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Abstract: Code smells are the indicators of the flaws in the design and development phases that decrease the 

maintainability and reusability of a system. A system with uneven distribution of responsibilities among the classes is 

generated by one of the most hazardous code smells called God Class. To address this threatening issue, an extract class 

refactoring technique is proposed that incorporates both cohesion and contextual aspects of a class. In this work, greater 

emphasis was provided on the code documentation to extract classes with higher contextual similarity. Firstly, the 

source code is analyzed to generate a set of cluster of extracted methods. Secondly, another set of clusters is generated 

by analyzing code documentation. Then, merging these two, a final cluster set is formed to extract the God Class. 

Finally, an automatic refactoring approach is also followed to build newly identified classes. Using two different 

metrics, a comparative result analysis is provided where it is shown that the cohesion among the classes is increased if 

the context is added in the refactoring process. Moreover, a manual inspection is conducted to ensure that the methods 

of the refactored classes are contextually organized. This recommendation of God Class extraction can significantly 

help the developers in minimizing the burden of refactoring on own their own and maintaining the software systems.   

 

Index Terms: Code Smell, God Class, Extract Class Refactoring, Hierarchical Clustering, Cluster Composition, 

Automatic Refactoring. 

 

 

1.  Introduction 

The term code smells in computer programming refer to the coding practices which reflect flaws in design and 

implementation phases that hinder code maintainability and understandability [1]. Although code smells do not cause 

technical inaccuracy, these indicate the flaws in the design and development practice. In Object Oriented design, it is 

highly expected that the job of the entities (i.e., classes, methods) would be defined and unifunctional. This approach is 

violated by one of the code smells named God Class. God Class or God Object refers to the scenario where a class does 

or knows more than it should according to the proper design concept. This uneven distribution of responsibilities among 

the classes makes the maintenance of whole system more complicated and difficult. 

One of the most hazardous issues of God Class smell is increasing coupling and decreasing cohesion [1]. Poor 

design quality in terms of coupling and cohesion increases development and maintenance time, cost and human efforts, 

and makes the application complicated. It is also difficult to meet the change requirements in the highly coupled and 

loosely cohesive software applications [1]. As a result, it becomes very difficult for the developers to maintain the 

application in the long run. To enhance modularization of a system, extracting a God Class into smaller classes 

according to their specific functionalities has a significant effect. God Class identification and choosing appropriate 

refactoring is not easy as it requires significant experience and eort by the developers. Recommendation of extract class 

has two challenges. One is defining which classes are to be considered as God Class. And the second one is how to find 

the similarities among the methods. Here, context plays an important role in Object Oriented Design (OOD) which adds 

a dimension to find similarities in the refactoring research field. Context can be defined as the circumstantial 

explanation that helps to understand an event, statement or idea completely. In this research, the documented 

descriptions through the comment sections of the methods are considered to understand the context of a class. 

Contextual similarity refers that a method and a class are similar based on the context or the responsibility of the class. 

Affluent number of researches have been conducted to refactor God Classes. Some of the existing researches split 
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classes based on coupling and cohesion, and others calculate the distance between the entities, and based on that, classes 

were extracted. In 2011 Bavota et al. proposed a two-step technique which supported extract class refactoring to define 

new classes with higher cohesion than the original class [2]. The cohesion between the methods was calculated using 

structural and semantic measures. Then, using the methods and their cohesion, a weighted graph was built, and the 

edges with lower cohesion than a predefined threshold were then cut. In 2013 as the extension of their previous work, 

they empirically evaluated the effectiveness of their tool on real Blobs from existing open source systems [3]. In another 

research, Gethers et al. proposed a cohesion calculation technique by combining Lack of Cohesion in Methods (LCOM) 

metric and conceptual similarity between methods [4]. They used the MaxFlow-MinCut Algorithm to split the weighted 

graph into two sub-graphs to build two new more cohesive classes. Oliveto et al. proposed an approach to support 

extract class refactoring systems that exploited the game theory technique in order to split a class into several classes 

with different responsibilities [5]. They cut the graph based on the minimum threshold of cohesion and MaxFlow-

MinCut algorithm. However, since they did not consider the contextual similarities, the cut may contradict with the 

respect of context of the perspective classes. This issue leads to the objective of the proposed approach where one of the 

cohesion based solution [3] is integrated with contextual analysis. 

Fokaefs et al. presented an extension for the JDedorant Eclipse plugin that employed a clustering technique to 

identify the extract class refactoring opportunities [6]. In this approach, the distance between the attributes and methods 

of each class was calculated using the Jaccard distance as the distance metric in the clustering procedure. Bavota et al. 

proposed another novel approach based on the Relational Topic Models (RTM) to recommend moving a class to a more 

suitable package to improve software modularization [7]. RTM was calculated using semantic and structural 

information. Using this analysis, the approach identified the possible move class refactoring opportunities to more 

suitable packages for relocating a class under analysis. However, these techniques calculated the distance between the 

class entities to extract classes or move the classes to another suitable package. If the contextual similarity can be 

accounted as one of the measuring dimensions, more accuracy can be achieved. 

To explore this dimension, this paper proposes a refactoring technique that considers the contextual aspect of the 

class. For this refactoring approach, firstly an existing technique is implemented which is based on the cohesion 

calculation among the methods of the class [3].   Secondly, an approach is proposed which generates the clusters of the 

methods based on their documentation. To merge these two sets of clusters from two techniques, a cluster 

compositional algorithm is used which generates the final set of method clusters [8]. Each cluster of this set is supposed 

to be a new class. Therefore, the newly identified classes are extracted automatically from the source class and 

constructed as individual classes. 

A comparative result analysis is provided where it is shown that the result becomes better if the context is added in 

the refactoring process. The technique is run on two open source software and the result is compared with the output of 

an existing system [3] which is considered as the base of this research. In terms of Conceptual Cohesion of Classes (C3) 

[9], the cohesion is 0.72 which is more than five times higher than pre-refactoring (0.13) and more than two times 

higher than the existing system (0.27). In terms of Lack of Cohesion of Methods (LCOM), the average LCOM in the 

refactored classes using proposed approach is 23 which is lower than both the pre-refactored classes (1,310) and the 

refactored classes using existing system (257). Moreover, contextual similarity among the methods of the refactored is 

manually inspected. The percentage of method misplace is also very low (on average 2.78%). Thus, along with being 

highly cohesive, the classes are assured of being contextually organized. 

2.  Literature Review 

There exist several approaches which proposed different mechanisms and models to detect code smells 

[10,11,12,13]. Numerous studies introduced different approaches regarding God Class refactoring as well [2,3,6,7]. 

Since the purpose of this research is to refactor a God Class through clustering based on cohesion and context, this 

literature review section is presented with the existing studies related to refactoring techniques and clustering tools. The 

section is divided into the following major sections.  

 

 God Class Refactoring: The researches regarding God Class Refactoring is studied thoroughly and 

described in this section. 

 Cluster Analysis: If multiple refactoring solutions are needed to be incorporated together, a cluster merging 

algorithm is required to integrate multiple set of clusters of methods. Thus, the researches regarding cluster 

generation and applications are summarized in this section. 

2.1.  God Class Refatoring 

Affluent number of researches have been conducted to refactor God Classes. The existing researches of God Class 

refactoring reflected some patterns. Most of the existing studies addressed the God Class issue in terms of cohesion and 

coupling. Thus, these studies intended to split classes based on cohesion calculation. These studies mainly focused on 

refactoring a God Class into smaller classes to make a system loosely coupled and highly cohesive. Others calculated 

distance between the entities, and based on that, classes were extracted. There are some more existing researches which 
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solved the problem by using Relational Topic Model (RTM), game theory, etc. 

A.  By Identifying Method Chains 

Bavota et al. proposed several approaches to support extract class refactoring [2,3,14]. These approaches worked 

by identifying method chains to identify or recommend new classes with higher cohesion than the original class. The 

cohesion between two methods in a class was calculated using structural and semantic measures. A weighted graph was 

built considering the methods as nodes and their cohesions as edges. The methods of cutting this graph differed in 

different studies. In one of those researches, MaxFlow-MinCut algorithm was used to split the graph into two sub 

graphs to build two new classes [14]. However, this technique always allowed to extract a God Class into only two 

classes. In order to overcome that limitation they later proposed a two-step technique where the edges of the graph with 

lower cohesion than a predefined threshold were cut [2]. It was able to split the graph into sub-graphs by automatically 

identifying the appropriate number of classes that should be extracted from a God Class. In 2013, as the extension of 

their previous work, they empirically evaluated and assessed the effectiveness of their approach on real Blobs from 

existing open source systems [3]. Akash et al. also proposed an approach for extracting a God Class using both 

structural and semantic relationship between methods in that class [15]. In this approach, they introduced a new idea for 

representing methods in vector space using Latent Dirichlet Allocation (LDA) [16]. However, along with structural and 

semantic measures, there remains a scope of considering the contextual perspective of the class entities. Exploring this 

scope is considered as the objective of this proposed research. 

B.  Using Clustering Technique 

In this section, different techniques are mentioned which used clustering algorithm to extract God Classes. Both of 

those used Hierarchical Agglomerative Clustering (HAC) [17, 18]. 

