
I.J. Information Technology and Computer Science, 2012, 10, 80-89

Published Online September 2012 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2012.10.10

Copyright © 2012 MECS I.J. Information Technology and Computer Science, 2012, 10, 80-89

Detection of Plagiarism in Arabic Documents

Mohamed El Bachir Menai

Department of Computer Science, College of Computer and Information Sciences,

King Saud University, P.O. Box 51178, Riyadh 11543, Saudi Arabia

menai@ksu.edu.sa

Abstract— Many language-sensitive tools for detecting

plagiarism in natural language documents have been

developed, particularly for English. Language-

independent tools exist as well, but are considered

restrictive as they usually do not take into account

specific language features. Detecting plagiarism in

Arabic documents is particularly a challenging task

because of the complex linguistic structure of Arabic. In

this paper, we present a plagiarism detection tool for

comparison of Arabic documents to identify potential

similarities. The tool is based on a new comparison

algorithm that uses heuristics to compare suspect

documents at different hierarch ical levels to avoid

unnecessary comparisons. We evaluate its performance

in terms of precision and recall on a large data set of

Arabic documents, and show its capability in

identifying direct and sophisticated copying, such as

sentence reordering and synonym substitution. We also

demonstrate its advantages over other plagiarism

detection tools, including Turnitin, the well-known

language-independent tool.

Index Terms— Plagiaris m Detection, Similarity

Detection, Arabic, Fingerprinting, Heuristic Algorithm

I. Introduction

The easy access to informat ion through networks and

particularly Internet, makes plagiaris m an easy

operation for students, and might make them taking

grades without knowledge background. Several types of

plagiarism exist, including direct copying of phrases or

passages from a published text without citing the

sources, plagiaris m of ideas, sources, and authorship.

There are other types of plagiaris m, such as translating

content to another language, presenting the same

content with another media like images, video and text,

and using program code without permission
[1]

.

There are two main classes of methods used to reduce

plagiarism
[2]

: plag iarism prevention methods and

plagiarism detection methods. Plagiaris m prevention

methods include punishment routines and plagiarism

drawback explanation procedures. These methods have

a long term positive effect, but they require a long time

to be implemented, since they rely on social cooperation

between different universities and departments to

reduce plagiaris m
[1]

. Plag iarism detection methods

include manual methods and software tools. They are

easy to implement, but have a momentary positive

effect. Both methods can be combined to reduce fraud

and cheating. Although software tools are the most

efficient approach to identify plagiaris m, the final

judgment should be done manually
[3]

.

Plagiaris m can be discovered in free text (written in

natural languages) or in source code (written in

programming languages)
[2]

. Detecting plag iarism in

source code is relat ively easy because there is neither

ambiguity nor interference between words in

programming languages. For example, renaming some

variables in a source code or modifying the structure of

the code can be detected without difficulty by several

methods
[4]

. Plagiaris m in free text is more difficult to

identify
[5]

, since every word may have many synonyms,

and different meanings. Some plag iarism detection

methods are language-independent, while other

methods are language-sensitive (dedicated to one

natural language).

Language-independent methods are based on

evaluating text characteristics that are not inherent to a

specific language, such as number of single characters

and average length of a sentence
[3]

. Language-sensitive

methods are based on evaluating text characteristics that

are specific to one language. For example, counting the

frequency of a special word in a particular language is a

language-dependent attribute
[3]

. Stylometry-based

methods can be used in language sensitive systems.

They are inspired by authorship attribution methods and

consist basically in classifying writ ing styles of authors

to identify similarity. Content-based methods consist in

analyzing specifications of texts in terms of logical

structure to discover similarity.

In this paper, we present a plagiarism detection tool,

APlag (Arabic Plagiaris m detection), built around a

content-based method. We describe its main

components including its preprocessing stage and a

heuristic algorithm for comparing documents at

different logical levels (document, paragraph, and

sentence levels). We evaluate it experimentally on a

large set of Arabic documents and compare it with

particularly Turnitin, a language-independent tool.

The rest of this paper is organized as follows. Sect ion

2 p resents related work in p lagiaris m detection methods

and tools. Section 3 g ives an overview of Arabic

language characteristics and challenges. Section 4

details our approach for plagiaris m detection, describes

a heuristic algorithm for document comparison, and

 Detection of Plagiaris m in Arabic Documents 81

Copyright © 2012 MECS I.J. Information Technology and Computer Science, 2012, 10, 80-89

presents APlag‘s design and implementation issues.

Section 5 p resents experimental results. Finally, our

conclusions and some future research directions are

drawn in Section 6.

