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Abstract: Among the many music information retrieval (MIR) tasks, music genre classification is noteworthy. The 
categorization of music into different groups that came to existence through a complex interplay of cultures, musicians, 

and various market forces to characterize similarities between compositions and organize collections is known as a music 

genre. The past researchers extracted various hand-crafted features and developed classifiers based on them. But the 

major drawback of this approach was the requirement of field expertise. However, in recent times researchers, because of 

the remarkable classification accuracy of deep learning models, have used similar models for MIR tasks. Convolutional 

Neural Net- work (CNN), Recurrent Neural Network (RNN), and the hybrid model, Convolutional - Recurrent Neural 

Network (CRNN), are such prominently used deep learning models for music genre classification along with other MIR 

tasks and various architectures of these models have achieved state-of-the-art results. In this study, we review and discuss 
three such architectures of deep learning models, already used for music genre classification of music tracks of length of 

29-30 seconds. In particular, we analyze improved CNN, RNN, and CRNN architectures named Bottom-up Broadcast 

Neural Network (BBNN) [1], Independent Recurrent Neural Network (IndRNN) [2] and CRNN in Time and Frequency 

dimensions (CRNN- TF) [3] respectively, almost all of the architectures achieved the highest classification accuracy 

among the variants of their base deep learning model. Hence, this study holds a comparative analysis of the three most 

impressive architectural variants of the main deep learning models that are prominently used to classify music genre and 

presents the three architectures, hence the models (CNN, RNN, and CRNN) in one study. We also propose two ways 

that can improve the performances of the RNN (IndRNN) and CRNN (CRNN-TF) architectures. 
 

Index Terms: Music information retrieval, music genre classification, deep learning, Convolutional Neural Network, 

Recurrent Neural Network, Convolutional - Recurrent Neural Network. 

 

1.  Introduction 

In recent times, with the rise of popularity of music streaming services such as Spotify, Apple Music, Amazon 

Music, the necessity of structuring and organization of music is of utmost importance for applications, namely, music 
auto-tagging or music recommendation. These streaming services have resulted in an exponential increase of contents, 

and the categorization or organization of such a big library of contents is a daunting task. Genre is one of the ways to 

organize and classify music content. Hence, it is vital to develop a robust and accurate music genre classification system 

to help in the automatic organization of these content. However, music genre classification remains a nontrivial task as the 

genres are loosely defined. Despite the wide use of terms such as rock, pop, or jazz, there remains no clear description to 

distinguish between them. Such challenges and the need for a music genre classification system has created 

opportunities for re- searchers worldwide and has attracted many researchers in recent times. 

Deep learning architectures, namely CNN, RNN, and CRNN, are in use for music genre classification, but there 
remains a lack of comparisons of the three architectures for the purpose. Furthermore, the architectures are improving to 

overcome their shortcomings.  Therefore, it is vital to have a comparison of the three architectures, CNN, RNN, and 

CRNN to classify the music genre. For this reason, we read and analyzed the previous works of researchers who 

previously used the deep learning architectures for the purpose and sorted the improved architectures of CNN, RNN, and 

CRNN. We sorted the architectures according to the classification accuracy for music genre classification of relatively 

longer music tracks (29-30 seconds). Among the sorted architectures we selected BBNN, IndRNN and CRNN-TF since 

as far as our knowledge and findings BBNN and CRNN-TF achieved the highest classification accuracy among the 
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architectures of CNN and CRNN, whereas IndRNN achieved remarkable classification accuracy with immense 

efficiency among the RNN architectures. All the three architectures achieved classification accuracy of more than 90%. 

We then discussed and analyzed the selected architectures and proposed two ways to improve the RNN and CRNN 

architectures. 

In this study, we reviewed and discussed BBNN [1], IndRNN [2], and CRNN-TF [3] three improved architectures 

of CNN, RNN, and CRNN respectively, that previously used to classify genres of relatively longer clips ( 29 30−  

seconds) and achieved remarkable results. It is to be noted, as we focused on a particular niche of MIR tasks, that is, on 

music genre classification, we focused on the use of CRNN-TF for the purpose and ignored the use of the architecture 

for music auto-tagging, it’s transfer-ability from the work of Wang et al. [3]. In the later part of the study, we suggested 

two possible ways to improve the performance of IndRNN and CRNN-TF. 

The organization of the rest of the study is as follows; section 2  contains the literature review, in section 3  we 

discuss the BBNN architecture of Liu et al., section 4  holds a discussion of the IndRNN architecture of Wu et al., and in 

section 5  Wang et al.’s CRNN-TF architecture is discussed. In section 6 , we analyze the outcome of the three 

architectures, BBNN, IndRNN, and CRNN-TF, and propose ways to improve the IndRNN and CRNN-TF architectures 

for better music genre classification accuracy. Finally, section 7  holds the conclusion of the study and reflects light to 

future work.  

