is why testing require more

resources. Testing cost can be reduced if the defect prone

software modules are predicted at early stage of

development (before testing) [11,12,13]. With this

approach the quality of end product would not be

affected as only those modules will be thoroughly tested

which would be predicted as defective. This prediction

belongs to the class of binary classification problem.

Many researchers have solved the binary classification

problems by using machine learning techniques such as

sentiment analysis/classification [14,15,16,17,18,19],

rainfall prediction [20,21], detection of DoS attacks

[22,23] and software defect prediction [1,2,3], [25,26,27].

Machine learning techniques are categorized into three

types: 1) supervised, 2) unsupervised, and 3) hybrid.

Supervised machine learning techniques use the pre-

labeled/classified data (training data) for training, in

which classification rules are developed which are later
used to classify the unseen data (test data). In

unsupervised machine learning techniques classes are not

known in advance so the special algorithms are used to

identify the structure/group of data. Finally the hybrid is

the integration of both (supervised and unsupervised).

Various frameworks and techniques have been proposed

by the researchers to predict the defect prone software

modules however most of the researchers have used

different datasets. This research proposes MLP based

ensemble classification framework to predict the defect

prone software modules. The framework uses three
dimensions to predict the defective modules. In fist

dimension, Multi-Layer Perceptron, a well-known

Artificial Neural Network is optimized by tuning its

parameters. In second dimension, the tuned MLP (tuned

in first dimension) is ensemble with bagging technique.

In third dimension, the tuned MLP (tuned in first

dimension) is ensemble with boosting technique. To

validate the proposed framework, four widely used

NASA MDP cleaned datasets are used and the

performance is evaluated by using: F-measure, Accuracy,

Roc Area and MCC. The results of the proposed

framework including all three dimensions are compared
with the results of a published research [1], in which ten

well known supervised base classifiers were used for the

prediction of defect prone software modules by using the

same datasets which are used in this research (NASA

MDP cleaned). The classification techniques with which

the proposed framework is compared are: “Naïve Bayes

(NB), Multi-Layer Perceptron (MLP), Radial Basis

Function (RBF), Support Vector Machine (SVM), K

Nearest Neighbor (KNN), kStar (K*), One Rule (OneR),

PART, Decision Tree (DT), and Random Forest (RF)”.

The comparison is performed by using Scott-Knott ESD
test which showed the higher performance of our

proposed framework.

mailto:ahmedeqbal@gmail.com

 Prediction of Defect Prone Software Modules using MLP based Ensemble Techniques 27

Copyright © 2020 MECS I.J. Information Technology and Computer Science, 2020, 3, 26-31

II. RELATED WORK

Many researchers have used machine learning

techniques to predict the software defects at early stage

of SDLC. Some of the related studies are discussed here.

In [1], the researchers predicted the defect prone software

modules by using various supervised classification

techniques including “Naïve Bayes (NB), Multi-Layer

Perceptron (MLP). Radial Basis Function (RBF), Support

Vector Machine (SVM), K Nearest Neighbor (KNN),

kStar (K*), One Rule (OneR), PART, Decision Tree

(DT), and Random Forest (RF)”. The researchers
performed the experiments by using twelve widely used

NASA MDP datasets and evaluated the performance by

using: Precision, Recall, F-Measure, Accuracy, MCC,

and ROC Area.

According to researchers the provided results in this

study can be used as a baseline for other researchers so

that any claim of improvement in prediction with new

proposed technique can be verified so, we have compared

the performance of our proposed framework with [1].

Researchers in [2] presented a classification framework

to predict defect prone software modules. The framework
is implemented with two dimensions, 1) with the feature

selection, 2) without feature selection. Experiments are

performed on cleaned NASA MDP datasets and

performance analysis is performed by using: “Precision,

Recall, F-measure, Accuracy, MCC and ROC”.

Performance of the proposed framework including both

dimensions is compared with other supervised

classification techniques from research [1]. According to

results, the proposed framework outperformed other

techniques in some datasets. Researchers in [3] analyzed

the performance of three well known resampling
techniques while predicting the defect prone software

modules using same classification techniques which were

used in [1]. The used resampling techniques are:

“Random Under Sampling”, “Random Over Sampling”

and “Synthetic Minority Oversampling Technique

(SMOTE)”. NASA cleaned MDP datasets were used for

experiments and the performance is analyzed by using: F-

measure, Accuracy, MCC and ROC. The performance of

all three resampling techniques are compared with the

supervised classification techniques used in [1] where no

technique was used to remove the class imbalance issue.

