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Abstract—Prediction of defect prone software modules is 

now considered as an important activity of software 

quality assurance. This approach uses the software 

metrics to predict whether the developed module is 

defective or not. This research presents MLP based 

ensemble classification framework to predict the defect 

prone software modules. The framework predicts the 

defective modules by using three dimensions: 1) Tuned 

MLP, 2) Tuned MLP with Bagging 3) Tuned MLP with 
Boosting. In first dimension only the MLP is used for the 

classification after optimization. In second dimension, 

the optimized MLP is integrated with bagging technique. 

In third dimension, the optimized MLP is integrated with 

boosting technique. Four publically available cleaned 

NASA MDP datasets are used for the implementation of 

proposed framework and the performance is evaluated by 

using F-measure, Accuracy, Roc Area and MCC. The 

performance of the proposed framework is compared 

with ten widely used supervised classification techniques 

by using Scott-Knott ESD test and the results reflects the 
high performance of the proposed framework.  

 

Index Terms—Software Defect Prediction, MLP, 

Ensemble Classification techniques, Software Metrics. 

 

I.  INTRODUCTION 

Testing is one of the important activities of Software 

Development Life Cycle which ensures the delivery of 

high quality product. However, it has been reported that 

software testing is also considered as one of the 

expensive activities of development lifecycle as it 

consumes more resources as compare to any other 
activities [8,9,10]. To produce high quality product, all 

the modules of developing software should be thoroughly 

tested [7,10] and that is why testing require more 

resources. Testing cost can be reduced if the defect prone 

software modules are predicted at early stage of 

development (before testing) [11,12,13]. With this 

approach the quality of end product would not be 

affected as only those modules will be thoroughly tested 

which would be predicted as defective. This prediction 

belongs to the class of binary classification problem. 

Many researchers have  solved  the  binary  classification  
 

 

problems by using machine learning techniques such as 

sentiment analysis/classification [14,15,16,17,18,19], 

rainfall prediction [20,21], detection of DoS attacks 

[22,23] and software defect prediction [1,2,3], [25,26,27]. 

Machine learning techniques are categorized into three 

types: 1) supervised, 2) unsupervised, and 3) hybrid. 

Supervised machine learning techniques use the pre-

labeled/classified data (training data) for training, in 

which classification rules are developed which are later 
used to classify the unseen data (test data). In 

unsupervised machine learning techniques classes are not 

known in advance so the special algorithms are used to 

identify the structure/group of data. Finally the hybrid is 

the integration of both (supervised and unsupervised). 

Various frameworks and techniques have been proposed 

by the researchers to predict the defect prone software 

modules however most of the researchers have used 

different datasets. This research proposes MLP based 

ensemble classification framework to predict the defect 

prone software modules. The framework uses three 
dimensions to predict the defective modules. In fist 

dimension, Multi-Layer Perceptron, a well-known 

Artificial Neural Network is optimized by tuning its 

parameters. In second dimension, the tuned MLP (tuned 

in first dimension) is ensemble with bagging technique. 

In third dimension, the tuned MLP (tuned in first 

dimension) is ensemble with boosting technique. To 

validate the proposed framework, four widely used 

NASA MDP cleaned datasets are used and the 

performance is evaluated by using: F-measure, Accuracy, 

Roc Area and MCC. The results of the proposed 

framework including all three dimensions are compared 
with the results of a published research [1], in which ten 

well known supervised base classifiers were used for the 

prediction of defect prone software modules by using the 

same datasets which are used in this research (NASA 

MDP cleaned). The classification techniques with which 

the proposed framework is compared are: “Naïve Bayes 

(NB), Multi-Layer Perceptron (MLP), Radial Basis 

Function (RBF), Support Vector Machine (SVM), K 

Nearest Neighbor (KNN), kStar (K*), One Rule (OneR), 

PART, Decision Tree (DT), and Random Forest (RF)”. 