2.  Literature Review 

Classification of music genres is a multi-class classification task. In other words, into one of three or many classes 

(or genres), the music is classified. Such tasks involve two steps, feature extraction, followed by classification. The 

success of such tasks relies heavily on the extraction of relevant features. In the past, researchers have depended on 

hand- crafted feature extraction for MIR tasks and developed classifiers based on them. Casey et al. outlined the problems 
of content-based music information retrieval and explored methods using audio cues, such as query by humming, audio 

fingering, etc, and other cues, namely music notion and symbolic representation [4] Mermelstein used Mel-frequency 

cepstrum (MFCC) to measure the distance of the source if sound for speech recognition [5]. In MIR tasks information 

retrieval from images is also vital as information from music signal can be represented as images. Ojala et al. introduced 

Local Binary pattern (LBP) as an efficient texture descriptor that labeled the pixels of images by neighbor pixel 

thresholding and considered the result as a binary number [6]. In 2002, mixtures of Gaussians model and k-nearest 

neighbor (KNN) was used along with three hand-selected features (timbral texture, rhythmic content, and pitch content) 

for music genre classification (MGC) and achieved an accuracy of 61% , which in comparison to average human 

accuracy of 70%  was a remarkable success [7]. However, the popularity of the use of hand-crafted feature extraction 

has decreased in recent times because this process imposes a significant blockade as expertise in the relevant field is 

required to obtain hand-crafted features. This requirement limits the generalization of MGC, as in different environments, 

the considered features change. 

In 2011, from spectrograms or images which were generated from audio signals using short-term Fourier transform 

(STFT), textural features were extracted [8]. This and the rise in popularity of a parallel processing architecture named 

Graphics Processing Unit (GPU) made the use of deep learning models for feature extraction and classification tasks, 

hence MIR tasks of different music tracks feasible. Deep learning is such a technique that enables systems to learn by 
example and has proven to enable systems to understand complex perception tasks with maximum precision. The deep 

learning process includes two phases, training and inception. Labeling of large data and identification of matching 

characteristics takes place during the training phase. On the other hand, in the inception phase, a concluding decision is 

made, and new unexposed data are labeled using previously learned knowledge. For long deep learning, models are in use 

with great success for different Computer Vision (CV) tasks, such as image classification [9], object detection [10, 11], 

image caption [12], facial expression recognition [13], image recognition [14] and so on. Being inspired by the success 

of the application of deep learning models for various CV tasks, researchers being able to represent the audio signal as a 

spectrogram have applied different deep learning models such as CNN, RNN, and CRNN for various MIR tasks and 
have achieved state-of-the-art performance. 

CNN has been widely used for various MIR tasks such as music recommendations [15], automatic tagging [16], 

feature learning [17], and so on. A popular approach of using CNN for MIR tasks involves using a spectrogram as an 

input to the CNN and extract patterns in 2D by applying convolving filter kernels. In 2010, for music genre prediction 

Li et al. developed a CNN using raw Mel-frequency cepstral coefficients (MFCC) as input [18]. For MGC, a CNN was 

used to capture temporal information, and another to capture timbral relations in the frequency domain [19]. The use of 

CNN for MGC has inspired many researchers such as Senac et al. [20] who used the filter dimensions of CNN in such a 

way so that it is interpretable time and frequency. In their experiment, they used eight features chosen along with 

dynamics, tim- bre, and tonality dimensions as inputs of CNN and achieved global accuracy of 89.6%  against 87.8%  

for 513  frequency bins of a spectrogram. The experiment proved that music features are more efficient for MGC than a 

huge number of spectrogram frequency bins. Bahuleyan conducted a comparative study on the performance of deep 

learning models requiring a spectrogram as input, specifically VGG-16 (a robust CNN architecture) and machine 

learning classifiers that need is trained with hand-selected features for music genre classification [21]. In his experiments, 
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the CNN architecture outperformed the feature-engineered models. Yang et al. used a Mel-scale spectrogram as input to 

his proposed CNN architecture, which applied the output of duplicated convolutional layers to different pooling layers 

to produce information for music genre classification [22]. Though the CNN architecture obtained a remarkable 

accuracy of 90.7% , the performance suffered in a significant amount when it came to correct classification of the 

country genre, and it suggested that the use of 3  seconds of raw audio as input have caused the loss of performance. But 

a major setback for most of the CNN-based music classification models is the requirement of data-augmentation and large 

datasets for the training of the models, as the models often require to learn large parameters. A study in 2019 solved this 
problem to a certain extent by the introduction of a novel CNN architecture named Bottom- up Broadcast Neural 

Network (BBNN) [1]. The architecture was designed to handle multi-scale of audio features and preserve lower-level 

features, which was usually lost in the previous architectures even though it contained critical information. In BBNN 

low-level information was transmitted to the decision-making layers, which preserved the crucial low- level information 

and hence, resulted in greater classification accuracy. Furthermore, BBNN required only a few parameters to learn 

compared to other CNN architecture, this made a small dataset without any data-augmentation techniques adequate for 

the training of the BBNN. 