II. Related Work in Plagiarism Detection

In the following sub-sections, we present some

details on the main methods used for detecting

plagiarism in free text.

2.1 Traditional Methods

Traditional p lagiaris m detection methods are mainly

manual. Texts are compared to each other to detect

copy-paste content, or to identify different writing

styles within a document. The latter method is not

applicable if an author has more than one writing style.

Search engines can support such methods to check

suspicious parts of a document that do not reflect the

writing style or understanding level of an author.

Traditional methods include also compression-based

techniques. Given two documents D1 and D2, let d1 and

d2 represent their respective compressed files using a

given file compression method. Let a=d1d2 represents

the concatenation of d1 and d2. Consider now B the

concatenation of D1 and D2, B = D1D2, and b its

compressed file . If D1 and D2 are different, then a and b

have the same size. If D1 and D2 contain some

redundant parts, then the size of b is smaller than a
[3]

.

Traditional methods are easy to apply, but usually

require a long processing time and are not reliable,

especially in case of large texts. Automatic tools are

needed to help users to detect plagiaris m quickly and

precisely.

2.2 Content-based methods

Content-based methods rely on explicit comparisons

of the document contents in a specific representation.

Fingerprinting
[6]

 is among the most popular techniques

in this category. It consists to measure the similarity of

two documents by comparing their fingerprints.

A fingerprint is a set of integers created by hashing

subsets of a document to represent its key content.

Techniques to generate fingerprints are main ly based on

k-grams (a k-gram is a contiguous substring of length k)

which serve as a basis for most fingerprint methods.

Fingerprints are selected according to d ifferent schemes,

including ―ith hash‖, ―0 mod p hash‖, and Winnowing

method
[7]

.

In the ―ith hash‖ scheme, every ith hash of a

document is selected. This method is easy to

implement, but not robust in case of insertion, deletion

or reordering. For example, if one letter is inserted into

the text then the fingerprints will be shifted by one,

which makes the altered and the original documents

sharing no fingerprint. Consequently, the copy will not

be detected
[7]

.

In the ―0 mod p‖ scheme, where p is an integer,

hashes located at every ―0 mod p‖ are selected. This

method is also easy to implement, but weak in terms of

plagiarism detection cases. Similar content is detected if

its hashes are among the ―0 mod p‖ selected ones
[7]

.

Winnowing is a local fingerprinting algorithm

developed by Schleimer, Wilkerson, and Aiken
[7]

 to

select fingerprints from hashes of k-grams. Winnowing

is intended to be used in similarity detection algorithms

to identify subtle matches of a certain length (small

partial matches). Let t and k be the respective guarantee

threshold and noise threshold. Two properties must be

satisfied to find matches between two documents: (1) a

match is detected if there is a substring match at least as

long as the guarantee threshold t; (2) any match shorter

than the noise threshold k is not detected.

Winnowing algorithm consists in the following steps
[7]

. Given a window size o f t-k+1, each window wi

contains the hashes hi …hi+w-1. A minimum hash value

is selected from each window to be a fingerprint. If

there is more than one hash with the minimum value,

then the rightmost occurrence one is selected. A ll

selected hashes represent the document fingerprint.

Latent Semantic Analysis (LSA)
1

[8]

 is a technique

used to describe relationships between a set of

documents and terms they contain. In this technique,

words that are close in meaning are assumed to occur

close together. A matrix is constructed in which rows

represent words, and columns represent documents.

Every document contains only subset of all words.

Singular Value Decomposition (SVD), a factorization

method of real or complex matrix, is used to reduce the

number of columns while preserving the similarity

structure among rows. This decomposition is time

consuming because of the sparseness of the matrix.

Words are compared by taking the cosine of the angle

between the two vectors formed by any two rows.

Values close to 1 represent very similar words , while

values close to 0 represent very dissimilar words.

Stanford Copy Analysis Mechanism (SCAM)
[9]

 is

based on a registration copy detection scheme.

Documents are reg istered in a repository and then

compared with the pre-reg istered documents. The

architecture of the copy detection server consists of a

repository and a chunker. The chunking of a document

breaks up a document into sentences, words or

overlapping sentences. Documents are chunked before

being registered. A new document must be chunked to

the same unit before comparing it with pre-reg istered

documents. Inverted index storage is used for sorting

chunks of registered documents. Each entry of the

chunk is a pointer to the documents in which that chunk

occurs (posting). Each posting has two parts: document

name and its related chunk occurrence number. A small

unit of chunk increases the probability of finding

1
 LSA was patented in 1988 (US Patent 4,839,853) by S. Deerwester,

S. Dumais, G. Furnas, R. Harshman, T. Landauer, K. Lochbaum and
L. Streeter.

82 Detection of Plagiaris m in Arabic Documents

Copyright © 2012 MECS I.J. Information Technology and Computer Science, 2012, 10, 80-89

similarity between documents. The chunk unit in

SCAM is a word. Documents are compared using the

Relative Frequency Model (RFM) which consists

mainly in computing a set of words that occur with the

same frequency in two documents.

