
I.J. Information Technology and Computer Science, 2012, 3, 24-30 
Published Online April 2012 in MECS (http://www.mecs-press.org/) 
DOI: 10.5815/ijitcs.2012.03.04 

Copyright © 2012 MECS                                            I.J. Information Technology and Computer Science, 2012, 3, 24-30 

Classification of Electroencephalographic 
Changes in Meditation and Rest: using 

Correlation Dimension and Wavelet Coefficients  
 
 

Atefeh Goshvarpour 
Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran.  

E-mail: atefeh.goshvarpour@gmail.com 

 
 

Ateke Goshvarpour 
Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran.  

E-mail: ateke.goshvarpour@gmail.com 
 
 
 

Abstract— Meditation is a practice of concentrated focus 
upon the breath in order to still the mind. In this paper we 
have investigated an algorithm to classify rest and 
meditation, by processing of electroencephalogram (EEG) 
signals through the Wavelet and nonlinear methods. For 
this purpose, two types of EEG time series (before, and 
during meditation) of 25 healthy women are collected in 
the meditation clinic in Mashhad. Correlation dimension 
and Wavelet coefficients at the forth decomposition level of 
EEG signals in Fz, Cz and Pz are extracted and used as an 
input of different classifiers. In order to evaluate 
performance of the classifiers, the classification accuracies 
and mean square error (MSE) of the classifiers were 
examined. The results show that the Fisher discriminant 
and Parzen classifier trained on both composite features 
obtain higher accuracy than that of the others. The total 
classification accuracy of the Fisher discriminant and 
Parzen classifier applying Wavelet coefficients was 85.02% 
and 84.75%, respectively which is raised to 92.37% in both 
classifiers using Correlation dimensions.  
 
Index Terms— Classification, Correlation Dimension, 
Electroencephalogram, Meditation, Wavelet Coefficients 

 
 
1. Introduction  
 

Meditation is a practice of concentrated focus upon 
the breath in order to still the mind. Meditation in its 
various forms is a traditional exercise with a potential 
benefit on well-being and health. Many studies focused 
on the physiological effects of different meditation 
techniques to gain insight into the physiological 
prerequisites responsible for the improvement of health 
[1-4]. 

Analysis of Electroencephalogram (EEG) signals 
has provided a non invasive method for assessing brain 
activity. It was reported that during meditation, alpha 
and theta EEG power are increased, and autonomic 
response to external stimuli are reduced or enhanced [5-

9]. Furthermore, a number of literatures have reported 
the fruitful results of characterizing the dynamical 
behavior of the EEG signals during meditation [8-10]. 

Although EEG signals during meditation has been 
studied in the past [10-13], there remains a lack of 
significant effort on classifying these signals during rest 
and meditation. 

Feature extraction is the determination of a feature 
or a feature vector from a pattern vector. The feature 
vector, which is comprised of the set of all features used 
to describe a pattern, is a reduced-dimensional 
representation of that pattern. The module of feature 
selection is an optional stage, whereby the feature vector 
is reduced in size including only, from the classification 
viewpoint, what may be considered as the most relevant 
features required for discrimination. In the feature 
extraction stage, numerous different methods can be 
used so that several diverse features can be extracted 
from the same raw data. In this study, Wavelet 
coefficients and Correlation dimension are considered as 
the feature vectors.  

The outline of this study is as follows. In the next 
section, we briefly describe the set of EEG signals used 
in our study. Then, an algorithm was presented to 
classifying rest and meditation by using EEG signals. In 
this algorithm, after preprocessing of EEG signal in 
three channels (Fz, Cz and Pz), Wavelet coefficients and 
Correlation dimension are extracted. After that, some 
parametric and nonparametric classifiers are used to 
classify the EEG signals. Finally, the results of present 
study are shown and the study is concluded. 
 
2. Background  

2.1 Data collection 
Twenty five subjects took part in the study. Fifteen 

subjects: eleven meditators (mean age 40.18±7.19, mean 
meditation experience 5 to 7 years) and four non-
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meditators (mean age 25.5±1.91) were asked to do 
meditation by listening to the guidance of the master. 