Recurrent Neural Network (RNN) is another popular deep learning model designed to recognize patterns in data 
and takes time and sequence into account during the process. RNN is widely used for sequential data and can manipulate 

a long-term relationship that is present in the data. But, despite the capacity to manipulate long-term relationships, due 

to gradient vanishing and exploding problems, vanilla RNN struggles to learn long-term patterns [23]. But through the 

emerging of Gated Recurrent Unit (GRU) [24] and Long Short-Term Memory (LSTM) [25], the issues of vanilla RNN 

have been solved. Zhang et al. used GRU in the RNN layer of their system that can classify music genre in real-time by 

listening to music for just 0.5  seconds with an accuracy of 64%  and suggested that LSTM-RNN can boost the accuracy 

to near 80%  by treating the MFCC average and covariance as a time series with time-step 0.5  seconds [26]. In 2016 

Dai et al. used LSTM-RNN to classify music into different genres [27]. In the study, LSTM-RNN was used to extract 
features from the scatter spectrogram of audio input. The extracted features and segment representation of the initial 

frame were combined to obtain the fusional segment feature, which achieved an accuracy of 89.71% . Both GRU and 

LSTM were used to classify music and achieved 92%  and 89%  accuracy on the GTZAN dataset by Jukubik [28]. 

GRU and LSTM solve gradient vanishing and exploding problems of vanilla RNN, but they both are still susceptible to 

gradient decay as they both use sigmoid and hyperbolic tangent functions. Also, the network struggles to work on a 

long-time scale. In other words, the network struggles to deal with long clips. Wu et al. addressed the problem with the 

net- work and introduced IndRNN for MGC tasks as IndRNN can learn long-term dependencies better than GRU and 

LSTM [2]. They adjusted the time-based back-propagation to solve the problems of vanilla RNN and used scattering 
transformation for data pre-processing to keep the loss of information to a minimum. 

CRNN is a hybrid model that uses CNN to extract local features, and RNN acts as a temporal summarizer, that is, 

aggregates the features. In 2015 for the first time, this hybrid structure was proposed [29]. Choi et al. used success- fully 

used a CRNN architecture that was made of 2-layer GRU-RNN on top of 4-layer CNN for music tagging [30]. Later 

Choi’s CRNN architecture was used to map the music genre, where the architecture achieved a 0.893  AUC-ROC index 

[31]. But in this architecture, RNN was used for the extraction of spatial dependency of music signal in its time 

dimension only, ignoring its frequency dimension. Wang et al. introduced CRNN-TF for MGC tasks that extracted 

spatial dependencies not only in the time dimension but also in frequency dimensions of music signal in multiple 

directions [3]. In the study, the CNN part of the architecture used 4-layer CNN the same as that used in Choi’s [30] but 

used different convolutional and pooling operators. For the RNN part, multi-directional RNN was used to generate 

sequences that was later fed to a Grid LSTM to extract spatial dependency. 

To the best of our knowledge, no researchers have done a comparative analysis of all of the three deep learning 
models, CNN, RNN, and CRNN, to classify music genre specifically. Nor, much work explored the use of deep 

learning models for the purpose. Scaringella et al. discussed typical techniques for extracting features, namely, timbre, 

melody or harmony and rhythm for the MIR tasks, three paradigms (expert systems, supervised and unsupervised 

clustering) for genre classification using these features, were some of the mentionable outcomes of the music genre 

classification con- test of MIREX 2005, and some emerging techniques of mu- sic genre classification [32]. Corréa et al. 

surveyed different approaches for music genre classification that considers the symbolic representation of music data 

[33]. On the other hand, Fu et al. explored the audio-based music classification [34]. Although the study discusses CNN 

for music classification in short, but ignores the other two vital and emerging deep learning models that are robust for 
the purpose, that is, RNN and CRNN. Chillara et al. developed multiple models (Spectrogram based CNN models and 

Feature-based models) for MGC tasks and compared them [35]. The study found Spectrogram based CNN models 

outperform the models of the other type. Among the CNN based models (CNN, CRNN, CNN-RNN), CNN performed 

the best. Kumar et al. used of various machine learning algorithms to compare Fast Fourier Transform (FFT) and MFCC 

feature extractors for MGC tasks and later constructed LSTM-RNN based classifier using MFCC data for training [36]. 

The LSTM-RNN classifier achieved an accuracy of 86% . Along with a comparison of MFCC and FFT, the study 

provides a comparative idea of the different machine learning algorithms and shades light on the potential of deep 

learning algorithms such as RNN for the purpose but does not focus on the other two, CNN and CRNN. 
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3.  Bottom-Up Broadcast Neural Network (BBNN) [1] 

Liu et al. used a novel CNN architecture named Bottom- up Broadcast Neural Network (BBNN) for music genre 

classification. The BBNN consisted of a Broadcast Module (BM) which was made up of densely connected inception 

blocks that perceived the feature maps with different scales and extracted information hidden in the time-frequency of 

the audio signals simultaneously from different scales. Furthermore, to transform low-level information to the decision 
layer, BBNN interconnected the building blocks, which ensured the optimum maintenance of the low-level information 

that otherwise would have been lost in most other CNN architectures. Unlike other CNN architectures, the BBNN 

architecture had a few parameters which omitted the requirement of data-augmentation, which in turn reduced the 

requirement of large datasets for the training of the model. 