The comparison is performed by using Scott-Knott ESD 
test which showed the higher performance of our 

proposed framework.    
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II.  RELATED WORK 

Many researchers have used machine learning 

techniques to predict the software defects at early stage 

of SDLC. Some of the related studies are discussed here. 

In [1], the researchers predicted the defect prone software 

modules by using various supervised classification 

techniques including “Naïve Bayes (NB), Multi-Layer 

Perceptron (MLP). Radial Basis Function (RBF), Support 

Vector Machine (SVM), K Nearest Neighbor (KNN), 

kStar (K*), One Rule (OneR), PART, Decision Tree 

(DT), and Random Forest (RF)”. The researchers 
performed the experiments by using twelve widely used 

NASA MDP datasets and evaluated the performance by 

using: Precision, Recall, F-Measure, Accuracy, MCC, 

and ROC Area.  

According to researchers the provided results in this 

study can be used as a baseline for other researchers so 

that any claim of improvement in prediction with new 

proposed technique can be verified so, we have compared 

the performance of our proposed framework with [1]. 

Researchers in [2] presented a classification framework 

to predict defect prone software modules. The framework 
is implemented with two dimensions, 1) with the feature 

selection, 2) without feature selection. Experiments are 

performed on cleaned NASA MDP datasets and 

performance analysis is performed by using: “Precision, 

Recall, F-measure, Accuracy, MCC and   ROC”. 

Performance of the proposed framework including both 

dimensions is compared with other supervised 

classification techniques from research [1]. According to 

results, the proposed framework outperformed other 

techniques in some datasets. Researchers in [3] analyzed 

the performance of three well known resampling 
techniques while predicting the defect prone software 

modules using same classification techniques which were 

used in [1]. The  used resampling  techniques are:  

“Random  Under Sampling”,  “Random  Over  Sampling”  

and  “Synthetic Minority  Oversampling  Technique  

(SMOTE)”.  NASA cleaned MDP datasets were used for 

experiments and the performance is analyzed by using: F-

measure, Accuracy, MCC and ROC. The performance of 

all three resampling techniques are compared with the 

supervised classification techniques used in [1] where no 

technique was used to remove the class imbalance issue. 

The results reflected that “Random Over Sampling” 
performed well among other techniques. Researchers in 

[4] presented a feature selection based ensemble 

classification framework to predict defect prone software 

modules. The framework is implemented on six 

publically available Cleaned NASA MDP datasets and 

the performance is analyzed by using F-measure, 

Accuracy, MCC and ROC. The performance is compared 

with 10 supervised classification techniques from [1] and 

the results showed that the proposed framework 

outperformed all of other techniques. Researchers in [5], 

presented an integrated technique by using Hybrid 
Genetic algorithm and Deep Neural Network. Optimum 

feature set is selected by Hybrid Genetic algorithm 

whereas Deep Neural Network is used to predict the 

software defects. The proposed technique is implemented 

on various datasets obtained from PROMISE repository 

and results showed the higher performance of proposed 

technique when compared to other methods.  

 

III.  MATERIALS AND METHODS 

This research proposes MLP based ensemble 

classification framework for software defect prediction 

which consists of three stages: 1) Dataset selection, 2) 

Classification and 3) Reflection of results. The proposed 

framework provides the results with three different 
dimensions: 1) Optimized MLP, 2) Bagging- Optimized 

MLP, and 3) Boosting- Optimized MLP. 

 

 
Fig.1. Proposed Framework 

First stage of the proposed framework deals with the 

selection of relevant dataset. Any software defect dataset 

can be used with the proposed framework however we 

have used four cleaned versions of NASA MDP 

benchmark datasets including: KC1, MW1, PC4 and PC5 

(Table I). Each of the used dataset consists of various 

features/attributes including the target class. The target 

class which is also known as dependent attribute is the 

one which is going to be predicted. This attribute consists 

of either of the following two values: ‘y’ and ‘N’. ‘Y’ 

reflects the defect(s) in the modules and ‘N’ reflects that 

the particular module is clean. Other attributes in the 
datasets are known as independent attributes and are used 

to predict the output class. 