Ranking is an information ret rieval method used to

find the match between the query and documents.

Search engines and other retrieval systems are based on

this method
[6]

. A similarity measure is used to calculate

match scores between a query and documents which are

sorted decreasingly by their scores , and highly ranked

documents are then returned. Various types of similarity

measures for score matches exist. Hoad and Zobel
[6]

proposed several variations of a similarity measure

based on the number of occurrences of similar words in

the documents, such as document lengths, difference of

word frequencies in the query and documents, and term

weighting. Reported results
[6]

 show that term weighting

similarity measure is among the best ones , particularly

when stop-words are removed and words are reduced to

their root form. Examples of p lagiaris m detection tools

built around content-based methods, include Turnitin
[10]

, EVE2
[11]

, Wcopyfind
[12]

, and CHECK
[13]

.

2.3 Stylometry-based methods

Stylometry is a statistical approach used for

authorship attribution. It is based on the assumption that

every author has a unique style
[3]

. The writing style can

be analyzed by using factors within the same document,

or by comparing two documents of the same author.

Plagiaris m detection within the same document and

without considering outside references is called intrinsic

plagiarism detection
[2]

. Generally, it is performed by

dividing the documents into parts like paragraphs and

sentences. The style features are then extracted and

analyzed. The main linguistic stylometric features are
[14]

:

- Text statistics which operate at the character level

(number of commas, question marks, word

lengths, etc).

- Syntactic features to measure writing style at the

sentence level (sentence lengths, use of function

words, etc.).

- Part-of-speech features to quantify the use of word

classes (number of adjectives or pronouns, etc.).

- Closed-class word sets to count special words

(number of stop words, foreign words, "difficult"

words, etc.).

- Structural features which reflect text organization

(paragraph lengths, chapter lengths, etc.).

Using these features, formulas can be derived to

identify the writ ing style of an author
[14]

: writer specific

and reader specific formulas. Writer specific formula is

about the author himself. It includes vocabulary

richness, complexity and understandability. Vocabulary

richness formulas measure the number of d ifferent

words in the document. Complexity and

understandability formulas measure the

understandability of the document and give it a score.

Reader specific formula consists in determining the

grading level of the document readers. Glatt
[15]

 is an

example of a plag iarism detection tool based on a

stylometry technique.

Stylometry-based methods can be used in internal

and external detection, but content-based methods can

be used only in external detection. Moreover, if an

author has more than one style, stylometry-based

methods can detect false-positive plagiaris m. Content-

based methods are generally better than stylometry-

based methods in terms of precision
[16]

 and can give a

proof of plagiarism by visualizing the results.

The most powerful plagiaris m detection tools are

language-sensitive ones that consider linguistic

properties of a particu lar language
[16]

. Language-

independent tools work on many languages, but give

generally poor results.

To the best of our knowledge, APD
[17]

 (Arabic

Plagiaris m Detection) is the only one existing

plagiarism detection tool dedicated to Arabic. It is based

on fingerprinting each submitted document by taking

the least frequent 4-grams and comparing them to an

intra-corpus collection of document f ingerprints.

Detection of similarities between documents is

performed using an informat ion retrieval technique

based on fuzzy sets.

III. Arabic Language Characteristics

Arabic language belongs to the Afro-Asian language

group It has much specificity which makes it very

different from other Indo-European languages. Arabic

language has twenty eight alphabet letters (ا، ب، ت ... ي).

Three of them are long vowels (‗ and the (‘ي‘,‘و‘,‘ا

remain ing ones are consonant letters. Arabic letters

change shape according to their position in the word,

and can be elongated by using a special dash between

two letters. Arabic writing is right to left, cursive, and

does not include capitalization. Diacrit izat ion or

vocalization in Arabic consists in adding a symbol (a

diacrit ic) above or below letters to indicate the proper

pronunciation and meaning of a word. The absence of

diacrit ization in most of Arabic electronic and printed

media poses a real challenge for Arabic language

understanding. Arabic is a pro-drop language: it allows

subject pronouns to drop, like in Italian, Spanish, and

Chinese
[18]

.