3.1.  Construction of the Used BBNN 

The BM of the BBNN consisted of 3L = identical stacked, densely interconnected Inception blocks. Such 

architecture allowed each block to receive information from all the previous blocks and hence made the network less 

vulnerable to frequency-shifts in a spectrogram. When SLX was the output, the input of the l th−  block, that is, 

1, ,l L=  , 

 

 ( )1 1, , , ,l I SL lX f X X X −=                                                                         (1) 

 

where, 1 1[ , , , ]SL lX X X − represented the summation of feature maps which the Inception blocks 0, , 1l − had produced 

and If represented the composite function of all operation of an Inception block. Each Inception block had convolutions 

of 1 1,3 3,5 5    filter sizes with two strides. After that, 1 1  convolutions calculated the previous reductions. Before 

each convolution to enhance the generalization ability of the network, an extra layer was used, which comprised of 

Batch Normalization (BN), followed by rectified linear activation (ReLU). Each inception blocks had layers of stacked 

convolutions and BN with occasional max-pooling layers of 3 3  stride 2 . Max-pooling was used to reduce the 

resolution of the grid to half. Feature maps of ( )0 1k k l+  −  were present in each block, where 0k  represented the 

number of channels in the input SLX  and k  represented the growth rate of the BM, which was 128 . 

All the layers of the used BBNN had four parts, namely, the shallow feature extraction layer, BM, transition layer, 

and decision layer. Overall, the BBNN aimed to learn all parameters of a composite function ( )F   , 

where represented all the parameters. The composite function, ( )F   maps input 0X to the output p , which is a genre 

and was represented by, 

 

 

Fig.1. Used Broadcast Module [BM], sourced from [1] 

( )

( )( )( )( )
0

0 ,DL TL BM SL SL BM TL DL

p F X

f f f f X    

= 

=
                                                         (2) 

 

where ( )f   represented a composite function of the corresponding part of the network. In the shallow layer, within a 

short time, local frequency information was extracted by a small receptive field followed by a BN, and ReLU functions 

that activated the local features. An added max-pooling operation filtered the dominant frequency of Mel-spectrogram 

and to enable the architecture to achieve some invariance to translation. Already discussed each BM layer then received 
the extracted local information. Shreds of evidence that support contextual “time-frequency signatures” were gathered 

from the information, an essential indication for music genre identification. The structure of the BM significantly 

reduced the need for down-sampling. Despite the transition layer, by down-sampling, the size of feature-maps and the 

number of channels were reduced. A BN, ReLU activation, convolution, and average-pooling made the transition layer. 

In the final decision layer, global average pooling [28] took the average of each feature map to form a resulting vector and 
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fed it to a softmax log-loss function, which produced a distribution over genre labels. 

 

 

Fig.2. The architecture of the used BBNN, sourced from [1] 

Table 1. Configuration of the used BBNN (Each convolution layer shown in the table corresponds to the sequence BN-ReLU-Conv), sourced from [1] 

Type Layers Output Size Filter Size/Stride (Number) Params 

SL 
Convolution 647 x 128 x 32 3 x 3/1(32) 320 

Max Pool 161 x 128 x 32 4 x 1/None  

BM 

Inception (a), top - [1 x 1/1(32)conv]*3,[3 x 3/1maxpool] *1 3,168 

Inception (a), bottom 161 x 128 x 160 
[3 x 3/1(32)conv] * 1, [5 x 5/1(32)conv]*1 

[1 x 1/1(32)conv]*1 35,936 

Inception (b), top - [1 x 1/1(32)conv]*3, [3 x 3/1maxpool ] * 1 15,456 

Inception (b), bottom 161 x 128 x 288 
[3 x 3/1(32)conv]*1, [5 x 5/1(32)conv] *1 [1 x 

1/1(32)conv]*1 40,032 

Inception (c), top - [1 x 1/1(32)conv]*3, [3x3/1maxpool ] * 1 27,744 

Inception (c), bottom 161 x 128 x 416 
[3 x 3/1(32)conv]*1, [5 x 5/1(32)conv] *1 [1 x 

1/1(32)conv]*1 44,128 

TL 
Convolution 161 x 128 x 32 1 x 1/1(32) 13,344 

Max Pool 80 x 64 x 32 2 x 2/2  

DL 
Global Average Pool 1 x 1 x 32 -  

Softmax 1 x 1 x 10 - 330 

Total Params 180,458 
 

3.2.  Performed Experiment 

BBNN, along with six different deep learning models and one traditional model, was trained and tested using 

GTZAN [37], Ballroom [38], and Extended Ballroom [39] datasets. The preprocessing program Librosa [40] 

transformed the files of a dataset into a Mel-spectrogram of size 647 128  ( 30  seconds audio), which was the input to 

the BBNN. The ADAM optimizer [41] trained the architecture, also the three datasets used a batch size of 8  for 