The NASA software defect datasets have been widely 

used by the researchers to validate the defect prediction 

models as these are publicly available as researchers of 

this field can verify the claimed accuracy and can work 

further for improvements. Two cleaned version were 

provided by [28] of NASA MDP datasets, DS’ and DS’’. 

We have used D’’ version, currently available at [29]. 

Many researches have used these datasets [1,2,3], 

[30,31,32]. 
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Table 1. Used NASA Cleaned Datasets D’’ [28] 

Dataset Attributes Modules Defective Non-Defective Defective (%) 

KC1 22 1,162 294 868 25.3 

MW1 38 250 25 225 10 

PC4 38 1,270 176 1094 13.8 

PC5 39 1694 458 1236 27.0 

 

The experiments are performed in WEKA, which is 

considered as one of the widely used data mining tool 

[24].   

Second stage classifies the datasets into defective and 
non-defective modules by using three dimensions: 1) 

Optimized MLP, 2) Bagging-Optimized MLP, and 3) 

Boosting-Optimized MLP. We have used the term 

‘optimized’ with MLP because four of its parameters are 

tuned in WEKA (Table 2) to achieve high performance 

by following the hit and trial method. The input datasets 

are given to classification models with the ratio of 70:30 

(70 % training   data   and   30%   test   data). MLP 

(Multi-Layer Perceptron) is a type of Artificial Neural 

Network (ANN) which uses back-propagation technique 

for learning. An ANN is inspired by biological neural 

system of human brain. These networks are considered as 
non-linear supervised classifiers which can model 

complex relations between inputs and outputs. The 

structure of MLP consists of three portions 1) input 

layer, 2) hidden layer(s), 3) output layer (Fig 2). At 
least one hidden layer should be existed in MLP 

network (number of hidden layers can also be 

increased).    

 

 

Fig.2. Multi-Layer Perceptron Architecture 

Table 2. MLP Configuration 

Parameter Value 

Hidden layers 2 

No of neurons in 1
st
 hidden layer 20 

No of neurons in 2
nd

  hidden layer 20 

Learning Rate 0.1 

momentum 0.3 

 

Ensemble learning technique integrates the multiple 

classification models (weak learners) under the umbrella 
of meta-algorithm to solve the one/same problem with 

higher accuracy. Three meta algorithms are widely used 

including: bagging, boosting and stacking. In this 

research we have used bagging and boosting. Bagging 

focuses on homogeneous weak learners where the 

classifiers learns in parallel  and  independent  from  each 

 

 

other and finally result is combined by following a 

deterministic averaging process. Boosting on the other 

hand focuses on homogeneous weak learners where the 

classifiers learn in a particular sequential order where a 
base model depends on the previous one and the result is 

combined by following a deterministic strategy. 

Third and final stage of the proposed framework deals 

with the reflection of results which is discussed in the 

next section in detail.   

 

IV.  RESULTS AND DISCUSSION 

Performance of the proposed framework including all 

three dimensions is evaluated with four widely used 

accuracy measures such as: F-measure, Accuracy, MCC 

and ROC. All of these performance measures are 

generated from the parameters of confusion matrix. Fig 3 
reflects the confusion matrix for the problem of software 

defect prediction which consists of following parameters 

[1,2,3].    

 

True Positive (TP):  “Instances which are actually 

positive and also classified as positive”.  

False Positive (FP):  “Instances which are actually 

negative but classified as positive”.  

False Negative (FN):  “Instances which are actually 

positive but classified as negative”. 

True Negative (TN):  “Instances which are actually 
negative and also classified as negative”.  