The language is highly inflectional. An Arabic word

may be composed of a stem plus affixes (to refer to

tense, gender, and/or number) and clit ics (including

some prepositions, conjunctions, determiners, and

pronouns). Words are obtained by adding affixes to

stems which are in turn obtained by adding affixes to

roots. For instance, the word المكاتة, transliterated al-

 Detection of Plagiaris m in Arabic Documents 83

Copyright © 2012 MECS I.J. Information Technology and Computer Science, 2012, 10, 80-89

makAtib and meaning offices, is derived from the stem

t ,مكتة ransliterated maktab and meaning office, which is

derived from the root كتة, transliterated katab and

meaning to write.

IV. Aplag – Arabic Plagiarism Detection

A plagiaris m detection system for natural languages

should satisfy the following properties
[7]

:

- Insensitivity to punctuation, extra whitespaces,

capitalization, etc.

- Insensitivity to small matches (a match should

be large enough to imply plagiarism).

- Insensitivity to permutations of the document

content.

Our p lagiarism detection tool, APlag, is built around

a content-based method. It fulfills the three properties.

The first property is handled by a preprocessing of any

input text, including tokenizat ion, stop-word removal,

rooting and synonym rep lacement. APlag is based on

fingerprinting k-grams. The second property is satisfied

if k is sufficiently long to ignore common idioms of

Arabic language. The third property is demonstrated by

the performance results on the data set ―Structure

change‖ (see Section 5).

The main architecture of APlag is described in Figure

1. Its most important design issues are related to:

- Preprocessing: tokenization, stop-word removal,

rooting, and synonym replacement.

- Fingerprinting: make use of k-grams, where k is

a parameter chosen by the user.

- Document representation: for each document,

create a document tree structure that describes

its internal representation.

- Selection of a similarity metric: use of a

similarity metric to find the longest match of

two hash strings.

Fig. 1: Main architecture of APlag

4.1 Preprocessing

Most of content-based detection methods assume a

preprocessing phase in which stop-words are removed

and words are reduced to their root form. The following

steps are performed to transform an Arabic text into

structured and formatted representation, which is more

convenient for the plagiarism detection process.

- Tokenization: input text is broken up into tokens

(words).

- Stop-word removal: since stop-words are used in

any text, they are considered as unimportant

differences between documents. They are

removed in order to get more significant results

by reducing number of false-positives.

- Rooting: morphological variants are reduced to

their root form. Khoja‘s stemmer
[19]

 is used to

reduce words to their root by removing the

longest suffix and prefix, and then matching the

remaining word with verbal and noun patterns.

84 Detection of Plagiaris m in Arabic Documents

Copyright © 2012 MECS I.J. Information Technology and Computer Science, 2012, 10, 80-89

- Synonym replacement: words are converted to

their most frequent synonyms, which may help

to detect advanced forms of hidden plagiarism.

Word synonyms are retrieved from Arab ic

WordNet (AWN)
[20]

. The first synonym in the

list of synonyms of a given word is considered

as the most frequent one.

Figure 2 presents an example of preprocessing steps

of a sentence in APlag.

Fig. 2: An example of preprocessing steps of an Arabic text

4.2 Fingerprinting and similarity metrics

To extract fingerprints of a document, we first

determine the chunking method that consists in cutting

up the text into s maller p ieces
[21]

. A sentence or a word

can be used as a unit of chunk. In case of sentence-

based chunking, the document is divided into chunks

based on chunk parameter n, which group every

sequence of n sentences into a chunk. For example,

given a document containing the sentences s1 s2 s3 s4 s5,

if n=3 then the chunks are s1 s2 s3, s2 s3 s4, s3 s4 s5. In a

word-based chunking, the document is divided into

chunks based on chunk parameter n, which group every

sequence of n words into a chunk. For example, g iven a

document containing the words w1 w2 w3 w4 w5, if n=3

then the chunks are w1 w2 w3, w2 w3 w4, w3 w4 w5. Word-

based chunking gives higher precision in detecting

similarity than sentence-based chunking. APlag is based

on a word-based chunking method: in every sentence of

a document, words are first chunked and then hashed

using a hash function.

It is important to select a hash function that

minimizes collisions due to mapping different chunks to

the same hash. For example, it is easy to implement a

hash function that maps each chunk to the sum of the

integer values of chunk characters. However, this is not

an accurate hash function because the chunks with the

same characters in different order have the same hash

values (collisions). In our implementation, we use the

BKDR (comes from Brian Kernighan and Dennis

Ritchie)
[22]

 hash function for chunk hashing. This

function returns the sum of multip licat ions of each

character by a special value (named seed and usually

equal to 31). Seed value should be a prime number to

guarantee the uniqueness of hash values.