100 epochs. The researchers also used an early stopping mechanism in the training phase. Fig. 3 shows that BBNN 

converged to a low loss both in training and verification sets. 10-fold cross-validation, by randomly partitioning training, 

testing, and validation sets into 8 /1/1 proportion, was used to evaluate the genre classification accuracy.  
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4.  Independent Recurrent Neural Network (Indrnn) [2] 

For sequential data such as music signals, the use of RNN is wide. Although GRU and LSTM, the popular variants 

of RNN, successfully deal with the gradient vanishing and exploding problem of vanilla RNN, the architectures are still 

susceptible to gradient decay in a deep network. Furthermore, these architectures cannot work on a long-time scale, 

such as long music clips. Considering these, Wu et al. used Independent Recurrent Neural Network (IndRNN) for music 
genre classification, as it could learn long-term dependencies better than LSTM and RNN. Gradient vanishing and 

exploding were solved by adjusting time-based gradient backpropagation. Scattering transforms for data pre-processing 

minimized the information loss. Furthermore, the use of ReLU as an activation function makes the structure trained 

IndRNN more robust. 

4.1.  Construction of the Used IndRNN 

The used IndRNN had three parts, starting with the scattering transform, which pre-processed the dataset with 

preliminary feature extraction. Then, A 5-layer IndRNN with tagged data along with the ReLU function trained the data. 

Finally, softmax completed the classification of music genres. 
 

 

Fig.3. Loss curves of training and validation obtained on (a) GTZAN, (b) Ballroom, and (c) Extended Ballroom datasets, sourced from [1] 

Scattering transform performs better than MFCC and Mel spectrogram on a large time scale, and the information 

loss is also less. Mel spectrogram loses information, which scattering transform with the help of a cascade of wavelet 

decomposition, and modulus operators recover. ( )
1

* *x t   was the calculated value of Mel-frequency spectral 

coefficient [42], where x  represented an audio signal, 
1

 represented the wavelet and ( )t  represented a low pass 

filter. Wavelet modulus coefficients recovered high frequencies removed by the low pass filter. A local translation-

invariant descriptor ( ) ( )0 *S x t x t=  was obtained by a time-average operation on a signal x  and removed the high-

frequencies, which can be recovered by wavelet modulus transform 
1W , 

 

( ) ( )( )
11 * , * ,W x x t x t =                                                                   (3) 

 

Wavelets of the same frequency resolution as Mel-frequency filters were defined. Moreover, the average unit was 

used in the transform to make the wavelet modulus coefficient invariant to the translation. The first-order of scattering 

coefficients were represented by, 
 

( ) ( )
11 1, * * ,S x t x t  =                                                                    (4) 

 

The second wavelet modulus transformed 
2W  for each 

1*x  , 

 

( )( )1 1 1 22 * * * , * * ,W x x t x       =                                                     (5) 

 

here, the operation of 2  on modulus coefficients recovered the lost high frequencies. The coefficients passed through 

the same low pass, used in the first layer, to ensure the invariance to time shifts.  

The second and the n-order scattering coefficients were represented by, 

 

( ) ( )
1 22 1 2, , * * * ,S x t x t     =                                                            (6) 
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and, 

 

11 2( , , , , ) ( ),
nn nS x t x t       =                                                       (7) 

 

respectively. 

IndRNN, similar to [43], was used. The Hadamard product processed the recurrent input of IndRNN, 
 

( )1 ,t t th Wx h b −= + +u                                                                     (8) 

 

here, th  defined as the hidden status at time step t , 1th −  was the unseen state, u  was the recurrent weight, W  was the 

weights, b  was the basis,   was the activation function, and  represented Hadamard product. The  

 

 

Fig.4. The architecture of the IndRNN used, sourced from [2] 

formula indicated that in this architecture, at time step t , each neuron accepted information present at the moment 

along with the information in its hidden layer at time step 1t −  and allowed each neuron of the architecture to process 

the time and space model. The th  and 1th −  were independent of each other, which suggested W extracted spatial 

dependencies of the input, while u  extracted temporal characteristics. Layers of IndRNN were stacked to make 

connections between the neurons, and each IndRNN was further stacked to make a deep IndRNN network. For the 

n th−  neuron ,n th  the gradient back-propagated to time step t , which could  be represented as, 

 
1

, , 1

, , , , ,

1 1
1

, 1 , 1

, ,

,

T
n T n kn n n

k tn t n T n t n T n k

T T
Tn n

n k n n n k

k t k tn T n T

h hJ J J

h h h h h

J J
u u

h h
 

−
+

=

− −
−

+ +

= =
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= =

    

 
 = =

 



 

                                                 (9) 

 

where the objective at time step T was nJ  and , 1n k +
  the derivative of the activation function. The gradient of 

activation was within a definite range, and the formula as a whole suggested the exponential term of the scalar value nu , 

which was only involved by the gradient. So, IndRNN depended on the value of recurrent weights, which was adjusting 

the exponential part, that is, keepings
1

1

, 1

T
T

n n k

k t

u 
−

−

+

=

  in a particular range, gradient vanishing, and exploding were solved. 