The results reflected that “Random Over Sampling”
performed well among other techniques. Researchers in

[4] presented a feature selection based ensemble

classification framework to predict defect prone software

modules. The framework is implemented on six

publically available Cleaned NASA MDP datasets and

the performance is analyzed by using F-measure,

Accuracy, MCC and ROC. The performance is compared

with 10 supervised classification techniques from [1] and

the results showed that the proposed framework

outperformed all of other techniques. Researchers in [5],

presented an integrated technique by using Hybrid
Genetic algorithm and Deep Neural Network. Optimum

feature set is selected by Hybrid Genetic algorithm

whereas Deep Neural Network is used to predict the

software defects. The proposed technique is implemented

on various datasets obtained from PROMISE repository

and results showed the higher performance of proposed

technique when compared to other methods.

III. MATERIALS AND METHODS

This research proposes MLP based ensemble

classification framework for software defect prediction

which consists of three stages: 1) Dataset selection, 2)

Classification and 3) Reflection of results. The proposed

framework provides the results with three different
dimensions: 1) Optimized MLP, 2) Bagging- Optimized

MLP, and 3) Boosting- Optimized MLP.

Fig.1. Proposed Framework

First stage of the proposed framework deals with the

selection of relevant dataset. Any software defect dataset

can be used with the proposed framework however we

have used four cleaned versions of NASA MDP

benchmark datasets including: KC1, MW1, PC4 and PC5

(Table I). Each of the used dataset consists of various

features/attributes including the target class. The target

class which is also known as dependent attribute is the

one which is going to be predicted. This attribute consists

of either of the following two values: ‘y’ and ‘N’. ‘Y’

reflects the defect(s) in the modules and ‘N’ reflects that

the particular module is clean. Other attributes in the
datasets are known as independent attributes and are used

to predict the output class.

The NASA software defect datasets have been widely

used by the researchers to validate the defect prediction

models as these are publicly available as researchers of

this field can verify the claimed accuracy and can work

further for improvements. Two cleaned version were

provided by [28] of NASA MDP datasets, DS’ and DS’’.

We have used D’’ version, currently available at [29].

Many researches have used these datasets [1,2,3],

[30,31,32].

28 Prediction of Defect Prone Software Modules using MLP based Ensemble Techniques

Copyright © 2020 MECS I.J. Information Technology and Computer Science, 2020, 3, 26-31

Table 1. Used NASA Cleaned Datasets D’’ [28]

Dataset Attributes Modules Defective Non-Defective Defective (%)

KC1 22 1,162 294 868 25.3

MW1 38 250 25 225 10

PC4 38 1,270 176 1094 13.8

PC5 39 1694 458 1236 27.0

The experiments are performed in WEKA, which is

considered as one of the widely used data mining tool

[24].

Second stage classifies the datasets into defective and
non-defective modules by using three dimensions: 1)

Optimized MLP, 2) Bagging-Optimized MLP, and 3)

Boosting-Optimized MLP. We have used the term

‘optimized’ with MLP because four of its parameters are

tuned in WEKA (Table 2) to achieve high performance

by following the hit and trial method. The input datasets

are given to classification models with the ratio of 70:30

(70 % training data and 30% test data). MLP

(Multi-Layer Perceptron) is a type of Artificial Neural

Network (ANN) which uses back-propagation technique

for learning. An ANN is inspired by biological neural

system of human brain. These networks are considered as
non-linear supervised classifiers which can model

complex relations between inputs and outputs. The

structure of MLP consists of three portions 1) input

layer, 2) hidden layer(s), 3) output layer (Fig 2). At
least one hidden layer should be existed in MLP

network (number of hidden layers can also be

increased).

Fig.2. Multi-Layer Perceptron Architecture

Table 2. MLP Configuration

Parameter Value

Hidden layers 2

No of neurons in 1
st
 hidden layer 20

No of neurons in 2
nd

 hidden layer 20

Learning Rate 0.1

momentum 0.3

Ensemble learning technique integrates the multiple

classification models (weak learners) under the umbrella
of meta-algorithm to solve the one/same problem with

higher accuracy. Three meta algorithms are widely used

including: bagging, boosting and stacking. In this

research we have used bagging and boosting. Bagging

focuses on homogeneous weak learners where the

classifiers learns in parallel and independent from each

other and finally result is combined by following a

deterministic averaging process. Boosting on the other

hand focuses on homogeneous weak learners where the

classifiers learn in a particular sequential order where a
base model depends on the previous one and the result is

combined by following a deterministic strategy.