 The other ten subjects were asked to do meditation 
by themselves. They were considered to be at an 
advanced level of meditation training (mean meditation 
experience 7 years, mean age 37.8±6.39). The subjects 
were in good general health and did not follow any 
specific heart diseases. The subjects were asked not to 
eat salty or fat foods before meditation practices or data 
recording. Informed written consent was obtained from 
each subject after the experimental procedures had been 
explained [8-9]. 

The experimental procedure was divided into two 
different stages: Subjects were first instructed to sit 
quietly for 5 minutes and kept their eyes closed. After 
that, they performed meditation. Meditation prescribes a 
certain bodily posture. They sit on a cushion 5 to 10 
centimeters thick that is placed on blanket. They cross 
their legs so that one foot rests on the opposite thigh 
with the sole of their foot turned up and with their knees 
touching the blanket (lotus or half-lotus position). The 
torso should be kept straight, but it should not be 
strained. The head should be kept high with eyes closed. 
During this session, the meditators sat quietly, listening 
to the guidance of the physician and focusing on the 
breath [8-9]. 

 The meditation EEG signals were recorded in 
meditation clinic using 16-channel Powerlab 
(manufactured by ADInstruments). EEG activity was 
recorded using three electrodes (i.e., Fz, Cz and Pz) 
according to the International 10–20 System, referenced 
to linked ear lobe electrodes (Fig. 1). The monitoring 
system hardware filters band passed data in range: 0.1-
50 Hz for EEG time series. A digital notch filter was 
applied to the data at 50Hz to remove any artifacts 
caused by alternating current line noise. The sampling 
rate was 400Hz. 

 

 

Figure 1.  EEG electrodes possitions  

 

2.2 Feature extraction 

2.2.1 Wavelet transform  
The multi-scale feature of the Wavelet transform 

(WT) allows the decomposition of a signal into a 
number of scales, each scale representing a particular 

coarseness of the signal under study. The procedure of 
multi-resolution decomposition of a signal x[n] is 
schematically shown in Fig. 2.  

 

 

Figure 2.  Sub-band decomposition of discrete Wavelet transforms 
implementation; g[n] is the high-pass filter, h[n] is the low-pass filter 

 
Each stage of this scheme consists of two digital 

filters and two down-samplers by 2. The first filter, g[.] 
is the discrete mother Wavelet, high-pass in nature, and 
the second, h[.] is its mirror version, low-pass in nature. 
The down-sampled outputs of first high-pass and low-
pass filters provide the detail, D1, and the approximation, 
A1, respectively. The first approximation, A1, is further 
decomposed and this process is continued as shown in 
Fig. 2.  

All WTs can be specified in terms of a low-pass 
filter, h, which satisfies the standard quadrature mirror 
filter condition: 

(1)( ) ( ) ( ) 1)( 11 =−−+ −− zHzHzHzH  

where H(z) denotes the z-transform of the filter h. Its 
complementary high-pass filter can be defined as: 

(2)( )1)( −−= zzHzG  
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with the initial condition H0(z) = 1. It is expressed as 
a two scale relation in time domain 
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where the subscript [.]↑m indicates the up-sampling 
by a factor of m and k is the equally sampled discrete 
time. The normalized Wavelet and scale basis functions 
φi,l(k) and ψi,l(k)  can be defined as: 
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where the factor 2i/2 is an inner product 
normalization, i and l are the scale parameter, and the 
translation parameter, respectively. The discrete 
Wavelet transform (DWT) decomposition can be 
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described as: 
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where a(i)(l) and d(i)(l) are the approximation 
coefficients and the detail coefficients at resolution i, 
respectively [14]. 

The biological signals can be considered as a 
superposition of different structures occurring on 
different time scales at different times [15]. One purpose 
of Wavelet analysis is to separate and sort these 
underlying structures of different time scales. Selection 
of appropriate Wavelet and the number of 
decomposition levels are very important in analysis of 
signals using the WT. The number of decomposition 
levels is chosen based on the dominant frequency 
components of the signal. The levels are chosen such 
that those parts of the signal that correlate well with the 
frequencies required for classification of the signal are 
retained in the Wavelet coefficients. Usually, tests are 
performed with different types of Wavelets and the one 
which gives maximum efficiency is selected for the 
particular application. In the present study, the number 
of decomposition levels was chosen to be four. Thus, the 
EEG signals were decomposed into the details D1 − D4 
and one final approximation, A4. 