JDeodorant is a popular eclipse plugin that identifies five kinds of code smells, namely - Feature Envy, Duplicate 

Code, Type Checking, Long Method and God Class [6, 19, 20, 21]. The tool identifies extract class opportunities by 

applying a HAC on a God Class [6]. JDeodorant used the Jaccard distance [22] as the distance metric instead of 

Euclidean distance. In this iterative process, at each step, the algorithm merged the two closest clusters according to the 

single-linkage criterion. When all the clusters were more distant to each other than a predefined distance threshold, no 

more clusters could be merged and thus, the process stopped. The algorithm was run for different values of the 

threshold ranging from 0.1 to 0.9 with a 0.1 step. A single fixed threshold was not sufficient to obtain all the possible 

clusters that were produced by the hierarchical clustering algorithm. The effectiveness of the tool had been evaluated on 

the JHotDraw system. In 12 cases (75%), the evaluator confirmed that the classes suggested to be extracted indeed 

described a separate concept. In 9 cases (56%), the expert agreed that he would perform the refactoring according to the 

suggestions of the tool. 

In another research, Fokaefs et al. used the same clustering algorithm to identify the opportunities of extracting 

God Classes [23]. They applied their methodology on two projects (eRisk and SelfPlanner) and asked the designers to 

give their feedback. For both projects, it was able to identify a relatively large number of new concepts (75.6% and 86% 

respectively) that can be potentially extracted in new classes. 

Jiang et al. proposed a Large Class bad smell detection approach based on scale distribution [24]. In this research, 

a new model was developed which used class length distribution model and cohesion metrics to detect the smell. 

Moreover, the scheme of Extract Class is also proposed for refactoring the Large Class using Agglomerative Clustering 

Technique. 

However, in these techniques, only structural information was taken into account to perform extract class 

refactoring. Finding the accurate distance threshold, is also a difficult problem. 

C.  Other Approaches 

G. Bavota et al. proposed a novel approach based on Relational Topic Models (RTM) [25] to recommend Extract 

Class refactoring operations aiming at moving a class to a more suitable package to improve software modularization 

[7]. For this, the RTM was computed using two factors (structural and semantic information) extracted from the source 

code. Using the results of the analysis, the approach was able to identify the possible move class refactoring 

opportunities. In another paper, Bavote et al. also proposed an approach based on game theory to support extract class 

refactoring opportunities [5]. Given a class to be refactored, this approach modeled a non-cooperative game where two 

players contend for the methods of the original class to build two new classes with higher cohesion than the original 

class. However, the approach is a semi-automated system because it takes as input a class previously identified by the 

software engineer as a candidate for the refactoring.  

All the refactoring techniques end up with producing a set of clusters of methods which are supposed to be in the 

newly identified classes. There are some scenarios where multiple solutions are needed to be incorporated together for a 

better solution. Therefore, there should be an approach which takes solutions of all the techniques and incorporates 

those to generate a cumulative solution which would be more significant according to the requirements. This issue leads 

to the further study regarding cluster analysis. 
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D.  Using Clustering Technique 

Numerous researches have been conducted regarding the cluster generation algorithm and their application. K-

means clustering algorithm, a subset of unsupervised learning, can group a dataset into k number of categories [17]. 

Here, k indicates the number of clusters which are represented by their centroids. The principle is to minimize the sum 

of squared distances between data and the corresponding cluster centroids. Kanungo et al. presented a simple and 

efficient implementation of the K-means clustering algorithm called filtering algorithm [26]. In the basic k-means 

algorithm, at each stage, data points are assigned to its closest centroid and the centroid of each cluster is recomputed. 

Using kd-tree [27] data structure, the computation is reduced. Kd-tree is built once for the given data points. Since the 

data points are not changed in the process of computation, the tree is not needed to be recomputed at each iteration. 

Unlike k-means clustering algorithm, K-Nearest Neighbor (KNN) is a classification algorithm which is a subset of 

supervised learning algorithm [28]. In this algorithm, a training dataset is given which are divided into some classes. 

Here, a number k is also given which represents the number of neighbors that are supposed to influence the 

classification. When a new test sample is given to classify, firstly distances with all the test data are calculated. The 

given data is allocated to the class of majority of its closest or nearest neighbours. 

A Hierarchical Agglomerative Clustering (HAC) represents a group of closely related clustering technique [17]. 

All the points from the given dataset is initially considered as clusters and the distance between every two of those are 

calculated. In each iteration, the technique merges two closest clusters into one and the distance is updated. The 

hierarchy of clusters is demonstrated in a graphical representation called dendogram. An HAC is used in God Class 

refactoring [6, 29]. In these researches, the methods of a God Class are considered as the clusters, and Jaccard distance 

is used to calculate similarity between those. The technique repeatedly merges two clusters with higher similarity and 

the process stops when no other clusters remain left to be merged. Anquetil et al. presented a comparative study where 

different aspects of the clustering procedures were presented [30]. The parameters and their effects in clustering results, 

while doing software re-modularization with agglomerative hierarchical clustering algorithms, were analyzed in this 

research.  

There are some other clustering algorithms, e.g., density based clustering (DBSCAN) [17], Mean-Shift Clustering 

[31], etc. All these techniques result in producing a set of clusters. However, if the results of any two techniques are 

needed to be incorporated together, there would be a problem of comparing these two sets to get a more appropriate set 

of clusters. In authors' previous work, a cluster compositional algorithm was proposed where multiple individual sets of 

clusters were assimilated into one [8]. This two phased compositional algorithm dealt with multiple sets of clusters 

generated from same dataset using different techniques to incorporate those into a more appropriate set of clusters. 

Firstly, the approach compared all the clusters from both input sets of clusters thoroughly to generate a cumulative set 

of clusters. In the second phase, the approach analyzed the newly identified sets to find out if there exists any single 

element clusters and finally merged those with other clusters from the set. 

This cluster compositional algorithm [8] has the potential to play a vital role in God Class refactoring where the 

classes are considered as the clusters and the methods are considered as the element of those clusters. If a God Class is 

extracted into more than one set of smaller classes using different refactoring techniques, the cluster compositional 

algorithm can be applied to get an appropriate single set of refactored classes. 

3.  Proposed Methodology 

The whole procedure of extracting a God Class is explained briefly in this section. As mentioned in the Section 2, 

the existing researches intend to solve the problem based on cohesion calculation, distance among the entities Relational 

Topic Model (RTM), and game theory etc. None of those consider integrating context with those solutions. However, 

considering the context of the class and the methods can add positive dimensions to the God Class extraction. 

Proposed methodology has three integral parts (demonstrated in Fig.1.). First, the source code is analyzed to 

generate a cluster set of extracted methods [3]. In the next phase, another set of clusters is generated by analyzing code 

documentation. Then, merging these two sets, a final cluster set is formed to extract the God Class. Finally, an 

automatic refactoring approach is also followed to build newly identified classes. 

In Fig.1., the procedure of refactoring starts with receiving a God Class as input. Then, the class is analyzed 

following two phases - source code analysis and documentation analysis. In the first phase, three measures: Structural 

Similarity between Methods (SSM), Call-based Interaction between Methods (CDM) and Conceptual Similarity 

between Methods (CSM) (discussed in the section 3.1) are incorporated and produced a set cluster, Cluster A [3]. Next, 

the code documentation of the same class is analyzed and using the HAC, another set of clusters, Cluster B is produced. 

Using cluster compositional algorithm [8], these two sets are merged and a final cluster is formed to extract the God 

Class. Finally, an automatic refactoring approach is also followed to build newly identified classes. 
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Fig.1. Overview of the Proposed Methodology 

3.1.  Source Code Analysis 

In this process a class that is identified as a God Class is taken as input by the system [3]. The cohesion among the 

methods are calculated and stored in an n × n matrix. Here, n is the number of the methods of the class that has to be 

refactored. Three different measures are used to capture how the methods are relatable to each other. Using these 

measures firstly, the cohesion of each possible pair of methods is calculated. Next, a weighted graph is built where each 

node represents a method, and the weight of an edge that connects two nodes is given by the cohesion of the two 

methods. The higher the cohesion between two methods the higher the likelihood that the two methods should be in the 

same class. A cohesion threshold is applied to cut all the edges having cohesion lower than the threshold in order to find 

the method clusters for the new classes. 

A.  Cohesion Calculation 

Three different measures [3], i.e., Structural Similarity between Methods (SSM), Call-based Interaction between 

Methods (CIM) and Conceptual Similarity between Methods (CSM) are used to calculate the cohesion of a class. These 

measures capture three distinct ways in which methods relate to one another, each reflecting a different type of 

relationship between methods. 

The first measure is SSM which calculates cohesion by shared attribute reference of a method pair [3]. The calls 

performed by the methods of the class is considered in the second measure named CIM [3]. Finally, CSM of two 

methods is calculated as the cosine of the angle between their corresponding vectors [3]. In the existing technique, CSM 

calculation covers the source code and the comments contained in it [3]. Since among three, only one measure (CSM) 

takes comments under consideration, documentation does not get enough impact in the whole refactoring procedure. 

However, the proposed approach intends to capture the contextual aspect of a God Class from the documentation of the 

methods and give an equal emphasis. For this, source code and documentation analysis are divided into two different 

sections. CSM calculation only depends on source code while documentation analysis is separated from the CSM and 

considered as an individual branch of this proposed approach (Fig.1.). Thus, both the source code and documentation of 

a class are given equal emphasis in refactoring procedure. Lastly, the final cohesion among the methods are calculated 

by the weighted summation of these three measures (SSM, CIM, and CSM). To determine the weights Principal 

Component Analysis (PCA) of the values of these three measures computed on all the classes of the system is 

performed [3]. The value of the proportion of variance obtained for each measure is used as the weight for the 

corresponding measure [3]. 