4.2.  Performed Experiment 

For the evaluation of the architecture GTZAN dataset [37] was used. The audio inputs were of 30  seconds, which 

converted to mono by sampling at 16  kHz. The dataset was shuffled randomly and placed into ten folders, of which 

nine were used to train and 1  to test. Using 10-fold-cross-validation performance was evaluated, and for final test 

accuracy, an average accuracy of 10  times it was used. Dropout was set at 0.5 , while the learning rate was at1 5e − . 

Early stopping was applied when the curve convergence was stable. 
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Fig.5. Deep IndRNN architecture, sourced from [2] 

5.  CRNN in Time and Frequency Dimensions (CRNN-TF) [3] 

Wang et al. used CRNN in Time and Frequency dimensions or better known as CRNN-TF, to classify the music 

genre. The study used a CNN with different kernels and pool strides so that it outputs an activation map of mid-level 

frequency. After that, to convert the activation map into eight sequences, a novel multi-directional scanning strategy 

was employed. Then one grid LSTM-RNN was fed each of the obtained sequences. By merging the output of all the 

LSTM-RNN blocks, a high-level feature vector of the input music signal. Hence the architecture captured spatial 

dependencies in Time and frequency dimensions of the music signal in multiple-dimensions. 

5.1.  Construction Of The Used CRNN-TF 

As Mel-spectrogram represents the short-term power spectrum of an audio signal and can capture low-level details 

along multiple dimensions, the preprocessor transformed the music signal into a log-amplitude Mel-spectrogram 

(LAMS), which is a scaled Mel-spectrogram. The pre-processing followed [30]. To obtain tracks of equal length, 

trimming the music tracks to 29  seconds was done, which was the input to the architecture. The output of the pre-

processing was a 96 1360  matrix of Mel-spectrogram. Each row of the matrix corresponded to a Mel-frequency scale, 

while the column to a Mel-frequency time frame. 

The architecture used 4 -layer CNN, where each layer was of a set of 3 3  filters and 2 4  pooling strides. The 

first layer contained 64  filters, while the remaining layers had 128  filters. The configuration produced an activation 

map of ( )6,6,128 . Because of the different convolution and pooling operators, the activation map contained 6  Mel-

frequencies. 

RNN structures, namely a network of multi-directional RNN and a Grid LSTM block, were used in the CRNN-TF. 

The activation map obtained using the CNN was fed to a networked multi-directional RNN to convert the activation 

map to eight sequences, each of which was generated by one scanning method (top-down/bottom-up, left-to-right/right-

to-left, row-wise/column-wise). The three variables had eight combinations that produced eight sequences. Then 

standard one Grid LSTM network [44] was fed each of the obtained sequences. A Grid LSTM block had 32  grid cells, 

and a grid cell was of two LSTM cells. The LSTM cells model spatial dependencies in time and depth dimensions. Each 

block outputs a 32 -dimensional vector. 

Table 2. Parameters of transformation used in the pre-processing of CRNN-TF 

Name of Parameter Parameter Value 

Down Sampling Rate 12 KHz 

Hop Size 256 

FFT 512 - point 

Number of Mel-bins 96 
 

 
The RNN blocks outputted feature vectors and inputted to the fully-connected layer, where the concatenation of 

them formed a 256 -dimensional feature vector and fed to a standard fully connected layer consisting of linear 

transformation and a softmax layer. Each neuron outputs a probable music genre. 
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The objective function of CRNN-TF was, 
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where X  was the input of the signal,   was the music label (genre), *  was the set of parameters of the architecture 

which included weights ( )L

kW  and bias terms ( )L

kb  of the CNN network, weights ( ), ,l
W

 

 , ( ), ,l
U

 

  and bias terms 

( ), ,l
b

 

  of the RNN network, and weights oW  and bias ob  of the fully-connected layer. More details on the parameters 

of CNN and RNN are stated in [16] and [44], respectively. 1 , 2 , and 3  were hyper-parameters that balanced the 

weight decay of different components in the network. Since genre classification is a multi-class classification problem, 

softmax activation along with categorical cross-entropy served as a loss function. The dropout technique was further 
employed at the fully connected layer to reduce over-fitting, 

 

( ) ,o og W y q b= +                                                                       (11) 

 

where q  was a masking vector applied on concatenated feature vector y ,  was the Hadamard product, oW  was the 

linear transformation function, and ob  was the bias term. 

5.2.  Performed Experiment 

Other deep learning architectures, Fully Convolutional Neural Network FCN [16], Timbre CNN [45], End-to-end 

[46], and CRNN [30], were compared to CRNN-TF for similar music genre classification. Using the medium-sized Free 

Music Archive dataset [47], Wang et al. trained and tested the architecture. The split of the dataset following the 
method described in [47] resulted in the obtainment of 19,922  training tracks, 2,505  validation tracks, and 2,573  

testing tracks. Back-propagation trained the CRNN-TF and used a batch sample size of 32 , an initial learning rate of 

0.001  with a 0.9  decay rate after each epoch, and an ELU activation function with 1.0 = . The ADAM optimizer 

trained the architecture, and after every convolution layer, applied BN on the CNN. For the training of fully-connected 

layers, the dropout rate was 5 , and the hyper-parameters, 1 , 2 , and 3  was 610− . AUC score, recall, precision, f1 

score, and accuracy (representing fraction of misclassified genres) were the parameters for evaluation. The performance 

was predicted first by considering each genre as a binary label, then average performance over all the genres was 

evaluated. 

