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Abstract--In this paper, a class of improved methods based 

on non-polynomial cubic splines in space and finite 

difference in time direction are constructed for the 

second-order hyperbolic equations with initial boundary 

value problems. Truncation error and stability analysis of 

the methods have been carried out. It is shown that by 

suitably choosing the parameters, many known methods 

can be derived from ours. We also obtain a new high 

accuracy scheme of ( )44 hk +ο , which is conditionally 

stable for 1≤r .Finally, a numerical experiment is tested 
and results are compared with other published numerical 

solutions. 

Index Terms-----second-order hyperbolic equation; 

non-polynomial cubic spline; conditionally stable; finite 

difference scheme. 

 

I.  INTRODUCTION 

We consider the following second-order hyperbolic 
equation 
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subject to initial conditions 
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and boundary conditions 
              

( ) ( ),1,0 1ftu = ( ) ( ),,1 2 xftu = 0>t .   (4)   

The above equations occur frequently in many fields of 
applied science and engineering; see [1,2,4,6,7] for 
example Recently, the finite difference schemes for  

 
Eq,(1)were proposed in [3]with the truncation error 

being ( )phk +2ο ,where ,2,1=p  and k  and 

h denote the mesh parameters for x  and t , 
respectively. Very recently, Rashidinia et  al . [5] 
developed a class of methods based on non-polynomial 
cubic spline and the truncation error was improved to 

( )22 hk +ο  and ( )42 hk +ο . They claimed that their 

schemes are unconditionally stable. 
In this paper, we shall first point out that Rashidinia et 
al.’s schemes are in fact conditionally stable only. Then 
to improve both the accuracy and the stability of their 
methods, a new class of spline methods is proposed for 
Eq. (1) by using a non-polynomial cubic spline function 
approximation in space direction and finite difference 
approximation in time direction. 
 
II THE CONDITIONALLY STABILITY OF SPLINE 

METHODS IN [5] 
Let Δ  be a partition of the interval 10 ≤≤ x ,which 
divides[0,1] into N  subinterval with the uniform step 

length 
N

h 1
= .Let 0>K  be the time direction. The 

grid points (i,j) are given by Niihxi )1(0, == ,and 

.,2,1,0, ⋅⋅⋅== jjkti Let u j

i be the approximate 

value. 
In [5], an approximation for Eq. (1)was developed in 
which the derivative with respect to time is replaced by a 
finite difference approximation and the derivative with 
respect to space is replaced by the non-polynomial cubic 
spline function approximation. Denote  
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 where ( )txs ,Δ  and j
iM  are defined in[5]. 

At the gird point ( )ji tx , ,the given differential equation 

(1) was discretized as  

        ( ) ( ) ( )jijixxjitt txftxutxu ,,, += .    (11) 

 By putting Eqs.(5)-(11) into Eq.(11),Eq.(11) because  
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and by neglecting the truncation error, the above 
equation leads to 
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Similarly, the following equations hold 
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In [5],the following non-polynomial cubic spline relation 
was given 
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where .1)1(1 −= Nj           

Substituting Eqs.(13)-(14) into (15),they finally obtained 
the following schemes 
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where ,1)1(1,,2,1,0 −=…= Nij    
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as defined in[5].To achieve the accuracy order 

( )22 hkO +  of their schemes,the parameters α  

and β  were chosen satisfy 
2
1

=+ βα . 

The authors in [5] claimed that the stability for the 
difference schemes (16) are unconditionally stable. 
However, that is not true. In fact, by applying the root 
condition [9] to the Eq.(21) in [5], a necessary and 

sufficient condition for 1<ξ  is that 

,0>Q  ,0>+− ψφQ  0>++ ψφQ , (17) 

where φ,Q  and ψ are defined in [5].Eq.(17) is 

equivalent to 
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Where 
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  From Eqs.(18-21),we can get 
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Therefore Rashidinia et al.’methods[5] are conditionally 
stable only. 
 