B.  Method Cluster Identification 

In this phase, a weighted graph is built where each node represents a method, and the weight of each edge presents 

the cohesion of the two methods connected by the edge. The matrix is then filtered based on a minimum cohesion 

threshold. The edges of the graph with lower cohesion than the threshold were cut. 

Thus, a number of method clusters are found that should be extracted from a God Class. Since classes with a very 

low number of methods do not have enough impact to exist, classes with lower number of methods than a predefined 

threshold are identified as trivial chains. The median of the non-zero values of the method-by-method matrix is used to 

define the threshold [3]. These identified trivial chains are then integrated with most cohesive non-trivial chains [3]. 

Thus, a set clusters is generated with the methods of the God Class based on source code analysis. 
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3.2.  Documentation Analysis 

While extracting a God Class, the proposed research intends to consider the contextual aspect of the class. Thus, 

the analysis of code documentation is also assembled along with the source code analysis. The purpose of the 

documentation analysis is to capture the context of the class and its method. The HAC algorithm is used to understand 

the contextual similarity between the methods and make clusters of those methods based on the similarity measure. 

The process of documentation analysis is demonstrated in Fig.2. In this process, first the documented description 

of the methods is parsed and normalized. Secondly, a matrix containing a similarity measure between the method pairs 

of the class is generated. Finally, based on that similarity matrix, an iterative clustering process is followed. The 

iteration continues until no method is left isolated. The whole cluster process based on documentation is described in 

the following sections. 

 

 

Fig.2. Overview of Code Documentation using Clustering 

A.  Data Pre-processing 

Before starting the clustering procedure, data is needed to be pre-processed. This pre-processing includes 

identifying the description part for a particular method, parsing the words from the document and normalizing those 

words. 

Document Parsing: The first step of this phase is to identify the part of the document which is considered as the 

description of a particular method. Both the comment section written exactly before a method and the comment lines in 

the method body are considered as the description of that method. For example, in Fig.3., the marked parts are the 

document section for a method, comment [32]. The text of the identified sections are parsed and words are stored with 

the corresponding method for the further procedure.  

 

 

Fig.3. Documentation Section of a Method 
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Normalization: The parsed document of each method is normalized by using an Information Retrieval (IR) 

normalization process [33]. Thus, the terms extracted from the code documentation are normalized by applying the 

following steps [34]: 

 

 Splitting the terms using the camel case splitting which splits words based on underscores, capital letters and 

numerical digits. 

 Converting the letters of those words to lower case. 

 Removing special characters, programming keywords and common English stop words. 

 Stemming words to their original roots via Porter's stemmer [35]. Using this stemmer the suffix and prefix of 

all words are removed and the words are transferred into their root forms. 

 

After following those steps, weights are added to the normalized words using the term frequency - inverse 

document frequency (tf-idf) [33]. These values help in decreasing the relevance of excessively generic words contained 

in most source segments. 

B.  Similarity Matrix Construction 

To produce the clusters of methods using Hierarchical Agglomerative Clustering (HAC), a similarity measure is 

required. Here, cosine similarity is considered for that purpose. A m*m matrix is generated where the similarity 

measures among the method pairs is stored. Using the value of tf-idf, similarity between two methods are calculated as 

the cosine of the angle between their corresponding vectors. 

 

ba

ba
ba

m.m

m .m
 )m ,CSM(m                                                                         (1) 

Where am  and bm  are the vectors corresponding to the methods am  and bm . 

 

 

Fig.4. Example of a Similarity Matrix 

In Fig.4., an example is shown where five methods are considered in a class - M1, M2, M3, M4 and M5. The 

values denote the cosine similarities among the method pairs. For example, cosine similarity between M1 and M2 is 

0.23. If the identical elements are paired, the similarity is zero (e.g. cosine similarity between M1 and M1 is 0). 

C.  Adapted Hierarchical Agglomerative Clustering (HAC) 

The purpose of this phase is to generate a set of clusters of the methods from the God Class based on their 

contextual similarities. To achieve this, the HAC algorithm is adapted in the proposed approach. 

This algorithm starts by assigning each class member to a single cluster. In each iteration, it merges the two closest 

clusters and the similarity matrix is updated accordingly. Finally, the algorithm terminates when all the entities are 

contained in a single cluster, which forms the root of a hierarchy of clusters. The actual clusters can be determined at 

the merging points. The hierarchy of the clusters is usually graphically represented by a dendogram. The root is the final 

cluster (in this research, containing all the methods, it forms the input God Class again). The leaves of the tree represent 

the entities, and the intermediate nodes are the actual clusters. The height of the tree represents the different levels of 

the distance in which two clusters were merged. Some considerations for adopting the algorithm in the approach are 

listed below: 

 

 In traditional Agglomerative Hierarchical Clustering algorithm, Eucledian distance is used as the distance 

measure among every two nodes. However, the methods are considered as the nodes in this research and 

cosine similarity is used in this research to figure out how the methods are related to each other. 

 Since similarity measures among the method pairs are considered, at each iteration of the clustering, the two 

clusters having highest similarity (instead of lowest distance) are merged. After each iteration the similarity 

matrix is updated.  

 To determine the actual set of clusters, a threshold value for the maximum similarity as a cut-off value, is 

needed to be chosen. In this methodology, three different ranges applied 25% (100/4), 33% (100/3) and 50% 

(100/2) as the cut-off value to find out the more appropriate one. From the experiment of this research, if the 
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values less than 25% are considered, very granular level clusters with lower number of methods are found. 

Again, values over than 50% make the clusters very large (sometimes it forms the original class). Therefore, 

the ranges over 50% and under 25% are avoided from the consideration. 

D.  An Illustrative Example 

To better understand, let's explain this clustering with an example. Suppose, there are five methods in a God Class: 

M1, M2, M3, M4 and M5. The cosine similarity among the pairs of the methods are shown in the Fig.4. The iterations 

of the process is described here: 

Iteration 01: In Fig.5(a)., 0.37 is the highest value in the matrix. Thus, the two methods M1 and M4 are merged 

into a cluster. In Fig.5(b)., to update the table, the columns of these two methods are merged and the value is changed 

accordingly. For example, when the new similarity value of (M1, M4) and M2 is updated, both similarity values (M1, 

M2) and (M4, M2) are compared (the values are 0.23 and 0.20) and the maximum value 0.23 is selected to update the 

cell. The other two updates (with M3 and M5) are shown in the Fig.5(b). 

 

 

Fig.5. First Iteration of Clustering process 

Iteration 02: In this iteration, (M1, M4) and M5 are the closest clusters since these two have highest similarity 

value 0.36. Thus, these two nodes are merged (Fig.6(a).). The matrix is needed to be updated again. The update 

procedure is shown in Fig.6(b). 

 

 

Fig.6. Second Iteration of Clustering process 

Iteration 03: In this iteration, the similarity between M2 and M3 is highest (0.35) and so, these two are merged 

(Fig.7(a).). The matrix is needed to be updated again. The update procedure is shown in Fig.7(b). 

Iteration 04: Only two nodes are left to be merged. The similarity between M2 and M3 is highest (0.28) and so, 

these two are merged. Since no other nodes are left to be merged, the step of matrix update is not applicable here. The 

fourth and final iteration is shown in Fig.8. 



22 God Class Refactoring Recommendation and Extraction Using Context based Grouping  

Copyright © 2020 MECS                                            I.J. Information Technology and Computer Science, 2020, 5, 14-37 

 

Fig.7. Third Iteration of Clustering process 

 

Fig.8. Final Iteration of Clustering process 

The process of clustering is stopped here because all the nodes are now connected. If the final dendogram is 

observed, the number of clusters varies in different layers (shown in Fig.9.). For example, when 50% is considered as 

the cut-off value and the similarity values are filtered by this upper-limit, the set of clusters is: (M2, M3), (M5, M1, M4). 

For cut-off value 33%: (M2), (M3), (M5, M1, M4) and for cut-off value 25%: (M2), (M3), (M5), (M1, M4). In this 

research, three of these values (50%, 33% and 25%) are used while running the approach on the dataset. The outcome is 

better if 33% is used among three of those. Therefore, 33% is considered as the cut-off value in the proposed approach. 

 

 

Fig.9. Final Dendogram Showing Set of Clusters for Different Threshold 

3.3.  Application of Cluster Compositional Algorithm 

A God Class is extracted following both the source code analysis (Section 3.1) and the documentation analysis 

(Section 3.2) respectively. After completing those two stages, two sets of clusters of refactored classes are generated. 

Now, there is an issue of comparing and incorporating these two sets to generate a single set of clusters which is more 

convenient. Each cluster of these set represents a class that are supposed to be extracted from the original God Class. In 

this section in order to incorporate two sets of classes, first their methods are compared and then, cluster compositional 

algorithm [8] is used to merge. 

To explain the scenario, let's consider an example of God Class with the methods: m1, m2, m3, m4, m5, m6 and m7. 