6.  Outcome Analysis and Discussion 

The aim of Liu et al.’s BBNN architecture was to handle the multi-scale of audio feature and use the low level 

along with high-level information of Mel-spectrogram to achieve higher music genre classification accuracy [1]. The 

BBNN, equipped with a novel BM module consisting of inception blocks, helped the architecture to handle multi-scale 

of audio features. The BM was connected to form a dense network, which aided the architecture to transmit low-level 

information to the higher layer. Following the architectural setup and experiment as discussed in section 2 , Liu et al.’s 

BBNN achieved a remarkable classification accuracy of 93.9% , 96.7% , and 97.2%  on the GTZAN, Ballroom, and 

Extended Ballroom datasets and thus it is evident the use of low-level information and the ability to manipulate the 

time-frequency scale of audio features contributes to greater classification accuracy. On the GTZAN dataset, Liu et al.’s 

BBNN achieved a classification accuracy of 93.9 / %  and average precision of 93.7% . As stated in the study, the 

BBNN struggled to distinguish Rock from Country and Metal, while other genres had been more or less correctly 

classified, Fig. 6. The study mentioned, the genres share similar frequency information, which has confused. Although 

the BBNN achieved a remarkable classification accuracy of 96.7%  and average precision of 97.2%  on the Ballroom 

dataset, it was relatively confused between Rumba and Slow Waltz, Fig. 6, because the genre boundaries of these two 

genres are not clear. The potential of BBNN shines through the accuracy ( 97.2% ) it achieved on the Extended 

Ballroom dataset and that too without requiring any pre-training on this larger dataset. The collected confusion matrix 
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shows, Fig. 6, BBNN severely confused Rumba and Slow Waltz with Waltz. The study stated that the three genres 

contain similar patterns [48] for which they were difficult to classify. Furthermore, in the Extended Ballroom dataset, 

samples of the Wcswing genre was significantly small. For this reason, the learning opportunities of BBNN got 

extremely limited, which resulted in the relatively worse classification of this genre. 

 

 

Fig.6. Confusion Matrices representing accuracies of training, validating, and Testing of each fold on the datasets, sourced from [1] 

Wu et al. used IndRNN’s superior ability to learn long term dependencies for music genre classification because 
such capability helps to process music signals that depend on multi-scale features [2]. 5-layer IndRNN architecture was 

applied on the GTZAN dataset for music genre classification and achieved 96%  accuracy with a training time of 23  

seconds per iteration following the architectural setup and experiment as discussed in section 4 . Although the 

architecture did not outperform LSTM in terms of accuracy ( 97% ), it did outperform LSTM ( 0.68  seconds per 

iteration) in training time. The collected figure, Fig. 7, shows that only after 75  epochs, the IndRNN converged to very 

high accuracy. Wu et al. compared the IndRNN to RNN and LSTM, from which to us the comparison between LSTM 

and IndRNN seems more significant. The accuracy of LSTM was higher at 97% , but the training time of each iteration 

was high 0.68 seconds. However, the IndRNN did not lack behind in terms of accuracy and scored an accuracy of 96% . 

But the architecture shined more in training time as it was only 23  seconds per iteration, which was almost a third of 

that of LSTM. 

 

 

Fig.7. AUC-ROC score of the used IndRNN, sourced from [2] 

Liu et al.’s BBNN captured spatial dependencies of music signal in time-frequency dimensions [1], whereas Wu et 

al.’s IndRNN captured spatial dependencies of music signal in time dimension only [2]. Wang et al. improved existing 

CRNN architecture [30] by enabling the RNN layer to capture spatial dependency of the audio signal in both time and 
frequency dimensions, just as BBNN, for MGC tasks. He achieved this by implementing the architecture CRNN-TF, 

which outputted activation map of mid-level time-frequency representation [3]. Following the architectural setup and 

experiment, as discussed in section 5 , Wang et al.’s CRNN-TF showed promise in MGC tasks scoring higher AUC, 

Recall, F1 Score, and Accuracy corresponding to 0.910 , 0.435 , 0.423 , and 0.647 , which was higher than existing 

CRNN architecture [30]. According to Wang et al., several genres were better clustered in CRNN-TF feature space 

compared to that of CRNN [30], and this is the reason for the better performance of CRNN-TF compared to CRNN. 