Many similarity metrics exist for fingerprint

comparison, including Levenshtein distance
[23]

,

Longest Common Substring (LCS), and Running Karp-

Rabin Matching and Greedy String Tiling (RKR-GST)
[23]

. The Levenshtein distance measures the minimum

number of operations: insertions, deletions, or

substitutions to transform one string to another. For

example, the Levenshtein distance between "Saturday"

and "Sunday" is three. The Longest Common Substring

(LCS) consists in find ing the common longest substring

in two strings. For example, the common longest

substring in "Saturday" and "Sunday" is "day". RKR-

GST
[24]

 is used for comparing amino acid bio-

sequences. It consists in tiling one string with matching

substrings of a second string. RKR is an improvement

technique to speed up the GST algorithm. A hash value

is created for each substring of length s of the pattern

string and for each substring of length s of the text

string. Each of these hash values of the pattern string is

compared with the hash values of the text string. If the

pattern and text hash values are equal, then there are

matches between the corresponding pattern and text

substrings.

A key issue in similarity detection is to choose the

adequate metric. For plag iarism detection, Levenstein

distance and LCS are more suitable, since plagiarism

involves modificat ion of a text (insertion, removal …).

In APlag, we choose to use LCS, because it is based on

the concept of similarity rather than distance.

 Detection of Plagiaris m in Arabic Documents 85

Copyright © 2012 MECS I.J. Information Technology and Computer Science, 2012, 10, 80-89

4.3 Text comparison heuristics

A tree representation is created for each document to

describe its logical structure. The root represents the

document itself, the second level represents the

paragraphs, and the leaf nodes contain the sentences.

This representation is similar to the one used in CHECK
[13]

. It is intended to avoid unnecessary comparisons

between several documents. Trees are then explored

top-down and compared first at document level, then at

paragraph level and finally at sentence level.

We define a heuristic algorithm for each level of the

tree: Algorithm 1 (document level), Algorithm 2

(paragraph level), and Algorithm 3 (sentence level).

At document level, two documents are compared

according to their common hashes and a fixed threshold.

If the number of hashes in the intersection subset is

greater than the threshold, then there is a potential

similarity between both documents. In that case, the

comparison process continues at paragraph level,

otherwise no similarity is detected and the process is

stopped. If a possible similarity is detected at paragraph

level, then the process continues at sentence level,

otherwise the process terminates. If there is a possible

similarity between two sentences, then it is measured

using LCS metric. If the length of the longest common

sequence is greater than the length of the minimum

sentence mult iplied by a threshold, then similar strings

are identified in both sentences, otherwise the process

continues with the next sentence.

Algorithm 1: Document level heuristic

Input : DocA, DocB // Two input documents

Output: similarity

Begin

DocMinSize = min (|DocA|, |DocB|)

DocIntersectionSize = |DocA ∩ DocB|

If (DocIntersectionSize >=

DocMinSize*DocThreshold)

 Then

//Possible similarity

//Check similarity at paragraph level

similarity = true

 Else

 similarity = false

End

Algorithm 2: Paragraph level heuristic

Input : ParA, ParB // Two input paragraphs

Output: similarity

Begin

ParMinSize = min (|ParA|, |ParB|)

ParIntersectionSize = |ParA ∩ ParB|

If (ParIntersectionSize >= ParMinSize*ParThreshold)

 Then

//Possible similarity

//Check similarity at sentence level

similarity = true

 Else

 similarity = false

End

Algorithm 3: Sentence level heuristic

Input : SenA, SenB

Output: similarity, similar substrings in SenA and SenB

Begin

SenMinSize = min(|SenA|, |SenB|)

SenIntersectionSize = |SenA ∩ SenB|

If (SenIntersectionSize >= SenMinSize*SenThreshold)

 Then

 LongestCommonSeq = LCS (SenA, SenB)

If (|LongestCommonSeq| >=

SenMinSize*SimilarityThreshold)

Then

 //Similarity detected

 //Determine similar

 //substrings

 similarity = true

Else

 similarity = false

 Else

similarity = false

End

One important step in the heuristic algorithms

consists in calculat ing the intersection of two given sets.

Its computation by enumerating all matching hashes is

time consuming and conflicts with our initial goal of

adopting the document tree representation to reduce the

number of comparisons. We propose to approximate the

intersection between two sets of hashes by adding a

string of bits to each node in each level of a document

and use it to estimate the intersection as follows. The b it

86 Detection of Plagiaris m in Arabic Documents

Copyright © 2012 MECS I.J. Information Technology and Computer Science, 2012, 10, 80-89

values in a string o f length m are calculated by the

modulus (%) of the hashes to m. The results of this

operation represent the hash positions in the bit string.