First the class is refactored following the source code analysis based on cohesion calculation and the refactored classes 

are generated (m1,m2), (m3,m4,m5), (m6,m7). Secondly, the same God Class is refactored by code documentation 

analysis and the produced list of refactored classes is (m1,m2), (m3,m4,m6), (m5,m7). Now, these two sets of classes 

are required to be compared to produce a more relevant set of classes. To accomplish this, the two phased cluster 

compositional algorithm [8] is followed. First, all the classes from both sets are thoroughly compared and matched to 

generate a cumulative set of classes. In this new set, some classes might exist with only one method which drives the 

process in the next stage where the classes with single method are merged. 

A.  Comparing Two Groups of Classes 

In the first stage of this compositional algorithm, the classes of two sets generated by two previous techniques 

(Section 3.1 and Section 3.2) are thoroughly compared and merged into a cumulative set. Let's consider Group A and 

Group B are the sets of classes and Group F is considered as the final set to store the merged set of classes. The classes 

of Group A is compared with the classes of Group B. At each iteration, a class from Group A is matched to the classes 
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of Group B one by one and the common methods are moved to the final set Group F as an individual class. 

Let's explain this process with the help of previous example. Initially the recommended refactored classes are 

Group A: (m1,m2), (m3,m4,m5), (m6,m7); Group B: (m1,m2), (m3,m4,m6), (m5,m7); and Group F: ø. At first iteration, 

(m1,m2) from Group A is matched with (m1,m2), (m3,m4,m6), (m5,m7) from Group B one by one. (m1,m2) is 

identically matched with the first class of Group B and thus, pushed to Group F as a class (Fig.10(a).). No other method 

is left to match with the methods of the rest two classes (m3,m4,m6) and (m5,m7) (Fig.10(b), (c)). The first iteration 

ends here and Group F: (m1,m2) is recorded. 

Table 1. The Name and LOC of the Considered God Classes of Xerces 

Class Name LOC 

AbstractDOMParser 1775 

AbstractSAXParser  1360 

BaseMarkupSerializer 1275 

CoreDocumentImpl 1497 

DeferredDocumentImpl 1612 

DOMNormalizer 1291 

DOMParserImpl 820 

DurationImpl 1998 

NonValidatingConfiguration 783 

XIncludeHandler 1331 

 

 

Fig.10. Comparing Two Groups of Classes: Iteration 01 

At the next iteration, (m3,m4,m5) from Group A is again matched with (m1,m2), (m3,m4,m6), (m5,m7) from 

Group B one by one. Firstly, no matches found with the methods of the first class of Group B (Fig.11(a).). However, the 

(m3,m4,m5) from Group A is partially matched with the second class (m3,m4,m6) of Group B. The common methods 

(m3,m4) of the both classes are moved to Group F (Fig.11(b).) and (m5) is left to match with (m5,m7). (m5) is matched 

in both classes and moved to Group F (Fig.11(c).). Thus, after the second iteration, the final set of class becomes Group 

F: (m1,m2), (m3,m4), (m5). 

 

 

Fig.11. Comparing Two Groups of Classes: Iteration 02 
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Table 2. C3 Value Comparison Shown on God Classes of Xerces 

Class 
Pre-

refactoring 

Existing Approach Proposed Approach 

NOC C3 NOC C3 

AbstractDOMParser 0.21  2 0.25, 0.23 2 0.64, 0.47 

AbstractSAXParser  0.09 3  0.22, 0.29, 0.19 3 0.82, 0.70, 0.91 

BaseMarkupSerializer 0.08 2  0.18, 0.15 4 0.73, 0.78, 0.54, 0.42 

CoreDocumentImpl 0.05  3 0.19, 0.33, 0.12 8 0.78, 0.95, 0.97, 0.70, 0.67, 0.73, 0.34,0.79 

DeferredDocumentImpl 0.14 2 0.18, 0.20 6 0.76, 0.94, 0.68, 0.82, 0.54, 0.44 

DOMNormalizer 0.08  2 0.33, 0.17 4 0.57, 0.63, 0.58, 0.68 

DOMParserImpl 0.24  2 0.38, 0.33 3 0.50, 0.41, 0.92 

DurationImpl 0.11 2 0.22, 0.18 2 0.71, 0.97 

NonValidatingConfiguration 0.04  2 0.31, 0.08 2 0.67, 0.78 

XIncludeHandler 0.08 4 0.42, 0.14, 0.22, 0.27 7 0.74, 0.73, 0.52, 0.62 0.96, 0.90, 0.85 

Table 3. The Name and LOC of the Chosen God Classes of GanttProject 

Class Name LOC 

GanttOptions  513 

GanttProject 2269 

GanttGraphicArea 2160 

GanttTree 1730 

GanttTaskPropertiesBean 919 

ResourceLoadGraphicArea 1060 

TaskImpl 437 

 

Moving to the third iteration, now (m6,m7) is compared with (m1,m2), (m3,m4,m6), (m5,m7) and does not match 

with the first class (m1,m2) (Fig.12 (a).). From the second classes of the both sets (f) is matched and pushed to Group F 

(Fig.12(b).). (m7) and (m5,m7) are matched and (m7) is moved to Group F (Fig.12(c).). Since no other class is left in 

Group A, the third iteration stops here and the final Group F: (m1,m2), (m3,m4), (m5), (m6), (m7) is found. 

By using the first stage of the compositional algorithm [8] two sets of classes are merged into a single set of classes. 

The classes of this new set are supposed to be the extracted from the given God Class. However, three classes (m5), 

(m6), (m7) exist in this list with single methods which are required to be merged. 

 

 

Fig.12. Comparing Two Groups of Classes: Iteration 03 

B.  Merging Classes with Single Method 

A class with a single method does not have enough impact and it is highly expected to merge these classes with 

appropriate another ones. Therefore, the second phase of the cluster compositional algorithm [8] is to merge such 

classes with other classes of the set. For this merging procedure, the algorithm requires distance or similarity calculation 

between the class with single method and the rest of the classes [8]. In this research, to avoid the result being biased, a 

customized similarity matrix is constructed by the weighted summation of both the cohesion matrix from source code 

analysis (Section 3.1.1) and the cosine similarity matrix from code documentation analysis (Section 3.2.2). Therefore, 

the formation of the new matrix is: 
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Where Sw  + Dw  = 1 and their values express the weight in each measure and for this work, the both weights are 

considered equal. Based on this similarity measure a comparison is performed between the single left method with all 

other methods from the other classes. The average similarity is calculated between those to decide where the method 

will fit through merging. 

Let's consider the example of the God Class again to demonstrate the merging process. From the previous step, the 

final set of classes was Group F: (m1,m2), (m3,m4), (m5), (m6), (m7). In this group of classes, three classes (m5), (m6), 

(m7) exist with single method and required to be merged with others one by one. At the first iteration, (m5) is 

considered to be merged and thus, the average similarity between this method and the methods from other four classes 

(m1,m2), (m3,m4), (m6), (m7) are needed to be calculated. The calculation is shown below: 
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These four average similarity indicate how the relationship among the class (m5) and other four classes. The 

higher value of the average similarity represents the stronger connection of the (m5) with that particular class. Let's 

assume that the value of avgSim3 is highest among all four and so, the class (m5) is merged with the class (m6) and 

final group of class has become Group F: (m1,m2), (m3,m4), (m6, m5), (m7) (Fig.13.). 

 

 

Fig.13. Merging ( m5) with other classes 

At this stage of merging procedure, since (m6) is no longer left with single method, it is not considered to be 

merged anymore. Thus, second iteration calculates the average similarly between (m7) and (m1,m2), (m3,m4), (m6, 

m5). Supposedly if the average similarly between (m7) and (m6, m5) is higher than the other two, these three methods 

are merged into a single class (m6, m5, m7). At this point, the final set of classes is Group F: (m1,m2), (m3,m4), (m6, 

m5, m7) (Fig.14.). 

 

 

Fig.14. Merging ( m7) with other classes 
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Initially, there were two sets of classes generated from the same methods Group A: (m1,m2), (m3,m4,m5), (m6,m7) 

and Group B: (m1,m2), (m3,m4,m6), (m5,m7). Firstly, the classes of the both groups were compared thoroughly and 

resulted in a final cumulative set, Group F: (m1,m2), (m3,m4), (m5), (m6), (m7). However, there were classes with 

single method in the final group and those were needed to be merged. These single method class are merged based on 

the similarity between the pairs of the methods. Therefore, the final result is Group F: (m1,m2), (m3,m4), (m6, m5, m7).  

In this research, a God Class is first extracted into smaller classes using two different techniques. Firstly, the class 

is extracted based on the cohesion calculation and a set of clusters is produced as the candidate classes (section 3.1). 

Secondly, the same class is again extracted into a set of method clusters using HAC based on code documentation 

(section 3.2). From these two procedures, two sets of classes are produced having same methods. However, there is an 

issue of incorporating these two sets to produce a single set of classes which is more convenient. To address this issue, a 

cluster compositional algorithm is used [8] (section 3.3). This two phased approach first compares all the classes from 

both sets thoroughly and generates a cumulative set of classes. To avoid extracting classes with single method, in the 

second phase, classes with single method are merged with other classes from the set based on the similarity calculation 

between the methods. After merging all the single method classes, a final set of classes is generated which is more 

appropriate than the initial two sets. Each of the classes in the set represents a newly identified class which is needed to 

be extracted from the original God Class. 