 

2.2.2 Correlation dimension  
A fractal dimension D is any dimension 

measurement that allows non integer values [16]. A 
fractal is a set with a non integer fractal dimension. 
Standard objects in Euclidean geometry are not fractals 
but have integer fractal dimensions D=d. The primary 
importance of fractals in dynamics is that strange 
attractors are fractals and their fractal dimension D is 
simply related to the minimum number of dynamical 
variables needed to model the dynamics of the strange 
attractor. 

The simplest way (conceptually) to measure the 
dimension of a set is to measure the Kolmogorov 
capacity (or box-counting dimension). In this 
measurement a set is covered with small cells (e.g., 
squares for sets embedded in two dimensions, cubes for 
sets embedded in three dimensions) of size ε. Let M(ε) 
denote the number of such cells that contain part of the 
set. The dimension is then defined as (7): 
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More elaborate dimension measurements are 
available that take into account in homogeneities or 
Correlations in the set. The dimension spectrum defined 
by Hentschel and Procaccia [16], 
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provides a set of fractal dimension measurements 
that take into account higher order Correlations as q is 
increased. 

The dimension D1 is called the information 
dimension. This is defined by (9), 
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The dimension D2 is called the Correlation 

Dimension. This can be written as (10): 
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C(r) is the Correlation sum, which is essentially 
(exact in the limit N→∞) the probability that two points 
of the set are in the same cell. 

For a given set, the dimensions are ordered D0 ≥ D1 
≥ D2 ≥ …. If the set is a homogeneous attractor then 

(12)
M
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The major difficulty in calculating Dq is the practical 
difficulty of covering the set with cells of very small 
size. In general, this requires too much computer storage 
and time to obtain convergence to a limit r→0.  

When q=2 the dimension estimate can be made 
computationally tractable by using an algorithm 
proposed by Grassberger and Procaccia [16]. 

Grassberger-Procaccia algorithm 
The Grassberger-Procaccia algorithm [16] is based 

on the following approximation: The probability that 
two points of the set are in the same cell of size r is 
approximately equal to the probability that two points of 
the set are separated by a distance ρ less than or equal to 
r. Thus C(r) is approximately given by (13): 
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Where the Heaviside function is defined as (14): 
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The approximation in (13) is exact in the limit N→∞; 
however, this limit cannot be realized in practical 
applications. The limit r→0 used in the definition of D2 
is also not possible in practice. Instead, Procaccia and 
Grassberger propose the (approximate) evaluation of C(r) 
over a range of values of r and then deduce D2 from the 
slope of the straight line of best fit in the linear scaling 
region of a plot of log C(r) versus log r. 

The most common metric employed to measure the 
distance ρ in (13) is the Euclidean metric, 
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The choice of metric should not affect the scaling of 

the Correlation sum with r. 
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2.3 Classification 
In this paper, the Correlation dimension and Wavelet 

coefficients are used as inputs of four different classifiers. 
The task at hand is to classify the EEG epochs of twenty 
five healthy women as either related to before or to 
during meditation. The four different classification 
methods are Fisher classifier, Quadratic classifier, k-
Nearest Neighbour (k-NN) and Parzen classifiers. 

Statistical classifiers fall into two categories; 
parametric and non-parametric [17]. The linear and 
Quadratic classifiers are of the parametric type. In this 
type, the classification rules are based on models of the 
probability density function of the data. Both Linear and 
Quadratic classifiers are based on the assumption that 
classes have multivariate Gaussian distributions.  

The k-NN is a nonparametric classification 
procedure and hence no assumption of the form of the 
underlying densities is required. This method, however, 
assumes that there are enough points from each class 
such that in any small region within the decision space, 
the number of points occurring in these regions indicates 
the true nature of each density function. 

The description of each classifier models that are 
considered in this study are presented in the following 
sections. 

 

2.3.1  Fisher's discriminant 
The terms Fisher's linear discriminant and linear 

discriminant analysis (LDA) are often used 
interchangeably, although Fisher's original article [18] 
actually describes a slightly different discriminant, 
which does not make some of the assumptions of LDA 
such as normally distributed classes or equal class 
covariances. 