For example, given a document A containing the

hashes 2435, 6786, 2234, and 4673. To obtain a b it

string of length 10, the following operations are

performed:

2435 % 10 = 5

6786 % 10 = 6

2234 % 10 = 4

4673 % 10 = 3

The results 5,6,4,3 represent the positions of the bits

to set to 1 in the bit string. The remaining b its are set to

0.

0 0 0 1 1 1 1 0 0 0

 3 4 5 6

The number of bits set to 1 resulting from a Boolean

AND operation of two bit strings represents the size of

their intersection. For example, g iven two documents A

and B represented by their respective bit strings

0001111000 and 1001010010, the size of the

intersection between A and B is 2.

There are two options for associating bit strings to the

tree nodes:

- Bit strings are associated to the leaves only

(sentences) and concatenated in higher levels

(paragraphs and document),

- Bit strings are duplicated at each level and then

associated to each node of the tree.

The first option saves the memory usage, but it is

time consuming. Conversely the second option is

memory demanding, but it is less time consuming. We

choose to implement the second option in order to

preserve the interactivity of the tool by guarantying a

reasonable response-time.

V. Experimental Evaluation

We implemented a prototype of APlag in Java and

evaluated its performance on a handmade data test set

of 300 Arab ic documents of about 800 words each. We

extracted 20 documents from different books available

on Alwaraq website
[25]

. We generated 3 data sets from

the original documents as follows:

- Data set: Synonym

5 candidate documents were generated from each

original document by replacing randomly 50% of

the total number of words in each document with

one of their synonyms. Stop-words were not

considered.

- Data set: Structure change

5 candidate documents were generated from each

original document by changing the structure of

randomly selected sentences. The number of

generated sentences represents 50% of the total

number of sentences.

- Data set: All data

5 candidate documents were generated from each

original document by copying randomly selected

sentences (40% of the total number of sentences),

replacing selected words with one of their

synonyms (20% of the total number of words), and

changing the structure of selected sentences (40%

of the total number of sentences).

The data sets Synonym and Structure change were

used to evaluate the performance of APlag in detecting

hidden plagiaris m. The data set All data served to

measure APlag‘s overall performance in detecting

hidden plagiarism and exact copy of parts of texts.

Three variants of APlag were tested to measure the

impact of stop-word removal, rooting, and synonym

replacement:

- SWR: only stop-word removal is applied to the

input texts.

- SWR+Rooting: stop-word removal and rooting

are applied to the input texts.

- SWR+Rooting+Synonym: stop-word removal,

rooting, and synonym replacement are applied to

the input texts.

The chunk parameter was set to 3. The document

threshold DocThreshold was set to 0.1 assuming that

documents describing different subjects have an

intersection less than 10% of the min imum document

size. The paragraph threshold ParThreshold, sentence

threshold SenThreshold, and similarity threshold

SimilarityThreshold were set to 0.2, 0.1, and 0.5,

respectively. Performance results were measured using

Recall (1) and Precision (2) metrics.

(1)

(2)

 Detection of Plagiaris m in Arabic Documents 87

Copyright © 2012 MECS I.J. Information Technology and Computer Science, 2012, 10, 80-89

Figures 3 and 4 show respective mean

precision () and mean

recall () obtained by APlag‘s variants on

the 3 data sets. The results obtained can be summarized

as follows:

- SWR does not detect hidden plagiaris m

(synonym rep lacement and structure change). Its

overall performance on all data sets is weak

(() ()
).

- SWR+Rooting does not detect synonym

exchanges, but it can identify changed sentence

structure with high precision and

recall (()
 ()) . Th is shows that

reducing words to their root can enhance the

performance of the plagiarism detection.

- SWR+Rooting+Synonym is the best performing

APlag‘s variant achiev ing ()
 and () . Synonym

replacement is detected

with () , while sentence

structure change is detected with

 () .

Fig. 3: Mean precision of APLag for each data set

Fig. 4: Mean recall of APLag for each data set

Turnitin was used as a comparative baseline for

APlag. It was set to exclude small matches by less than

1%. The performance results of Turnitin are returned in

terms of Originality Similarity Index (OSI): percentage

of matched words the tool was able to find for the tested

document. For that reason, OSI is also estimated for

APlag. Figure 5 shows the mean of the originality

similarity index, () given by APlag and

Turnitin for each data set. Turnitin was not able to

detect any synonym replacement, but its performance is

close to APlag‘s one in detecting changes in text

structure: () for APlag and

 () for Turnitin. Overall, APlag

outperformed Turnitin : () for APlag

and () for Turnit in. Although

Turnitin is worldwide used, its results for detecting

similarities in our data sets are not competitive. This

indicates that language-independent tools could be

actually inefficient on specific languages, such as

Arabic.