III NEW NON-POLYNOMIAL CUBIC SPLINE 

METHODS 
To obtain some difference schemes with a better stability 
and accuracy, we can modify scheme (13) into 
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where 1α , 1β are parameters,satisfying 
2
1

11 =+ βα . 

Then similar to Eqs.(13-14),we obtain 
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where ,,2,1),1)(1(1,/ 22 L=−== jNihkr and

2α and 2β are parameters defined in [5]. 

By choosing suitable values of 

parameters 211 αβα ，， and 2β ,we ontain various 

numerical Methods to solve the hyperbolic equation 
(1).The truncation error and stability analysis of these 
methods are given in Section 4. 
IV TRUNCATION ERROR AND STABILITY 

ANALYSIS OF THE PRESENT METHODS 
Expanding Eq.(27) in Taylor series in terms of  

),( ji txu and its derivatives, we obtain the truncation 

error 
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1） If we choose 2
1

11 =+ βα and 2
1

22 =+ βα  in 

(27), we get a scheme of )( 22 hkO + . 

2） If we choose 2
1

11 =+ βα , 2
1

22 =+ βα and 

12
1

2 =α in (27),we get a scheme of )( 42 hkO + . 

3） If we choose 2
1

11 =+ βα 2
1

22 =+ βα and 

12
1

2 =α in (27), we get a scheme of )( 24 hkO + . 

4） If  we choose 

2
1

11 =+ βα 2
1

22 =+ βα , 12
1

1 =α and 12
1

2 =α  in 

(27),we get a scheme of O( 44 hk + ). 

For various values of parameter 2121 ,,, ββαα  and 
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γ , the truncation errors may now be obtained. Now we  

analyze the stability of the scheme (27 ).We assume that 

solution of (27) at the gird point ( ji t,χ ) is of the form 

                 ,θξμ lijj
i e=           (29) 

Where I= ,1− θ  is real and ς  is, in general, 

complex. Substituting (29) into (27), we obtain a 
characteristic equation  
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By applying the root condition [9] to Eq.(30), a 
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deduce that the scheme (27) is unconditionally stable if 
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V   A CLASS OF METHODS 
By choosing suitable values of parameters 

2121 ,,, ββαα  andγ , we obtain the following a class 

of methods: 

1) If we choose 
6
1,

2
1,0 211 === αβα and 

3
1

2 =β  in (27), we get formula of Rashidinia et al. [5] 

with truncation error of )(0 22 hk + , which is 

conditionally stable for
3
10 << γ . 

2) For 
6
1

21 == αα and 
3
1

21 == ββ  in (27), we 

obtain the conditionally stable formula of 

accuracy )(0 22 hk + , and )(0 44 hk +  with 1=γ . 

3) For 
12
1,

3
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6
1
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12
5

2 =β  in 

(27), we get formula with truncation error 

of )(0 42 hk + , which is conditionally stable 

for 20 << γ . 

4) For the choice 
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1,

2
1,0 211 === αβα and 
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5

2 =β  in (27), we get formula Rashidinia et al.[5] 

with truncation error of )(0 42 hk + , which is 

conditionally stable for 
3
20 << γ . 

5) If we choose 
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12
5

2 =β  in (27), we arrive at the unconditionally 

stable scheme with accuracy )(0 42 hk + . 

6) For 
12
1

21 == αα  and 
12
5

21 == ββ  in (27), 

we obtain formula of accuracy )(0 44 hk + , which is 

conditionally stable for 10 << γ . 