Suppose two classes of observations have means 
,1,0 == yy μμ
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linear combination of features x
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rr for i = 0,1. Fisher 

defined the separation between these two distributions to 
be the ratio of the variance between the classes to the 
variance within the classes: 
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(16)

This measure is, in some sense, a measure of the 
signal-to-noise ratio for the class labeling. It can be 
shown that the maximum separation occurs when 
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When the assumptions of LDA are satisfied, the 
above equation is equivalent to LDA.  

Be sure to note that the vectorωr is the normal to the 

discriminant hyperplane. As an example, in a two 
dimensional problem, the line that best divides the two 
groups is perpendicular toωr . 

Generally, the data points to be discriminated are 
projected ontoωr ; then the threshold that best separates 
the data is chosen from analysis of the one-dimensional 
distribution. There is no general rule for the threshold. 
However, if projections of points from both classes 
exhibit approximately the same distributions, a good 
choice would be the hyperplane between projections of 
the two means, 0. =yμω

rr  and 1. =yμω
rr . In this case the 

parameter c in threshold condition cx <
rr

.ω can be found 
explicitly: 

( ) 2. 10 == += yyc μμω
rrr  (18)

 

2.3.2  Quadratic classifier 
A Quadratic classifier is used in machine learning 

and statistical classification to separate measurements of 
two or more classes of objects or events by a Quadratic 
surface. It is a more general version of the linear 
classifier. 

Quadratic discriminant analysis (QDA) is closely 
related to LDA, where it is assumed that the 
measurements from each class are normally distributed. 
Unlike LDA however, in QDA there is no assumption 
that the covariance of each of the classes is identical. 
When the normality assumption is true, the best possible 
test for the hypothesis that a given measurement is from 
a given class is the likelihood ratio test.  

Suppose there are only two groups, (so y∈{0,1}), 
and the means of each class are defined to be μy = 0, μy 
= 1 and the covariances are defined as Σy = 0, Σy = 1. 
Then the likelihood ratio will be given by 
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for some threshold t. After some rearrangement, it 

can be shown that the resulting separating surface 
between the classes is a Quadratic. The sample estimates 
of the mean vector and variance-covariance matrices 
will substitute the population quantities in this formula. 

 

2.3.3  K-nearest neighbour classifier 
In pattern recognition, the k-nearest neighbor 

algorithm (k-NN) is a method for classifying objects 
based on closest training examples in the feature space. 
K-NN is a type of instance-based learning, or lazy 
learning where the function is only approximated locally 
and all computation is deferred until classification. The 
k-nearest neighbor algorithm is amongst the simplest of 
all machine learning algorithms: an object is classified 
by a majority vote of its neighbors, with the object being 
assigned to the class most common amongst its k nearest 
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neighbors (k is a positive integer, typically small). If k = 
1, then the object is simply assigned to the class of its 
nearest neighbor. 

The same method can be used for regression, by 
simply assigning the property value for the object to be 
the average of the values of its k nearest neighbors. It 
can be useful to weight the contributions of the 
neighbors, so that the nearer neighbors contribute more 
to the average than the more distant ones (A common 
weighting scheme is to give each neighbor a weight of 
1/d, where d is the distance to the neighbor. This scheme 
is a generalization of linear interpolation). 

The neighbors are taken from a set of objects for 
which the correct classification (or, in the case of 
regression, the value of the property) is known. This can 
be thought of as the training set for the algorithm, 
though no explicit training step is required. The k-
nearest neighbor algorithm is sensitive to the local 
structure of the data.  

Nearest neighbor rules in effect compute the 
decision boundary in an implicit manner. It is also 
possible to compute the decision boundary itself 
explicitly, and to do so in an efficient manner so that the 
computational complexity is a function of the boundary 
complexity [19]. 

 

2.3.4 Parzen classifier 
The Parzen classifier provides an estimate of the 

class-conditional probability density function (PDF) by, 
e.g., applying a kernel density estimator to the labeled 
feature vectors in the training set, while a Gaussian 
Mixture Model (GMM) classifier estimates class-
conditional PDFs using mixtures of multivariate normal 
PDFs [20].  

The Parzen classifier estimates the class densities by 
the Parzen density estimation and has a built-in 
optimization for the smoothing parameter.  