Table 4. C3 Value Comparison Shown on God Classes of GanttProject 

Class 
Pre-

refactoring 

Existing Approach Proposed Approach 

NOC C3 NOC C3 

GanttOptions  0.18 3 0.27, 0.32, 0.36 2 0.82, 0.83 

GanttProject 0.08 3 0.16, 0.36, 0.37 7 0.92, 0.99, 0.81, 0.96, 0.66, 0.94, 0.78 

GanttGraphicArea 0.13 2 0.18, 0.15 3 0.62, 0.37, 0.44 

GanttTree 0.14 2 0.22, 0.36 4 0.74, 0.62, 0.71, 0.97 

GanttTaskPropertiesBean 0.13  2 0.18, 0.44 3 0.63, 0.46, 0.92 

ResourceLoadGraphicArea 0.17 2 0.28, 0.35 2 0.63, 0.37 

TaskImpl 0.27 3 0.31, 0.38, 0.41 2 0.93, 0.72 

Table 5. Average C3 Value Comparison – Existing Approach vs. Proposed Approach 

System 
Pre- 

refactoring 

Existing 

Approach 

Proposed 

Approach 

Xerces  0.11 0.23 0.70 

Gantt 0.16  0.31 0.73 

Average 0.13  0.27 0.72 

3.4.  Automatic Class Extraction 

As mentioned earlier, following two distinct procedures (source code analysis and code documentation analysis), 

two sets of clusters are produced. Each of those clusters are supposed to be the new class and the elements of the cluster 

are supposed to be the methods of that class. After recommending the refactoring, the classes are also generated 

automatically in this study. The work flow of automatic class extraction is presented in Fig.16. The algorithm takes the 

source code of a God Class and the final set of method clusters as inputs. As the output of the procedure, new refactored 

classes are generated. The total number of clusters denotes how many classes are going to be constructed. 

The extraction is performed through the Algorithm (Fig.15.). According to the algorithm, first a temporary list 

variableList is initialized with a null value (Line 1). All the clusters are transformed into new classes through an 

iterative process. At each iteration, all the class variables that are shared by the methods of a cluster (c) is found and 

stored in variableList (Line 3). Then, a new class is created for that cluster (Line 4). All the variables stored in 

variableList is declared at the very beginning of the new class (Line 5-7). Next, the constructor is generated for the class, 

and variables are added as its parameter (Line 8). The methods that are supposed to be in the new class are extracted 

from the source class and added in this class (Line 9-12). The procedure ends when all the classes are generated 

according to the newly identified clusters from the set. 



 God Class Refactoring Recommendation and Extraction Using Context based Grouping 27 

Copyright © 2020 MECS                                            I.J. Information Technology and Computer Science, 2020, 5, 14-37 

 

Fig.15. Algorithm: Automatic Class Extraction 

 

Fig.16. Work flow of Automatic Class Extraction 

From section 3.3, a final set of clusters is formed. Each of the clusters denotes a new class and the elements of the 

cluster are the methods of that class. In this section, an algorithm is presented to extract the input God Class and 

generate the refactored classes. However, there is still scope of study how the other classes of the software project 

correlated with this God Class, need to be changed after the refactoring. 

Table 6. Manual Inspection Based on Context - AbstractDOMParser and DOMParserImpl 

Original Class Refactored Classes Notes 

AbstractDOMParser 

Class0 

startGeneralEntity, endDTD, startDTD, endParameterEntity, endConditional, 

endAttlist, startExternalSubset, startParameterEntity, externalEntityDecl, 

internalEntityDecl, unparsedEntityDecl, getDocumentClassName, 

setDocumentClassName, startDocument, getDocument, reset, textDecl, 

processingInstruction,xmlDecl, doctypeDecl, characters,ignorableWhitespace, 

startCDATA, endDocument,endGeneralEntity, handleBaseURI, handleBaseURI, 

handleBaseURI, handleBaseURI, endExternalSubset,notationDecl, 

ignoredCharacters, elementDecl, startAttlist, abort, setLocale, 

Total methods: 46 

Misplaced groups: 3, 

methods: 3 (6.52%) 

Class1 
startElement, createElementNode, createAttrNode, comment, emptyElement, 

endElement, endCDATA,startConditional, attributeDecl, setCharacterData, 

DOMParserImpl 

Class0 
parseURI, parse, abort, reset, getFilter, setFilter, setParameter, getParameter, 

getParameterNames, parseWithContext, dom2xmlInputSource Total Methods: 15 

Misplaced groups: 0, 

methods: 0 (0%) 
Class1 getAsync, getBusy 

Class2 startElement, startElement 
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Table 7. Manual Inspection Based on Context – XincludeHandler, DurationImpl, AbstractSAXParser and BaseMarkupSerializer 

Original Class Refactored Classes Notes 

XIncludeHandler 

Class0 

addUnparsedEntity, addNotation, checkAndSendNotation,checkNotation, 

checkAndSendUnparsedEntity,checkUnparsedEntity,modifyAugmentations, 

modifyAugmentations, modifyAugmentations, modifyAugmentations, 

getRecognizedFeatures,getRecognizedProperties, startDocument, 

isTopLevelIncludedItem, getResultDepth, setParent, isRootDocument, 

checkWhitespace,checkMultipleRootElements,setRootElementProcessed, 

getRootElementProcessed, saveBaseURI,restoreBaseURI, restoreLanguage, 

processXMLBaseAttributes, createInputSource 

Total Methods: 84 

Misplaced groups: 1, 

methods: 1 (1.19%) 

Class1 

endAttlist,elementDecl,endConditional,endDTD, endExternalSubset, 

endParameterEntity,externalEntityDecl,notationDecl, startExternalSubset, 

startParameterEntity,unparsedEntityDecl,ignoredCharacters,internalEntityDecl, 

startAttlist, startConditional,startDTD, setDTDHandler, setDTDSource, 

attributeDecl, getDTDSource, getDTDHandler 

Class2 
hasXIncludeNamespace, isIncludeElement, isFallbackElement, processAttributes, 

saveLanguage,processXMLLangAttributes, 

Class3 copyFeatures, copyFeatures, 

Class4 

getIncludeParentBaseURI, getIncludeParentLanguage, getSawFallback, 

getSawInclude, scopeOfBaseURI,getLanguage, getBaseURI, getPropertyDefault, 

sameBaseURIAsIncludeParent,escapeHref, getRelativeBaseURI, 

getIncludeParentDepth, setSawFallback, setSawInclude, getRelativeURI, 

isValidInHTTPHeader, sameLanguageAsIncludeParent 

Class5 
equals, equals, isDuplicate, isDuplicate, equals, equals, isDuplicate, isDuplicate, 

setProperty, searchForRecursiveIncludes 

Class6 setFeature, getFeatureDefault 

DurationImpl 
Class0 

testNonNegative, testNonNegative, testNonNegative, testNonNegative, 

getFieldAsBigDecimal, sanitize, sanitize,sanitize, sanitize, getSign, 

calcSignum,wrap, isDigit,isDigitOrPeriod, parsePiece, organizeParts, 

parseBigInteger, parseBigDecimal, compare, compareDates, hashCode, 

toString, toString isSet, getField, getYears, getMonths, getDays, getHours, 

getMinutes, getSeconds, getInt, getTimeInMillis, getTimeInMillis, 

getCalendarTimeInMillis, getTimeInMillis, getTimeInMillis, addTo, addTo, 

normalizeWith, multiply, multiply, multiply, multiply, toBigInteger, add, subtract, 

negate, signum, addTo, addTo, writeReplace, 

Total Methods: 54 

Misplaced groups: 1, 

methods: 2 (3.70%) 

Class1 toString, toString 

AbstractSAXParser 

Class0 

startGeneralEntity, endGeneralEntity, startCDATA,endCDATA,endDocument, 

endParameterEntity,endExternalSubset,startParameterEntity,startExternalSubset, 

startDocument, xmlDecl,doctypeDecl, startElement,endElement, elementDecl, 

externalEntityDecl, notationDecl, unparsedEntityDecl,endDTD, parse, parse, parse, 

parse, getXMLVersion, getEncoding, getEncoding, getXMLVersion, getEncoding, 

getEncoding,setEntityResolver, getEntityResolver, 

setErrorHandler,getErrorHandler,setLocale,getFeature, setDTDHandler, 

setDocumentHandler,setContentHandler,getContentHandler, getDTDHandler, 

setFeature, setProperty,getProperty,setDeclHandler,getDeclHandler, 

setLexicalHandler, getLexicalHandler, reset, getPublicId, getSystemId, 

getLineNumber,getColumnNumber, getXMLVersion, getEncoding, getEncoding, 

setAttributes, endNamespaceMapping, startNamespaceMapping, 

Total methods: 67 

Misplaced groups: 1, 

methods: 2 (2.99%) 

Class1 
characters, ignorableWhitespace, comment, processingInstruction, attributeDecl, 

internalEntityDecl 

Class2 isDeclared, isDeclared, isDeclared, 

BaseMarkupSerializer 

Class0 

serialize, serialize, serialize, serializeElement,serialize,serialize,serialize,serialize, 

serialize,serialize,serializeNode,serializePreRoot,isDocumentState,getElementState, 

modifyDOMError,endDocument,checkUnboundNamespacePre_xedNode,content Total methods: 30 

Misplaced groups: 1, 

methods: 1 (3.33%) 

Class1 characters, characters 

Class2 leaveElementState, enterElementState, getPrefix 

Class3 
getEntityRef,printText,printText,printHex, 

printEscaped, printEscaped 

 

Identifying meaningful and appropriate name for the newly extracted classes is another matter of concern. To do 

this, searching most frequent word in the class and name the class by that word was initially considered in this research. 