Third and final stage of the proposed framework deals

with the reflection of results which is discussed in the

next section in detail.

IV. RESULTS AND DISCUSSION

Performance of the proposed framework including all

three dimensions is evaluated with four widely used

accuracy measures such as: F-measure, Accuracy, MCC

and ROC. All of these performance measures are

generated from the parameters of confusion matrix. Fig 3
reflects the confusion matrix for the problem of software

defect prediction which consists of following parameters

[1,2,3].

True Positive (TP): “Instances which are actually

positive and also classified as positive”.

False Positive (FP): “Instances which are actually

negative but classified as positive”.

False Negative (FN): “Instances which are actually

positive but classified as negative”.

True Negative (TN): “Instances which are actually
negative and also classified as negative”.

Fig.3. Confusion Matrix

The formulas of used performance measures are given

below. To calculate the F-measure, we have to calculate

two measures first: Precision and Recall as F-measure is

the average of these two measures [1,2,3].

Precision
()

TP

TP FP

 (1)

Re
()

TP
call

TP FN

 (2)

 Prediction of Defect Prone Software Modules using MLP based Ensemble Techniques 29

Copyright © 2020 MECS I.J. Information Technology and Computer Science, 2020, 3, 26-31

Precision * Recall * 2
F-measure

(Precision + Recall)
 (3)

TP TN
Accuracy

TP TN FP FN

 (4)

1

2

r rTP FP
AUC

 (5)

()()()()

TN TP FN FP
MCC

FP TP FN TP TN FP TN FN

 (6)

We have compared the results of all three dimensions
of the proposed framework with 10 widely used

supervised machine learning classifiers in Table 3,4,5,6.

The results of the 10 classifiers including: “Naïve Bayes

(NB), Multi-Layer Perceptron (MLP), Radial Basis

Function (RBF), Support Vector Machine (SVM), K

Nearest Neighbor (KNN), kStar (K*), One Rule (OneR),

PART, Decision Tree (DT), and Random Forest (RF)”

are taken from a published paper [1]. The published

paper [1] has used the same datasets and accuracy

measures which we have used in this research.

Table 3. KC1 Results

Classifier F-Measure Accuracy ROC Area MCC

NB 0.400 74.212 0.694 0.250

RBF 0.362 78.796 0.713 0.347

SVM 0.085 75.358 0.521 0.151

kNN 0.395 69.341 0.595 0.190

kStar 0.419 72.206 0.651 0.238

OneR 0.256 73.352 0.551 0.147

PART 0.255 76.504 0.636 0.239

DT 0.430 75.644 0.606 0.291

RF 0.454 77.937 0.751 0.346

MLP 0.358 77.363 0.736 0.296

OPT-MLP 0.497 79.083 0.721 0.389

Bagging-

OPT-MLP
0.339 77.650 0.738 0.300

Boosting-

OPT-MLP
0.497 79.083 0.673 0.389

It can be seen that OPT-MLP and Boosting-OPT-MLP

performed well in F-measure, Accuracy and MCC

however in ROC Area RF performed better.

Results of MW1 dataset is shown in Table 4 which

reflects that in F-measure MLP and Boosting-OPT-MLP
performed well whereas MLP, OPT-MLP, Bagging-

OPT-MLP and Boosting-OPT-MLP performed well in

Accuracy. In ROC Area, OPT-MLP performed well and

in MCC, MLP and Boosting-OPT-MLP both

outperformed others.

Results of PC4 datasets are reflected in Table 5 which

shows that Bagging-OPT–MLP performed better than

others classifiers in F-measures whereas OPT-MLP and

Boosting-OPT–MLP performed better in Accuracy and

MCC. On the other hand RF performed better in Roc

Area.

Table 4. MW1 Results

Classifier F-Measure Accuracy ROC Area MCC

NB 0.435 82.666 0.791 0.367

RBF ? 89.333 0.808 ?