 

 

Fig.3. Confusion Matrix 

The formulas of used performance measures are given 

below. To calculate the F-measure, we have to calculate 

two measures first: Precision and Recall as F-measure is 

the average of these two measures [1,2,3].    

 

Precision
( )

TP

TP FP



                     (1) 

 

Re
( )

TP
call

TP FN



                       (2) 
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Precision * Recall * 2
F-measure

(Precision + Recall)
                 (3) 
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We have compared the results of all three dimensions 
of the proposed framework with 10 widely used 

supervised machine learning classifiers in Table 3,4,5,6. 

The results of the 10 classifiers including: “Naïve Bayes 

(NB), Multi-Layer Perceptron (MLP), Radial Basis 

Function (RBF), Support Vector Machine (SVM), K 

Nearest Neighbor (KNN), kStar (K*), One Rule (OneR), 

PART, Decision Tree (DT), and Random Forest (RF)” 

are taken from a published paper [1]. The published 

paper [1] has used the same datasets and accuracy 

measures which we have used in this research.   

Table 3. KC1 Results 

Classifier F-Measure Accuracy ROC Area MCC 

NB 0.400 74.212 0.694 0.250 

RBF 0.362 78.796 0.713 0.347 

SVM 0.085 75.358 0.521 0.151 

kNN 0.395 69.341 0.595 0.190 

kStar 0.419 72.206 0.651 0.238 

OneR 0.256 73.352 0.551 0.147 

PART 0.255 76.504 0.636 0.239 

DT 0.430 75.644 0.606 0.291 

RF 0.454 77.937 0.751 0.346 

MLP 0.358 77.363 0.736 0.296 

OPT-MLP 0.497 79.083 0.721 0.389 

Bagging- 

OPT-MLP 
0.339 77.650 0.738 0.300 

Boosting- 

OPT-MLP 
0.497 79.083 0.673 0.389 

 

It can be seen that OPT-MLP and Boosting-OPT-MLP 

performed well in F-measure, Accuracy and MCC 

however in ROC Area RF performed better.  

Results of MW1 dataset is shown in Table 4 which 

reflects that in F-measure MLP and Boosting-OPT-MLP 
performed well whereas MLP, OPT-MLP, Bagging-

OPT-MLP and Boosting-OPT-MLP performed well in 

Accuracy. In ROC Area, OPT-MLP performed well and 

in MCC, MLP and Boosting-OPT-MLP both 

outperformed others. 

Results of PC4 datasets are reflected in Table 5 which 

shows that Bagging-OPT–MLP performed better than 

others classifiers in F-measures whereas OPT-MLP and 

Boosting-OPT–MLP performed better in Accuracy and 

MCC. On the other hand RF performed better in Roc 

Area.  

Table 4. MW1 Results 

Classifier F-Measure Accuracy ROC Area MCC 

NB 0.435 82.666 0.791 0.367 

RBF ? 89.333 0.808 ? 

SVM ? 89.333 0.500 ? 