Table 1 reports comparison results of APlag

(SWR+Rooting variant) and APD obtained in a

preliminary previous study
[26]

. It shows ()
its standard deviation () ()
and its standard deviation () . The results

were obtained on only 12 documents (we have not been

able to continue experiments with APD because it is no

longer availab le online). The results of APD are close to

those of APlag variant without synonym processing.

Overall, APlag results outperform those of Turnit in

on the same data sets. However, no conclusion can be

drawn regarding its competitiveness with APD, since

the number of documents tested is not significant.

APlag‘s performance is dependent on Khoja‘s

stemmer and synonyms retrieved from AWN.

According to the comparative evaluation study of

Arabic language morphological analyzers and stemmers
[27]

, Khoja‘s stemmer ach ieves the highest accuracy then

the tri-literal root extraction algorithm
[28]

 and the

Buckwalter morphological analyzer
[29]

. So, we do not

expect to increase the performance of APlag by using

other stemmers. However, using other synonym

databases might impact its performance.

Fig. 5: Mean originality similarity index for APlag and Turnitin

88 Detection of Plagiaris m in Arabic Documents

Copyright © 2012 MECS I.J. Information Technology and Computer Science, 2012, 10, 80-89

Table 1: Comparison results of APlag (SWR+Rooting) and APD

 APlag APD

 () (%) 100 84.8

 () (%) 5 ---

 () (%) 93 90

 () (%) 2 ---

VI. Conclusion and Future Work

We have presented APlag, a p rototype of a

plagiarism detector for Arabic documents in which

some hidden forms of p lagiaris m can be detected, such

as sentence structure change and synonym replacement.

We have described its main components, in particular

heuristic algorithms fo r comparing fingerprints of

Arabic documents at different logical levels (document,

paragraph, and sentence) to pass up redundant

comparisons.

Finally, we have presented and discussed a series of

experiments to demonstrate its effectiveness on a large

set of Arabic documents. The results indicate that APlag

has the capability to detect precisely exact copy, change

in sentence structure, and synonym rep lacement.

Comparison with Turnit in, one of the most used

plagiarism detection tool, indicates that APlag compares

favorably in terms of quality of results. Additional

testing of other synonym databases and different

parameters, such as thresholds and chunk values would

be useful to further optimize the tool.

An improvement would be to include paraphrasing

detection and an archive of submitted files to check

against new submissions.

Acknowledgments

This paper is an extended version of a conference paper

presented at the 6th International Conference on

Computer Science & Education (ICCSE 2011)
[26]

. Only

some preliminary results of this work have been

communicated in that conference.

References

[1] Lukashenko R., Graudina V., Grundespenkis J.

Computer-based plagiaris m detection methods and

tools: an overview [C]. In: Proceedings of the

International Conference on Computer Systems

and Technologies, Bulgaria, 2007, 14-15.

[2] Maurer H., Kappe F., Zaka B. Plagia rism – A

survey [J]. Journal of Universal Computer Science,

2006, 12(8): 1050-1084.

[3] Gruner G., Naven S. Tool support for plagiaris m

detection in text documents [C]. In: Proceedings of

the ACM symposium on Applied Computing,

Santa Fe, New Mexico, 2005, 13-17.

[4] Menai M.B., Al-Hassoun N.S. Similarity detection

in Java programming assignments [C]. In:

Proceedings of the 5th International Conference on

Computer Science & Education, Hefei, China,

2010, 356-361.

[5] Mozgovoy M., Kakkonen T., Sutinen E. Using

natural language parsers in plagiaris m detection

[C]. In : Proceedings of the SLaTE Workshop on

Speech and Language Technology in Education,

Farmington, Pennsylvania, USA, 2007.

[6] Hoad C., Zobel J. Methods for identify ing

versioned and plagiarized documents [J]. Journal

of the American Society for Information Science

and Technology, 2003, 54(3): 203-215.

[7] Schleimer S., Wilkerson D., A iken A. W innowing:

local algorithms for document fingerprinting [C].

In: Proceedings of the 2003 ACM SIGMOD

International Conference on Management of Data,

San Diego, California, USA, June 2003, 9-12.

[8] Dumais S.T. Latent Semantic Analysis [J]. Annual

Review of Informat ion Science and Technology,

2005: 38-188, doi:10.1002/aris. 1440380105.

[9] Shivakumar N., Garcia-Molina H. SCAM: a copy

detection mechanism for d igital documents [C]. In:

Proceedings of the 2nd International Conference

on Theory and Practice of Digital Libraries, Austin,

Texas, USA, June 1995.