SVM ? 89.333 0.500 ?

kNN 0.444 86.666 0.705 0.373

kStar 0.133 82.666 0.543 0.038

OneR 0.200 89.333 0.555 0.211

PART 0.167 86.666 0.314 0.110

DT 0.167 86.666 0.314 0.110

RF 0.182 88.000 0.766 0.150

MLP 0.632 90.666 0.843 0.589

OPT-MLP 0.588 90.666 0.873 0.537

Bagging-

OPT-MLP
0.533 90.666 0.864 0.483

Boosting-

OPT-MLP
0.632 90.666 0.852 0.589

Table 5. PC4 Results

Classifier F-Measure Accuracy ROC Area MCC

NB 0.404 86.089 0.807 0.334

RBF 0.250 87.401 0.862 0.279

SVM 0.286 88.189 0.583 0.342

kNN 0.438 85.826 0.667 0.359

kStar 0.330 81.889 0.734 0.225

OneR 0.361 87.926 0.614 0.352

PART 0.481 85.301 0.776 0.396

DT 0.583 86.876 0.834 0.514

RF 0.532 90.288 0.945 0.516

MLP 0.562 89.763 0.898 0.515

OPT-

MLP
0.634 92.126 0.892 0.622

Bagging-

OPT -

MLP

0.652 91.601 0.934 0.612

Boosting-

OPT -

MLP

0.634 92.126 0.836 0.622

Table 6. Pc5 Results

Classifier F-Measure Accuracy ROC Area MCC

NB 0.269 75.393 0.725 0.245

RBF 0.235 75.590 0.732 0.251

SVM 0.097 74.212 0.524 0.173

kNN 0.498 73.031 0.657 0.314

kStar 0.431 69.881 0.629 0.227

OneR 0.387 71.259 0.594 0.209

PART 0.335 75.787 0.739 0.274

DT 0.531 75.000 0.703 0.361

RF 0.450 75.984 0.805 0.322

MLP 0.299 74.212 0.751 0.216

OPT-MLP 0.282 75.984 0.743 0.272

Bagging-

OPT-MLP
0.408 77.165 0.778 0.333

Boosting-

OPT-MLP
0.304 74.803 0.725 0.235

Table 6 shows the results of PC5 dataset. It can be
observed that DT performed better than others in F-

measure and MCC, Bagging- OPT-MLP performed

30 Prediction of Defect Prone Software Modules using MLP based Ensemble Techniques

Copyright © 2020 MECS I.J. Information Technology and Computer Science, 2020, 3, 26-31

better in Accuracy, and RF performed better in ROC

Area.

Fig.4. Scott-Knott ESD (v2.0) Test

To analyze the effectiveness of proposed framework,

we have performed Scott-Knott ESD test (v2.0) [33] (Fig

4). The package of this test is downloaded from [6]. In

this test, Accuracy score of all the classification

techniques including three dimensions of proposed model

and 10 base classifiers from published research [1] is

used as input. The test provided the output in the form of

sub groups/clusters of classification techniques along
with their ranks.

Fig.5. Scott-Knott ESD Test based on Accuracy results

The graphical representation of the Scott-Knott ESD

test result is given in Fig 5. It can be seen that the whole

group of classification techniques is divided into

subgroups along with their specific color. The subgroups
are created on according on the basis of Y axis. The

subgroups are also shown along with their ranks in Table

7. It can be observed that all three dimensions of the

proposed framework performed better than other

classification techniques.

Table 7. Scott-Knott ESD Ranks

Rank Techniques Subgroups

1.
Optimized-MLP, Bagging-Optimized-MLP, Boosting-

Optimized-MLP

2.
Random Forest, MLP, Radial Basis Function, Support

Vector Machine

3. PART, Decision Tree, One R

4. Naive Bayes

5. K-Nearest Neighbor

6. K-Star

V. CONCLUSION

Instead of all the developed software modules,

software engineers are now focusing to test only those

modules which are likely to be defective so that overall

testing cost can be reduced. This goal can be achieved by

predicting the defect prone software modules before the

testing activity. This research has contributed by

proposing a classification framework for predicting the

defect prone software modules. The framework uses

optimized MLP and ensemble techniques including

bagging and boosting. NASA’s cleaned MDP datasets
are used for the implementation of proposed framework

and to analyze the performance, F-measure, Accuracy,

Roc Area and MCC are used. Performance is compared

with 10 widely used base classifiers from a published

research, moreover Scott-Knott ESD test is performed to

effectively compare the accuracy of classification models.

According to results the proposed framework including

all three dimensions outperformed all other classification

techniques. For future work, it is suggested feature

selection and class balancing techniques should be

introduced in the framework and experiments should be
performed by using more datasets other than NASA’s

repository.