kNN 0.444 86.666 0.705 0.373 

kStar 0.133 82.666 0.543 0.038 

OneR 0.200 89.333 0.555 0.211 

PART 0.167 86.666 0.314 0.110 

DT 0.167 86.666 0.314 0.110 

RF 0.182 88.000 0.766 0.150 

MLP 0.632 90.666 0.843 0.589 

OPT-MLP 0.588 90.666 0.873 0.537 

Bagging- 

OPT-MLP 
0.533 90.666 0.864 0.483 

Boosting- 

OPT-MLP 
0.632 90.666 0.852 0.589 

Table 5. PC4 Results 

Classifier F-Measure Accuracy ROC Area MCC 

NB 0.404 86.089 0.807 0.334 

RBF 0.250 87.401 0.862 0.279 

SVM 0.286 88.189 0.583 0.342 

kNN 0.438 85.826 0.667 0.359 

kStar 0.330 81.889 0.734 0.225 

OneR 0.361 87.926 0.614 0.352 

PART 0.481 85.301 0.776 0.396 

DT 0.583 86.876 0.834 0.514 

RF 0.532 90.288 0.945 0.516 

MLP 0.562 89.763 0.898 0.515 

OPT-

MLP 
0.634 92.126 0.892 0.622 

Bagging- 

OPT -

MLP 

0.652 91.601 0.934 0.612 

Boosting- 

OPT -

MLP 

0.634 92.126 0.836 0.622 

Table 6. Pc5 Results 

Classifier F-Measure Accuracy ROC Area MCC 

NB 0.269 75.393 0.725 0.245 

RBF 0.235 75.590 0.732 0.251 

SVM 0.097 74.212 0.524 0.173 

kNN 0.498 73.031 0.657 0.314 

kStar 0.431 69.881 0.629 0.227 

OneR 0.387 71.259 0.594 0.209 

PART 0.335 75.787 0.739 0.274 

DT 0.531 75.000 0.703 0.361 

RF 0.450 75.984 0.805 0.322 

MLP 0.299 74.212 0.751 0.216 

OPT-MLP 0.282 75.984 0.743 0.272 

Bagging- 

OPT-MLP 
0.408 77.165 0.778 0.333 

Boosting- 

OPT-MLP 
0.304 74.803 0.725 0.235 

 

Table 6 shows the results of PC5 dataset. It can be 
observed that DT performed better than others in F-

measure and MCC, Bagging- OPT-MLP performed 
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better in Accuracy, and RF performed better in ROC 

Area.  

 

 

Fig.4. Scott-Knott ESD (v2.0) Test 

To analyze the effectiveness of proposed framework, 

we have performed Scott-Knott ESD test (v2.0) [33] (Fig 

4). The package of this test is downloaded from [6]. In 

this test, Accuracy score of all the classification 

techniques including three dimensions of proposed model 

and 10 base classifiers from published research [1] is 

used as input. The test provided the output in the form of 

sub groups/clusters of classification techniques along 
with their ranks.  

 

 

Fig.5. Scott-Knott ESD Test based on Accuracy results 

The graphical representation of the Scott-Knott ESD 

test result is given in Fig 5. It can be seen that the whole 

group of classification techniques is divided into 

subgroups along with their specific color. The subgroups 
are created on according on the basis of Y axis. The 

subgroups are also shown along with their ranks in Table 

7. It can be observed that all three dimensions of the 

proposed framework performed better than other 

classification techniques.    

Table 7. Scott-Knott ESD Ranks 

Rank Techniques Subgroups 

1. 
Optimized-MLP, Bagging-Optimized-MLP, Boosting-

Optimized-MLP 

2. 
Random Forest, MLP, Radial Basis Function, Support 

Vector Machine 

3. PART, Decision Tree, One R 

4. Naive Bayes 

5. K-Nearest Neighbor 

6. K-Star 
 

 

V.  CONCLUSION 

Instead of all the developed software modules, 

software engineers are now focusing to test only those 

modules which are likely to be defective so that overall 

testing cost can be reduced. This goal can be achieved by 

predicting the defect prone software modules before the 

testing activity. This research has contributed by 

proposing a classification framework for predicting the 

defect prone software modules. The framework uses 

optimized MLP and ensemble techniques including 

bagging and boosting. NASA’s cleaned MDP datasets 
are used for the implementation of proposed framework 

and to analyze the performance, F-measure, Accuracy, 

Roc Area and MCC are used. Performance is compared 

with 10 widely used base classifiers from a published 

research, moreover Scott-Knott ESD test is performed to 

effectively compare the accuracy of classification models. 

According to results the proposed framework including 

all three dimensions outperformed all other classification 

techniques. For future work, it is suggested feature 

selection and class balancing techniques should be 

introduced in the framework and experiments should be 
performed by using more datasets other than NASA’s 

repository. 
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