[10] http://www.turnitin.com, visited: 10 Feb. 2012.

[11] http://www.canexus.com/eve/, visited: 15 Jan.

2012.

[12] http://plagiarism.phys.virginia.edu/Wsoftware.html,

visited: 15 Jan. 2012.

[13] Si A., Leong H., Lau R. CHECK: a document

plagiarism detection system [C]. In : Proceedings of

ACM Symposium for Applied Computing, Feb.

1997, 70-77.

[14] Eissen S., Stein B., Kulig M. Plagiaris m detection

without reference collection [C]. In : Proceedings

of the 30th Annual Conference of the German

Classification Society, Berlin: Freie university, 8–

10 Mar. 2006, 359-366.

[15] http://www.plag iarism.com/self.detect.htm, visited:

15 Jan. 2012.

[16] Lancaster T., Culwin F. Classificat ions of

plagiarism detection engines [J]. ITALICS, 2005,

4(2).

[17] Alzahran i S.M., Salim N. Statement-based fuzzy-

set IR versus fingerprints matching for plagiaris m

detection in Arabic documents [C]. In: Proceedings

of the 5th Postgraduate Annual Research Seminar

(PARS 09), Johor Bahru, Malaysia, 2009.

 Detection of Plagiaris m in Arabic Documents 89

Copyright © 2012 MECS I.J. Information Technology and Computer Science, 2012, 10, 80-89

[18] Farghaly A., Shaalan K. Arabic natural language

processing: challenges and solutions [J]. ACM

Transactions on Asian Language Informat ion

Processing, 2009, 8 (14): 1-22.

[19] Khoja S. Stemming Arabic Text [R]. 1999.

http://zeus.cs.pacificu.edu/shereen/research.htm

[20] Black W., Elkateb S., Rodriguez H., Alkhalifa M.,

Vossen P., Pease A., Fellbaum C. Introducing the

Arabic WordNet project [C]. In: Proceedings of the

3rd International WordNet Conference, Masaryk

University, Brno, 2006, 295-300.

[21] Pataki M. Plagiaris m detection and document

chunking methods [C]. In : Proceedings of the 12th

International WWW Conference, Budapest,

Hungaria, May 20-24, 2003.

[22] Kernighan B.W., Ritchie D.M. The C

Programming Language [B]. 2nd ed., Englewood

Cliffs, NJ: Prentice Hall, 1988.

[23] Levenshtein V.I. Binary codes with correction for

deletions and insertions of the symbol 1 [J]. Probl.

Peredachi Inf., 1965, 1(1), 12–25.

[24] Karp R.M., Rab in M.O. Efficient randomized

pattern-matching algorithms [J]. IBM Journal of

Research and Development, 1987, 31(2): 249-260.

[25] http://www.alwaraq.net, visited: 2 Feb. 2012.

[26] Menai M.B., Bagais M. APlag: a plagiarism

checker for Arabic texts [C]. In: Proceedings of the

6th International Conference on Computer Science

& Education (ICCSE 2011), Singapore, Aug. 3-5,

2011, 1379-1383.

[27] Sawalha M., Atwell E. Comparative evaluation of

Arabic language morphological analysers and

stemmers [C]. In: Proceedings of 22nd

International Conference on Computational

Linguistics (COLING 2008), Manchester, UK,

Aug. 2008, 107-110.

[28] Al-Serhan H., Al Shalabi R., Kannan G. New

approach for ext racting Arabic roots [C]. In:

Proceedings of the International Arab Conference

on Informat ion Technology (ACIT‘2003), Potland,

Oregon, USA, 2003, 42-59.

[29] Buckwalter T. Issues in Arabic orthography and

morphology analysis [C]. In: Proceedings of the

Workshop on Computational Approaches to

Arabic Script-based Languages (Semit ic'04),

Geneva, Switzerland, 2004, 31-34.

Mohamed El Bachir Menai received

a Ph.D. degree in computer science

from Mentouri University of

Constantine, Algeria, and University

of Paris VIII, France, in 2005. He

received also a ―Habilitation

universitaire‖ in computer science

from Mentouri University of

Constantine, in 2007 (it is the highest academic

qualification in A lgeria and France). He is currently

associate professor in the department of computer

science at King Saud University. His main interests

include satisfiability problems, evolutionary computing,

machine learning, and natural language processing.

How to cite this paper: Mohamed El Bachir

Menai,"Detection of Plagiarism in Arabic Documents",

International Journal of Information Technology and

Computer Science(IJITCS), vol.4, no.10, pp.80-89, 2012. DOI:

10.5815/ijitcs.2012.10.10