However, this idea does not lead to a relevant naming of class. The reason behind the failure of the idea is that the class 

names are not supposed to be contained in the class itself. Most of the cases, a class name is selected by the developers 

based on their own intuition and impression about the class. For Example, let's consider a class with the properties - 

head, hand, leg, eye etc. and methods - eat, sleep, work etc. It is highly expected that the name of the class should be 

Human or Man and there is hardly any possibility to find these words in the class. On the other hand, an extracted class 

after refactoring a god class (Table 6., row 2, Class0) is observed to detect most frequent word. Object (92 times), else 

(50 times), private (45 times) are at the top of the list of most used words. However, none of those is appropriate enough 



 God Class Refactoring Recommendation and Extraction Using Context based Grouping 29 

Copyright © 2020 MECS                                            I.J. Information Technology and Computer Science, 2020, 5, 14-37 

to be considered as the name of a class. Therefore, naming the extracted classes is another field of research and hence 

kept out of the scope of this automated refactoring procedure. 

The aim of this study is to emphasize on an aspect which can contribute in making improvements to refactoring 

procedure. To attain success in this purpose, contextual analysis on a God Class is proposed. In this approach, first an 

existing solution of cohesion based refactoring is implemented to refactor a God Class. Secondly, the same God Class is 

refactored based on contextual analysis. After that through a compositional algorithm, both the outcomes are integrated 

to produce a cumulative result. Thus, a final set of refactored classes is identified. Finally using an automatic class 

extraction method, those identified classes are extracted from the original God Class. The contribution of integrating 

context with cohesion is evaluated in the result analysis section to ensure that the performance of the refactoring 

technique is improved (Section 4). 

4.  Result Analysis 

The aim of this section is to experimentally evaluate the performance of the proposed recommendation approach of 

God Class refactoring. For assessing the performance of this approach, it is applied on two well-known open source 

projects and the result is compared with the output of an existing system [3]. The proposed approach implemented this 

existing approach (Source Code Analysis) and integrated documented analysis with that. Therefore, the result of the 

existing technique is considered as the baseline for the comparative result analysis to show whether the result of the 

proposed approach is improved.  

Table 8. Manual Inspection Based on Context – DOMNormalizer and CoreDocumentImpl 

Original Class Refactored Classes Notes 

DOMNormalizer 

Class0 
normalizeNode,normalizeDocument,setDocumentSource,getDocumentSource, 

addAttribute,normalizeAttributeValue 

Total Methods: 28 

Misplaced groups: 

0, methods: 0 (0%) 

Class1 isCDataWF, isXMLCharWF, isCommentWF,isAttrValueWF,reportDOMError, 

Class2 

setAugmentations,endGeneralEntity,comment,characters,ignorableWhitespace, 

startCDATA,endCDATA,startDocument,xmlDecl,textDecl,doctypeDecl, 

processingInstruction,startGeneralEntity, endDocument 

Class3 startElement, emptyElement, endElement, 

CoreDocumentImpl 

Class0 

cloneNode,cloneNode,cloneNode,cloneNode, clone,getTextContent, setTextContent, 

getDoctype, changes, getDocumentElement, getElementsByTagName, 

setStrictErrorChecking,getErrorChecking,changed,getStrictErrorChecking, 

getInputEncoding,getBaseURI,setInputEncoding, setXmlEncoding,setEncoding,load, 

getXmlEncoding,getEncoding,setVersion,getVersion,setXmlStandalone, 

setStandalone,getXmlStandalone,getStandalone,getDocumentURI, abort, 

normalizeDocument,getDomCon_g,setDocumentURI,getAsync,getMutationEvents, 

getNodeNumber,getNodeNumber,getElementById, clearIdentifiers,getNodeListCache, 

freeNodeListCache,isXML11Version,isXMLVersionChanged,setMutationEvents, 

Total Methods: 127 

Misplaced groups: 5 

methods: 7 (5.51%) 

Class1 insertBefore, replaceChild, removeChild, getOwnerDocument,getNodeType, 

Class2 

createAttribute, createElement, createEntityReference, createProcessingInstruction, 

createEntity,createElementDe_nition, setXmlVersion,renameNode,setAsync, 

saveXML,isValidQName,createNotation,checkQName,getXmlVersion 

Class3 

createCDATASection,createComment, createTextNode,setUserData, setUserData, 

setUserData, setUserData,getUserData, getUserData,setUserDataTable, 

callUserDataHandlers, callUserDataHandlers,getFeature,getNodeNumber, 

getNodeNumber, 

Class4 
loadXML,importNode,importNode,importNode, importNode, getNodeName, 

createDocumentFragment, getImplementation, 

Class5 

adoptNode, isKidOK,removeUserDataTable,replacedText, getUserData, getUserData, 

modifyingCharacterData,modi_edCharacterData,insertingNode, insertedNode, 

removingNode,removedNode,replacingNode,replacedNode, replacingData, 

replacedCharacterData,setAttrNode, removedAttrNode,undeferChildren, 

callUserDataHandlers, callUserDataHandlers,deletedText,modifiedAttrValue, 

insertedText, renamedAttrNode, 

Class6 putIdenti_er, removeIdentifier, getIdentifiers,renamedElement, getIdentifier, 

Class7 

createElementNS, createElementNS, createElementNS,createElementNS, 

createAttributeNS, createAttributeNS, createAttributeNS,createAttributeNS, 

createDocumentType, getElementsByTagNameNS, 

 

First of all, an evaluation is made after running it on the sample projects, and the accuracy of the approach is 

calculated using Conceptual Cohesion of Classes (C3) [9] and Lack of Cohesion of Methods (LCOM). These two 

metrics assess the cohesiveness among the classes and thus, it is ensured whether the newly identified classes are more 

cohesive than pre-refactored and refactored classes using existing technique [3]. Moreover, since the existing approach 

[3] used C3 and LCOM to calculate the cohesion, these are used to compare the performance of this proposed procedure. 

A comparative representation is shown using these three types of values (Section 4.1, 4.2).  
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The contextual similarities among the methods of the new refactored classes are inspected manually to ensure that 

the classes are contextually balanced. These results indicate that the proposed approach outperforms the existing one. 

4.1.  Comparative Result Analysis Using C3 

As mentioned in the methodology section, an existing approach is implemented which refactors God Class using 

cohesion based grouping. This research intents to prove that integrating context based clustering along with the 

cohesion based clustering can improve the refactoring. To present the comparison, Conceptual Cohesion of Classes (C3) 

[9] is used. C3 is a conceptual cohesion metric which is used to compute the overlap of semantic information in a class 

in terms of textual similarity among methods [3]. The increased values of C3 proves that the cohesion of the class is 

also increased, and ensuring higher class cohesion is the motivation of the research. The C3 values of the classes before 

refactoring and after refactoring using both existing and proposed approach are calculated and compared in this section. 

To calculate the Conceptual Cohesion of Classes (C3), ten classes from Xerces (2.7.0) [32] and seven from 

GanttProject (1.10.2) [36] are chosen. These classes are identified as God Class in the existing paper [3]. Based on C3, 

comparative analysis is performed on these classes. 

In Table 1. and Table 3., the Class Name and Lines of Code (LOC) of the chosen ten God Classes of Xerces (2.7.0) 

and seven God Classes of GanttProject (1.10.2) are reported [3]. The LOC of those includes both source code and 

comments. The process of comment sections identification, selection and parsing is described briefly in section 3.2.1. 

The results achieved in this study is presented in terms of cohesion in Table 2. From the values of this table, it is clearly 

proved that for almost all classes, the cohesion is sensibly improved. In Table 2., the name of classes that are inspected 

is added in the first column (Class). Next, the C3 values of those classes before refactoring is stored (column Pre-

refactoring) [3]. In the last two columns, the number of new classes (NOC) and their C3 values after refactoring is 

reported. First one adds the results using the existing approach (column Existing Approach) [3] and second one using 

the proposed approach (column Proposed Approach). 