The study further stated that FCN [16] achieved the highest precision among all the genres and a probable reason for 

this was the more sophisticated CNN architecture with more layers, kernels, and a multiscale strategy. 
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Fig.8. Comparison of classification accuracy and time of each iteration of IndRNN, LSTM and RNN, sourced from [2] 

To us, other than the staggering classification accuracy of BBNN, another significant achievement of the BBNN [1] 

was the reduction of the need for data-augmentation with the help of its compact parameters, which is often a 
requirement in traditional CNN. MIR tasks involve training of classifiers from few labeled data are often a challenge, 

which the BBNN architecture addressed and solved to a certain extent that it eliminates the need for pre-training on 

bigger datasets such as the Extended Ballroom dataset. However, there is still room for improvement as the architecture 

struggles to classify genres that are quite similar. We find IndRNN [2] to be a promising architecture for MGC tasks as 

the trade-off between accuracy and training time is very little. Furthermore, [43] showed that increasing the number of 

layers of the architecture results in better performance in Cross-Subject (CS) and Cross-View (CV). Being inspired by 

the work of Li et al. [43], we propose increasing the number of layers of the used IndRNN to obtain performance 

improvement of the architecture for MGC tasks. Wang et al. found that the precision of CRNN-TF was not as that of 
FCN [16] and believed that replacing the CNN layer of the architecture with a more sophisticated one such as that of 

[16] can improve the performance [3]. In addition to this, we propose replacing the LSTM layer of the architecture with 

structures that can work on a long time scale and learn long-term relationship better, such as IndRNN [43], and hence 

improve the performance because LSTM struggles to work in the long time scale as in music clips. Furthermore, we 

observe the comparatively new CRNN architecture precisely the CRNN-TF lacks behind in comparison to the more 

established CNN and RNN architectures, that is, the BBNN and IndRNN. Wang et al.’s CRNN-TF scored an AUC 

score of 0.910 , which surpassed the previous state of the art CRNN architecture [30], despite the achievement, the 

overall performance of the architecture is significantly behind that of BBNN and IndRNN, which uses low-level 

information in the decision-making layer and learn long term dependencies respectively to achieve superior 

classification accuracy. 

Table 3. Performance of CRNN-TF compared to other deep learning architectures, sourced from [3] 

Method AUC Recall F1-Score Accuracy 

FCN 0.907 0.430 0.403 0.639 

Timbre CNN 0.891 0.364 0.350 0.617 

End-to-end 0.891 0.384 0.345 0.614 

CRNN 0.903 0.407 0.402 0.634 

CRNN-TF 0.910 0.435 0.423 0.647 

 

 

Fig.9. Distribution of FMA Testing Data in CRNN (a) and CRNN-TF (b) feature spaces, sourced from [3] 

In this study we analyzed and discussed three improved architectures of CNN, RNN, and CRNN of which the 

architectures of CNN and CRNN-TF (BBNN and CRNN-TF) achieved the highest classification accuracy for music 

genre classification among the CNN and CRNN architectures, while IndRNN achieved remarkable classification 

accuracy of 96% , which despite not being the highest among the RNN architectures is still of significance as the 

architecture achieved the classification accuracy with much efficiency ( 23 seconds per iteration), while keeping the 

classification accuracy trade-off to only 1%  in comparison to LSTM-RNN. The study holds discussion of the vital 

architectures of CNN, RNN, and CRNN for music genre classification and would allow future researchers to get 
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information and understanding of the highest music genre classification accuracy achieving architectural variants of the 

three deep learning models, CNN, RNN, and CRNN from one study. 

7.  Conclusion 

To the best of our knowledge, no previous work performed a comparative analysis of the three deep learning 

algorithms, CNN, RNN, and CRNN. In this study, we reviewed and discussed three improved deep learning 
architectures of CNN, RNN, and CRNN, namely BBNN, IndRNN, and CRNN-TF, respectively, all of which classified 

music genres. All of the three architectures handled multi-scale features of audio signals in their unique ways and 

achieved remarkable results. BBNN focused on the transmission of both low-level and high-level information and 

extracting information in the time-frequency of the audio signal. Furthermore, BBNN used compact parameters, which 

reduced the need for data-augmentation. IndRNN focused on learning long-term dependencies, while CRNN-TF 

focused on the extraction of spatial dependencies on both time and frequency dimensions for MGC. Liu et al.’s BBNN 

had outstanding performance but struggled to distinguish similar genres. Wu et al.’s IndRNN could not outperform 

LSTM-RNN in terms of classification accuracy but demonstrated remarkable efficiency by reducing the training time to 

a third of that of LSTM, also keeping the trade-off in terms of accuracy to only 1% . Wang et al.’s CRNN-TF 

outperformed existing state of the art CRNN architecture but lacked much behind in terms of accuracy when compared 

to the other two deep learning architectures, BBNN and IndRNN. We also proposed that increasing the layers of 

IndRNN can yield better performance, and the LSTM layer of CRNN-TF can be replaced with IndRNN to improve the 
performance of the architecture. Due to time constraints, we could not implement the architectures, nor could 

implement our proposed changes to the architectures, but in the future, we will be focusing on implementing the 

architectures and improving the RNN and CRNN architecture according to our proposal. 
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