REFERENCES

[1] A. Iqbal, S. Aftab, U. Ali, Z. Nawaz, L. Sana, M. Ahmad,
and A. Husen “Performance Analysis of Machine
Learning Techniques on Software Defect Prediction using

NASA Datasets,” Int. J. Adv. Comput. Sci. Appl., vol. 10,
no. 5, 2019.

[2] A. Iqbal, S. Aftab, I. Ullah, M. S. Bashir, and M. A.
Saeed, “A Feature Selection based Ensemble
Classification Framework for Software Defect Prediction,”
Int. J. Mod. Educ. Comput. Sci., vol. 11, no. 9, pp. 54-64,
2019.

[3] A. Iqbal, S. Aftab, and F. Matloob, “Performance

Analysis of Resampling Techniques on Class Imbalance
Issue in Software Defect Prediction,” Int. J. Inf. Technol.
Comput. Sci., vol. 11, no. 11, pp. 1-10, 2019.

[4] F. Matloob, S. Aftab, and A. Iqbal, “A Framework for
Software Defect Prediction using Feature Selection and
Ensemble Learning Techniques,” Int. J. Mod. Educ.
Comput. Sci., vol. 11, no. 12, pp. 14–20, 2019

[5] C. Manjula and L. Florence, “Deep neural network based
hybrid approach for software defect prediction using

software metrics,” Cluster Comput., pp. 1–17, 2018.
[6] “ScottKnottESD (v2.0.3).” [Online]. Available:

https://github.com/klainfo/ScottKnottESD. [Accessed:
08-Nov-2019].

[7] A. Dadwal, H. Washizaki, Y. Fukazawa, T. Iida, M.
Mizoguchi, and K. Yoshimura, “Prioritization in
automotive software testing: Systematic literature review,”
CEUR Workshop Proc., vol. 2273, no. QuASoQ, pp. 52–

58, 2018.
[8] R. M. De Castro Andrade, I. De Sousa Santos, V. Lelli,

Ḱathia Marçal De Oliveira, and A. R. Rocha, “Software
testing process in a test factory from ad hoc activities to
an organizational standard,” ICEIS 2017 - Proc. 19th Int.
Conf. Enterp. Inf. Syst., vol. 2, no. Iceis, pp. 132–143,
2017.

 Prediction of Defect Prone Software Modules using MLP based Ensemble Techniques 31

Copyright © 2020 MECS I.J. Information Technology and Computer Science, 2020, 3, 26-31

[9] D. Kumar and K. K. Mishra, “The Impacts of Test
Automation on Software’s Cost, Quality and Time to

Market,” Procedia Comput. Sci., vol. 79, pp. 8–15, 2016.
[10] A. Bertolino, “Software testing research: Achievements,

challenges, dreams,” FoSE 2007 Futur. Softw. Eng., no.
September, pp. 85–103, 2007.

[11] S. Huda et al., “A Framework for Software Defect
Prediction and Metric Selection,” IEEE Access, vol. 6, no.
c, pp. 2844–2858, 2017.

[12] E. Erturk and E. Akcapinar, “A comparison of some soft

computing methods for software fault prediction,” Expert
Syst. Appl., vol. 42, no. 4, pp. 1872–1879, 2015.

[13] Y. Ma, G. Luo, X. Zeng, and A. Chen, “Transfer learning
for cross-company software defect prediction,” Inf. Softw.
Technol., vol. 54, no. 3, Mar. 2012.

[14] M. Ahmad, S. Aftab, I. Ali, and N. Hameed, “Hybrid
Tools and Techniques for Sentiment Analysis: A Review,”
Int. J. Multidiscip. Sci. Eng., vol. 8, no. 3, 2017.

[15] M. Ahmad, S. Aftab, S. S. Muhammad, and S. Ahmad,
“Machine Learning Techniques for Sentiment Analysis: A
Review,” Int. J. Multidiscip. Sci. Eng., vol. 8, no. 3, p. 27,
2017.

[16] M. Ahmad and S. Aftab, “Analyzing the Performance of
SVM for Polarity Detection with Different Datasets,” Int.
J. Mod. Educ. Comput. Sci., vol. 9, no. 10, pp. 29–36,
2017.

[17] M. Ahmad, S. Aftab, and I. Ali, “Sentiment Analysis of
Tweets using SVM,” Int. J. Comput. Appl., vol. 177, no.
5, pp. 25–29, 2017.

[18] M. Ahmad, S. Aftab, M. S. Bashir, and N. Hameed,
“Sentiment Analysis using SVM: A Systematic Literature
Review,” Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 2,
2018.