Table 9. Manual Inspection Based on Context – DeferredDocumentImpl 

Original Class Refactored Classes Notes 

DeferredDocumentImpl 

Class0 

createDeferredElement,createDeferredElement,createDeferredElement, 

createDeferredElement,createDeferredElement,createDeferredElement, 

createDeferredElement,createDeferredElement,createDeferredElement, 

setDeferredAttribute,setDeferredAttribute,setDeferredAttribute, 

setDeferredAttribute, setIdAttributeNode, setIdAttribute, 

getAttribute,setAttributeNode,createDeferredElementDenition 

Total Methods: 116 

Misplaced groups: 1, 

methods: 2 (1.72%) 

Class1 
synchronizeData, putIdentier0, addElement,appendChild, 

setAsLastChild,putIdentier,getNodeIndex, removeAllElements, 

Class2 
createDeferredNotation,createDeferredEntity,setInputEncoding,size, 

getImplementation,getNamespacesEnabled,setEntityInfo, createNode, 

Class3 

getParentNode,getParentNode,getParentNode,getParentNode,getLastChild, 

getLastChild,getLastChild,getLastChild,getPrevSibling, getPrevSibling, 

getPrevSibling,getPrevSibling, getRealPrevSibling,getRealPrevSibling, 

getRealPrevSibling, getRealPrevSibling, getNodeName,getNodeName, 

getNodeName, getNodeName,getNodeValueString,getNodeValueString, 

getNodeValue,getNodeValue, getNodeValue, getNodeValue,getNodeExtra, 

getNodeExtra, getNodeExtra, getNodeExtra,getNodeType, 

getNodeType,getNodeType,getNodeType,getNodeURI,getNodeURI, 

getNodeURI, getNodeURI,elementAt,createDeferredDocument, 

createDeferredDocumentType,createDeferredEntityReference, 

createDeferredAttribute,createDeferredAttribute,createDeferredAttribute, 

createDeferredAttribute,createDeferredTextNode,createDeferredCDATASection, 

createDeferredProcessingInstruction,createDeferredComment, cloneNode, 

insertBefore,lookupElementDe_nition, getNodeValueString, getNodeValueString, 

Class4 

getNodeObject, synchronizeChildren, synchronizeChildren,synchronizeChildren, 

synchronizeChildren,synchronizeChildren,synchronizeChildren, 

synchronizeChildren,synchronizeChildren,synchronizeChildren,binarySearch, 

print, print, print, print 

Class5 

getTypeInfo, getNodeValue, getNodeValue, getChunkIndex, createChunk, 

setChunkIndex,clearChunkIndex,createChunk,ensureCapacity, ensureCapacity, 

ensureCapacity, ensureCapacity 
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Table 10. LCOM Value Comparison Shown on God Classes of Xerces 

Class 
Pre-

refactoring 

Existing Approach Proposed Approach 

NO

C 
C3 

NO

C 
C3 

AbstractDOMParser 83  2 0, 0 2 40, 0 

AbstractSAXParser  1126  3  49, 0, 451 3 19, 0, 5 

BaseMarkupSerializer 921  2  27, 358 4 1, 0, 18, 0 

CoreDocumentImpl 6,825  3 143, 190, 3322 8 15, 0, 87, 0, 11, 91, 0, 0 

DeferredDocumentImpl 0  2 0, 41 6 1, 4, 36, 0, 0, 0 

DOMNormalizer 456  2 66, 150 4 12, 0, 6, 0 

DOMParserImpl 132 2 15, 54 3 1, 5, 31 

DurationImpl 701  2 211, 355 2 47, 55 

NonValidatingConfiguration 147  2 4, 82 2 3, 0 

XIncludeHandler 4652 4 30, 602, 75, 188 7 34, 0, 121, 47, 0, 65, 20 

 

For Instance, the C3 value of the God Class AbstractDOMParser was 0.21 before refactoring. Following the 

existing approach, the class is refactored in two new classes and the C3 values of those classes are 0.25 and 0.23. The 

proposed approach also refactored the God Class into two classes. By this approach, the C3 values of the two new 

classes are 0.64 and 0.47 and these values are higher than the previous two (row 1). In the case of 

BaseMarkupSerializer class, the existing approach refactored the class into two classes where the proposed approach 

divided the class into four new classes. However, the C3 values of new classes by proposed approach (0.73, 0.78, 0.54, 

0.42) are higher than the C3 values of both pre-refactored class (0.08) and refactored classes using existing technique 

(0.18, 0.15) (row 3). If the all the rows of the table is observed closely, the evidence of the improvement of the result by 

proposed approach is clearly visible. 

Next, the comparison of C3 values is performed on the selected seven God Classes of the project GanttProject 

(1.10.2). In Table 4., The C3 values of the classes before refactoring (column 2) and after refactoing using both existing 

and proposed approach (column 3-4). The table shows how the result is improved if refactoring is performed using this 

approach. For example, C3 value of the class GanttOptions was 0.08 before rafctoring. Using the existing approach the 

class is divided into three classes with the C3 values - 0.27, 0.32 and 0.36. Although the class is split into two classes 

using proposed approach, the C3 values of the new classes become higher (0.82, 0.83) (row 1). The result of the rest six 

classes is also observed to be improved (row 2-7). 

Table 11. LCOM Value Comparison Shown on God Classes of GanttProject 

Class 
Pre-

refactoring 

Existing Approach Proposed Approach 

NOC C3 NOC C3 

GanttOptions  2100  3 1117, 295, 0 2 93, 0 

GanttProject 2318 3 1233, 0, 0 7 40, 0, 69, 0, 19, 116, 17 

GanttGraphicArea 845  2 511, 4 3 12, 21, 9 

GanttTree 649  2 493, 15 4 3, 35, 21, 0 

GanttTaskPropertiesBean 183  2 52, 4 3 18, 22, 4 

ResourceLoadGraphicArea 252  2 143, 63 2 6, 29 

TaskImpl 884 3 119, 58, 3 2 55, 3 

Table 12. Average LCOM Value Comparison – Existing Approach vs. Proposed Approach 

System Pre-refactoring Existing Approach Proposed Approach 

Xerces  1504  256  26 

Gantt 1033  242 20 

Average 1310 257 23 

 

Table 5. compares the results achieved by the proposed and existing approach in terms of cohesion. For this, 

average of the cohesion values for both systems are calculated and compared. If the average C3 values of the table is 

observed closely, it is proved that the existing approach also achieves a sensible improvement of cohesion. However, 

this improvement is lower when compared with the proposed approach. The average cohesion values of before and after 

refactoring by both techniques are 0.13, 0.27 and 0.72 respectively (Table 5., row 3). Average C3 using proposed 

approach is more than five times better than the pre-refactoring and more than two times than the existing approach. 
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4.2.  Comparative Result Analysis Using LCOM 

The principal purpose of this research is to extract a God Class into smaller classes with higher cohesion. To 

ensure the success of the refactoring procedure it is necessary to prove that the cohesion of the refactored classes are 

higher than the cohesion of original God Class. In section 4.1, In terms of C3, the cohesion of the refactored classes are 

estimated and compared with both pre-refactored classes and refactored classes using an existing technique. In this 

section, another cohesion metric, Lack of Cohesion of Methods (LCOM) [37], is used to assess the performance of the 

proposed approach. It measures the lack of cohesion of a class. It is an inverse metric which implies that the higher the 

value of LCOM, the lower the class cohesion. It counts the sets of the methods that are not related in terms of local 

instance variables in the class [37]. 

The LCOM values of the classes before refactoring and after refactoring using both existing and proposed 

approach compared in this section. For this comparative analysis, the same ten classes from Xerces (2.7.0) [32] and 

seven from GanttProject (1.10.2) [36] are used which were chosen in C3 comparison (Section 4.1). These classes are 

identified as God Class in the existing paper [3]. In Table 1. and Table 3., the Class Name and Lines of Code (LOC) of 

the chosen seventeen classes are reported [3]. 

The results achieved in this study is presented in terms of LCOM in Table 10. and Table 11. From the values of 

these tables, it is clearly proved that for almost all the classes, the LCOM is decreased which shows that cohesion is 

sensibly improved. In both of the tables, the name of classes that are inspected is added in the first column (Class). Next, 

the LCOM values of those classes before refactoring is stored (column Pre-refactoring) [3]. In the last two columns, the 

number of new classes (NOC) and their LCOM values after refactoring is reported. First one adds the results using the 

existing approach (column Existing Approach) [3] and second one using the proposed approach (column Proposed 

Approach).  

For Instance, in Table 10., the LCOM value of the God Class AbstractSAXParser was 1126 before refactoring. 

Following the existing approach, the class is refactored in three new classes and the LCOM values of those classes are 

49, 0 and 451. The proposed approach also refactored the God Class into two classes. By this approach, the LCOM 

values of the two new classes are 19, 0, 5 and these values are lower than the previous two (row 2). In Table 11., in the 

case of GanttProject class, the existing approach refactored the class into three classes where the proposed approach 

divided the class into seven new classes. However, the LCOM values of new classes by proposed approach (40, 0, 69, 0, 

19, 116, 17) are lower than the C3 values of both pre-refactored class (2318) and refactored classes using existing 

technique (1233, 0, 0) (row 2). If the all the rows of the both tables are observed closely, the evidence of the 

improvement of the result by proposed approach is clearly visible.  

Table 12. compares the results measured using both the proposed and existing approach in terms of lack of 

cohesion among the methods in a class. For this, average of the cohesion values for both systems are calculated and 

compared. If the average LCOM values of the table is inspected, it is proved that cohesion lacking is already decreased 

in refactored classes using the existing approach. However, this improvement is higher in the proposed approach 

compared with the existing one. The average LCOM values of before and after refactoring by both techniques are 1310, 

257 and 23 respectively (Table 12., row 3). The average LCOM after refactoring by proposed technique is lower than 

the other two average values.  

The proposed God Class refactoring procedure is compared with an existing technique [3] using two different 

metrics: Conceptual Cohesion of Classes (C3) and Lack of Cohesion of Methods (LCOM). This analysis indicates that 

the newly identified class classes are more cohesive than the original God Classes and the refactored classes using 

existing technique. 

4.3.  Contextual Balance Inspection 

In section 4.1 and 4.2, the effectiveness of the proposed approach is compared with existing approach in terms of 

C3 and LCOM. However, since one of the major contributions of this research is considering contextual aspect in 

refactoring God Class, it is highly needed to ensure that the modules of the refactored classes are contextually balanced. 