 
VI NUMERICAL EXAMPLE AND DISCUSSION  
Example: Consider the hyperbolic equation (1) with the 
initial boundary value conditions (2-4) in 

which 1)()( 21 == tftf , 1)sin()(1 += xxg π and

0)(2 =xg . The average relative error percentage 

(AREP) is tabulated in Table 1-4 at 0.2=t  

with 1,3/2,4.0,3/1=γ . The exact solution ),( txu  

and the solution at the first time level ),( kxu  are 

respectively given by  
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Table 1. The observed average relative error in present methods )3/1( =r  

),,,( 2211 βαβα  
16
1

=h
32
1

=h
64
1

=h  
128

1
=h  

(1/6,1/3,1/6,1/3) 1.76E(-4) 4.84E(-5) 5.15E(-6) 3.76E(-7) 
(1/6,1/3,1/12,5/12) 9.81E(-5) 2.48E(-5) 2.62E(-6) 1.91E(-7) 
(1/3,1/6,1/12,5/12) 3.11E(-4) 7.56E(-5) 7.93E(-6) 5.77E(-7) 
(1/12,5/12,1/12,5/12) 4.86E(-7) 3.16E(-8) 8.36E(-10) 1.52E(-11) 
(0,1/2,1/6,1/3)[5] 3.27E(-4) 9.51E(-5) 1.02E(-5) 7.46E(-7) 
(0,1/2,1/12,5/12)[5] 9.08E(-5) 2.44E(-5) 2.59E(-6) 1.89E(-7) 

 

Table 2. The observed average relative error in present methods )4/1( =r  

),,,( 2211 βαβα  
16
1

=h
32
1

=h
64
1

=h  
128

1
=h  

(1/6,1/3,1/6,1/3) 2.48E(-4) 1.04E(-5) 2.78E(-6) 7.09E(-7) 
(1/6,1/3,1/12,5/12) 1.77E(-4) 7.68E(-6) 1.90E(-6) 4.76E(-7) 
(1/3,1/6,1/12,5/12) 5.58E(-6) 2.48E(-5) 5.82E(-6) 1.43E(-6) 

(1/12,5/12,1/12,5/12) 1.82E(-6) 7.46E(-9) 4.75E(-10) 3.00E(-11) 
(0,1/2,1/6,1/3)[5] 3.83E(-3) - - - 

(0,1/2,1/12,5/12)[5] 4.44E(-4) 7.06E(-6) 1.86E(-6) 4.73E(-7) 
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Table 3. The observed average relative error in present methods )3/2( =r  

),,,( 2211 βαβα  
16
1

=h
32
1

=h
64
1

=h  
128

1
=h  

(1/6,1/3,1/6,1/3) 5.66E(-5) 1.54E(-5) 3.99E(-6) 3.53E(-7) 
(1/6,1/3,1/12,5/12) 1.33E(-4) 3.21E(-5) 8.06E(-6) 7.11E(-7) 
(1/3,1/6,1/12,5/12) 4.71E(-4) 1.01E(-4) 2.45E(-5) 2.15E(-6) 

(1/12,5/12,1/12,5/12) 1.92E(-7) 1.26E(-8) 8.05E(-10) 1.78E(-11) 
(0,1/2,1/6,1/3)[5] - - - - 

(0,1/2,1/12,5/12)[5] 1.07E(-4) 3.05E(-5) 7.96E(-6) 7.05E(-7) 
 

Table 4. The observed average relative error in present methods )1( =r  

),,,( 2211 βαβα  
16
1

=h  
32
1

=h  
64
1

=h  
128

1
=h  

(1/6,1/3,1/6,1/3) 1.17E(-16) 1.18E(-15) 5.28E(-15) 1.45E(-14) 
(1/6,1/3,1/12,5/12) 2.83E(-5) 1.90E(-6) 1.23E(-7) 7.97E(-9) 
(1/3,1/6,1/12,5/12) 2.52E(-4) 1.70E(-5) 1.10E(-6) 7.01E(-8) 

(1/12,5/12,1/12,5/12) 1.17E(-16) 1.18E(-15) 5.28E(-15) 1.45E(-14) 
(0,1/2,1/6,1/3)[5] - - - - 

(0,1/2,1/12,5/12)[5] - - - - 
 
It can be seen from Table 1-4 that the results by the 

present method with accuracy )( 44 hkO + is much 

better than that obtained by method in [5], and the 
schemes in [5] are conditionally stable only. 
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