[19] M. Ahmad, S. Aftab, M. S. Bashir, N. Hameed, I. Ali, and

Z. Nawaz, “SVM Optimization for Sentiment Analysis,”
Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 4, 2018.

[20] S. Aftab, M. Ahmad, N. Hameed, M. S. Bashir, I. Ali, and
Z. Nawaz, “Rainfall Prediction in Lahore City using Data
Mining Techniques,” Int. J. Adv. Comput. Sci. Appl., vol.
9, no. 4, 2018.

[21] S. Aftab, M. Ahmad, N. Hameed, M. S. Bashir, I. Ali, and
Z. Nawaz, “Rainfall Prediction using Data Mining
Techniques: A Systematic Literature Review,” Int. J. Adv.

Comput. Sci. Appl., vol. 9, no. 5, 2018.
[22] A. Iqbal and S. Aftab, “A Feed-Forward and Pattern

Recognition ANN Model for Network Intrusion
Detection,” Int. J. Comput. Netw. Inf. Secur., vol. 11, no.
4, pp. 19–25, 2019.

[23] A. Iqbal, S. Aftab, I. Ullah, M. A. Saeed, and A. Husen,
“A Classification Framework to Detect DoS Attacks,” Int.
J. Comput. Netw. Inf. Secur., vol. 11, no. 9, pp. 40-47,

2019.
[24] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data

Mining: Practical machine learning tools and techniques.
Morgan Kaufmann, 2016.

[25] I. Gondra, “Applying machine learning to software fault-
proneness prediction,” J. Syst. Softw., vol. 81, no. 2, pp.
186–195, 2008.

[26] K. O. Elish and M. O. Elish, “Predicting defect-prone

software modules using support vector machines,” J. Syst.
Softw., vol. 81, no. 5, pp. 649–660, 2008.

[27] F. Lanubile, A. Lonigro, and G. Visaggio, “Comparing
Models for Identifying Fault-Prone Software
Components,” Proc. Seventh Int’l Conf. Software Eng.
and Knowledge Eng., pp. 312–319, June 1995.

[28] M. Shepperd, Q. Song, Z. Sun and C. Mair, “Data Quality:
Some Comments on the NASA Software Defect Datasets,”

IEEE Trans. Softw. Eng., vol. 39, pp. 1208–1215, 2013.
[29] “NASA Defect Dataset.” [Online]. Available:

https://github.com/klainfo/NASADefectDataset.
[Accessed: 01-April-2019].

[30] B. Ghotra, S. McIntosh, and A. E. Hassan, “Revisiting the
impact of classification techniques on the performance of
defect prediction models,” Proc. - Int. Conf. Softw. Eng.,
vol. 1, pp. 789–800, 2015.

[31] G. Czibula, Z. Marian, and I. G. Czibula, “Software
defect prediction using relational association rule mining,”

Inf. Sci. (Ny)., vol. 264, pp. 260–278, 2014.
[32] D. Rodriguez, I. Herraiz, R. Harrison, J. Dolado, and J. C.

Riquelme, “Preliminary comparison of techniques for
dealing with imbalance in software defect prediction,” in
Proceedings of the 18th International Conference on
Evaluation and Assessment in Software Engineering.
ACM, p. 43, 2014.

[33] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K.

Matsumoto, “The Impact of Automated Parameter
Optimization on Defect Prediction Models,” IEEE Trans.
Softw. Eng., vol. 5589, no. 1, 2018.

Authors’ Profiles

Ahmed Iqbal received MS Degree in

Computer Science from Virtual University of
Pakistan in 2019 with the specialization of
Software Engineering. His research interest
includes Software Engineering and Data
Mining.

Shabib Aftab received MS Degree in
Computer Science from COMSATS Institute
of Information Technology Lahore, Pakistan,
and M.Sc degree in Information Technology
from Punjab University College of
Information Technology (PUCIT) Lahore,
Pakistan. Currently he is serving as Lecturer

Computer Science at Virtual University of Pakistan. His

research areas include Data Mining and Software Process
Improvement.

How to cite this paper: Ahmed Iqbal, Shabib Aftab,
"Prediction of Defect Prone Software Modules using MLP
based Ensemble Techniques", International Journal of

Information Technology and Computer Science(IJITCS),
Vol.12, No.3, pp.26-31, 2020. DOI: 10.5815/ijitcs.2020.03.04