 
3. Results 

 
Features play an important role in classifying 

systems. Features are selected based on either best 
representation of a given class of signals or best 
distinction between classes. High-dimension of feature 
vectors increased computational complexity and the 
classifier trained on these feature vectors produced 
lower accuracy. 

In this study, Correlation dimension and Wavelet 
coefficients of EEG signals in Fz, Cz and Pz were 
estimated. Then the results of analysis of EEG signals 
during meditation were compared to before meditation.  

Two features in Wavelet domain are extracted: the 
approximate and detail Wavelet coefficients at the forth 
decomposition level of EEG signals (Fz, Cz and Pz 
channels). Therefore, these six composite features are 
used as an input of four different classifiers.  

In the next stage, Correlation dimensions, as 
nonlinear features, are extracted from the three channels 
of EEG signals and then input into the classifiers.   

Fisher's discriminant, k-NN classifier, Quadratic 
classifier and Parzen classifier proposed for 
classification of EEG features were implemented by 
using MATLAB software package (MATLAB with 
PRTOOLS toolbox). 

The epochs in the data set were randomly divided 
into two sets: a training set and a testing set. 70% of the 
epochs are used to train the classifiers while 30% were 
used to test the performance of each classifier. 

The values of classification accuracy, classification 
error and the central processing unit (CPU) times of 
training of the four classifiers trained on Wavelet 
coefficients and Correlation dimensions are presented in 
Table I and Table II, respectively. 
 

TABLE I. CLASSIFICATION RESULTS ON WAVELET COEFFICIENTS. 

Elapsed time(s) Error Accuracy (%)Classifier 
5 0.25 85.02 Fisher 
3 0.3 82.55 Quadratic 
60 0.32 81.06 k-NN 
35 0.25 84.75 Parzen 

 

TABLE II. CLASSIFICATION RESULTS ON CORRELATION DIMENSIONS. 

Elapsed time(s) Error Accuracy (%)Classifier 
4 0.25 92.37 Fisher 
5 0.29 90.27 Quadratic 
54 0.36 89.29 k-NN 
34 0.25 92.37 Parzen 

 
The classification results presented in Table I and 

Table II denote that the Fisher discriminant and Parzen 
classifier trained on both composite features obtain 
higher accuracy than that of the others. The total 
classification accuracy of the Fisher discriminant and 
Parzen classifier applying Wavelet coefficients was 
85.02% and 84.75%, respectively which is raised to 
92.37% in both classifiers using Correlation dimensions. 
As it can be observed, the parametric classifiers give 
good results. 

As mentioned above, these classifiers are based on 
the assumption that classes have multivariate Gaussian 
distributions. Probability density function (PDF) of 
Correlation dimension of EEG signals in Fz channel 
during meditation is shown in Fig. 3.  
 

 

Figure 3.  Probability density function (PDF) of Correlation 
dimension in Fz channel during meditation 
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4. Conclusion 
 

In this study, in order to classify rest and meditation 
signals, a new application of parametric and 
nonparametric classifiers employing different features is 
presented. For the first time in this investigational field, 
we had done a feature extraction using Correlation 
dimension and Wavelet coefficients in certain 
psychological state (meditation and rest) assessment. 

Two features in Wavelet domain (the approximate 
and detail Wavelet coefficients at the forth 
decomposition level) and Correlation dimensions of 
EEG signals in Fz, Cz and Pz channels are extracted.  

Four different classifiers were used to classify two 
classes of EEG signals (before and during meditation) 
when the Wavelet coefficients were used as inputs. The 
same process was done for Correlation dimensions.  

The results demonstrate that the Fisher discriminant 
and Parzen classifier trained on both composite features 
obtain higher accuracy than that of the others. Although, 
the accuracy of the classifiers are improved by using 
nonlinear features (Table II). The total classification 
accuracy of the Fisher discriminant and Parzen classifier 
applying Correlation dimensions reach to 92.37% in 
both classifiers. 

We therefore have concluded that the proposed 
classifiers trained on Correlation dimension can be used 
in detecting electroencephalographic changes in specific 
psychological states. 

Some future work should also be carried out. For 
instance, other classification techniques, such as neural 
networks, can be used to obtain efficient and accurate 
results in the future.  
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