Therefore, a manual inspection is run on the nine God Classes of the project - Xerces. In order to perform this 

investigation, the names and descriptions of the methods of refactored classes are observed to capture the context of the 

methods. For this, two conditions are considered – 

 

 Different actions on the identical data should be in the same class. For example, there are three methods: 

startElement, emptyElement, endElement. Since these three actions are performed on the same data element, 

these methods should be in the same class. 

 Methods for same actions on different data should be in the same class. For example, the methods printText, 

printText, printHex, printEscaped, printEscaped performs print action on different data. Therefore, these five 

methods should be together. 
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A.  Description of the Inspection 

The nine God Classes of Xerces are first split into smaller classes following the proposed refactoring approach. 

Then, all methods of each refactored class are investigated to find out how many methods are misplaced based on their 

context (from Table 6. to Table 9.). The discussions on the classes are listed below – 

AbstractDOMParser There were 46 methods in the original class. After refactoring into two new classes, three 

groups of methods are found to be misplaced based on context. Among those groups, three methods are misplaced. This 

implies that almost 6.52% (3 out of 46 methods) methods are not in the right class (Table 6.). The reasons behind the 

misplacement are – 

 

 The actions start and end of CDATA should be in the same class. Group 1: (startCDATA) and (endCDATA) 

in Class0 and Class1 respectively. Methods Misplaced : 1 

 Attribute declaration should be with the seven other declaration actions. Group 2: 

(externalEntityDecl,internalEntityDecl,unparsedEntityDecl,xmlDecl,doctypeDecl,notationDecl,elementDecl) 

in Class0 and (attributeDecl) in Class1. Methods Misplaced : 1 

 The actions start and end of conditional should be in the same class. Group 3: (startcondtional) and 

(endconditional) in Class0 and Class1 respectively. Methods Misplaced : 1 

 

DOMParserImpl In this class, initially there were 15 methods. After reafctoring into three new classes, no method 

is found to be misplaced on the basis of contextual similarities (Table 6.). 

XIncludeHandler 1.19% (1 out of 84) methods are not in the right place (Table 7.) 

 

 The actions save, restore and get on BaseURI should be together. Group 1: (saveBaseURI, restoreBaseURI) 

in Class0 and (getBaseURI) in Class4. Methods Misplaced: 1 

 

DurationImpl 2 out of 54 methods (3.70%) are not placed perfectly (Table 7.). 

 

 Same method names with different signatures should be in the same class. Group 1: Two (toString) methods 

in Class0 and two (toString) methods in Class1. Methods Misplaced : 2 

 

AbstractSAXParser Out of 67, 2 methods (2.99%) are found being misplaced after refactoring (Table 7.). 

 

 All the declaration functions should be together. Group 1: (xmlDecl, doctypeDecl, elementDecl, 

externalEntityDecl,notationDecl, unparsed- EntityDecl) in Class0 and (attributeDecl, internal- EntityDecl) in 

Class1. Methods Misplaced : 2 

 

BaseMarkupSerializer 3.33% (2 out of 30) methods are not in the right place on the basis of context (Table 7.). 

 

 All actions on element state should be in the same class. Group 1: (getElementState) in Class0 and 

(leaveElementState, enterElementState) in Class2. Methods Misplaced : 1 

 

DOMNormalizer No method is found misplaced on the basis of contextual similarities (Table 8.). 

CoreDocumentImpl After refactoring five groups of methods and among those groups seven out of 127 methods 

(5.51%) are misplaced (Table 8.). 

 

 The actions clear and get on identifiers should be together. Group 1: (clearIdentifiers) and (getIdentifiers) in 

Class0 and Class6 respectively. Methods Misplaced : 1 

 Same methods with different signature should be together. Group 2: Two (getNodeNumber) methods in 

Class0 and two (getNodeNumber) methods in Class3. Methods Misplaced : 2 

 Same methods with different signatures should be together. Group 3: Two (getUserData) methods in Class3 

and two (getUserData) methods in Class5. Methods Misplaced : 2 

 The actions load and save on XML should be together. Group 4: (saveXML) and (loadXML) in Class2 and 

Class4. Methods Misplaced : 1 

 The actions set and remove on userDataTable should be together. Group 5: (setUserDataTable) and 

(removeUserDataTable) in Class3 and Class5. Methods Misplaced : 1 

 

DeferredDocumentImpl 1.72% (2 out of 30) methods are misplaced on the basis of context (Table 9.). 

 

 Same methods with different signatures should be together. Group 1: Four (getNodevalue) methods in Class0 

and two (getNodeValue) methods in Class3. Methods Misplaced : 2 
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B.  Discussion on Result 

A thorough manual inspection is performed on the nine predefined God Classes of Xerces(2.7.0) [32]. The purpose 

of this inspection was to ensure that the methods are contextually balanced after refactored using the proposed approach. 

For this, the context of the methods of a particular refactored class are observed and compared with each other. Thus, 

the method sets are found which are misplaced according to their context. Based on the description of the last section 

(from Table 6. to Table 9.), the number of the misplaced methods is very low with the respect of total methods of a God 

Class. The range of this misplacement is from 0% to 6.52% which implies that on average almost 2.78% methods are 

not placed correctly. Although these methods are split in different classes after refactoring, these methods are actually 

supposed to be together. However, most of the methods (on average 97.23%) are placed correctly on basis of their 

context. 

This section has described the results of the proposed approach of God Class refactoring. The approach has been 

applied on two projects to analyze the effectiveness of the approach. The analysis was demonstrated in two different 

phases. Firstly, a comparative analysis is performed on the projects in terms of C3 and LCOM to ensure that the 

cohesion of classes are increased after refactoring. The comparisons shows that if the God Classes are refactored 

following the proposed approach, the cohesion of the newly identified classes are sensibly higher than both before and 

after refactoring using an existing approach. In the next phase, the context of the methods of the new classes are 

investigated manually and reported that a very low number of methods (on average 2.78%) are misplaced in respect of 

their context. 

5.  Threats to Validity 

The main threats that might influence the result of this study are discussed in this section. In this research, while 

proposing the refactoring approach only cohesion was considered. However, emphasizing on different aspect (e.g., 

coupling or complexity) in refactoring can represent different scenario. 

Another issue in result analysis is that the comparative analysis is performed only on two open source system 

(Xerces (2.7.0) [32] and GanttProject (1.10.2) [36]) and thus, the result cannot be generalized. The issue was raised due 

to unavailability of projects for comparison in the existing approach [3]. However, the proposed approach can be 

applied on any God Class of any software system. 

6.  Conclusion 

In this paper, a God Class refactoring recommendation and automatic extraction technique is proposed. This 

technique splits a God Class into smaller classes to improve the design quality of the system in terms of both cohesion 

and context. This technique can assist developers in making their maintenance activity easier. Although an affluent 

number of researches have been conducted in this arena, to the best of authors' knowledge, no existing approach gives 

emphasis on the contextual aspect in refactoring God Class. Therefore, considering context of a God Class in 

refactoring is proposed to add significant contribution so that the work can advance the field of God Class refactoring 

from the present state of knowledge. The purpose of this study is to figure out how the result is improved in comparison 

with existing works if another aspect, contextual analysis, is incorporated.  

A refactoring approach is proposed which generates the clusters of the methods based on their code documentation. 

To incorporate both cohesion and contextual analysis, a cluster compositional algorithm is used which generates the 

final set of method groups. Each method group of this set is supposed to be a new class. Therefore, the newly identified 

classes are extracted automatically from the source class and constructed as individual classes. To provide a proper 

justification of this research, an extensive result analysis is designed with both comparative analysis and manual 

inspection. Using two cohesion metrics, the comparative result analysis is provided where it is shown that the result 

becomes better if the context is added in the refactoring process. The technique is run on two open source softwares and 

the result is compared with the output of an existing system. In terms of Conceptual Cohesion of Classes (C3), the 

average cohesion of the proposed technique is 0.72 which is more than five times higher than pre-refactoring (0.13) and 

more than two times higher than the existing system (0.27). In terms of Lack of Cohesion of Methods (LCOM), the 

average LCOM in the refactored classes using proposed approach is 23 which is lower than both the pre-refactored 

classes (1,310) and the refactored classes using existing system (257). Moreover, contextual similarity among the 

methods of the refactored classes is manually inspected. The percentage of method misplace is also very low (on 

average 2.78%).  

In the proposed refactoring approach, both cohesion and contextual similarity based factors have the same priority 

in the similarity measurement process while composing the clusters. The future plan is to assign different weights on the 

two similarity factors in order to analyze which set of weights results better. This research only construct the body of 

refactored classes. However, there must be some other classes which use or access the properties and functionalities of 

the original class. When the class is divided into smaller classes, changes are supposed to be required in those 

corresponding classes. Therefore, adopting those required changes is another future work direction of this research. 
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After extraction, identifying meaningful and appropriate names for the newly extracted classes is also another matter 

concern. As discussed earlier, searching most frequent word in the class and name the class by that word was the initial 

approach attempted to address this issue in this research. However, this idea does not lead to a relevant naming of class. 

The reason behind the failure of the idea is that the class names are not supposed to be contained in the class itself. Most 

of the cases, a class name is selected by the developers based on their own intuition and impression about the class. 

Therefore, naming the extracted classes is kept out of the scope of the objective of this study and can be explored as a 

dimension of future research. 
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