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considered among experts to influence the price of a 
stock. At first, it is a reasonable thought that the 
behaviour of an investor depends on the size of the 
owner company (blue chips-middle-small). Data mining 
has found increasing acceptance in business areas which 
need to analyze large amounts of data to discover 
knowledge which otherwise could not be found.  

 
Temporal data mining provides some additional 

capabilities required in cases where the evolution of the 
existing data and their interactions need to be observed 
through the time dimension. The stock market is one of 
them. We propose a tool that collects stock data and 
after analyzing and interpreting them, it will be able to 
act on the basis of these interpretations [1]. The 
capabilities of this tool are based on temporal data 
mining patterns, extracted from stock market data.  

 
1.1 Temporal Data Mining: 
 

Temporal data mining is a research field of 
growing interest in which techniques and algorithms are 
applied on data collected over time. According to 
Cláudia M. Antunes[13] the ultimate goal of temporal 
data mining is to discover hidden relations between 
sequences and subsequences of events. The discovery of 
relations between sequences of events involves mainly  
three steps:  the  representation and modeling of  the 
data  sequence  in a  suitable form; the definition of 
similarity measures between sequences; and the 
application of  models  and  representations  to  the  
actual  mining  problems.  Other  authors have  used  a  
different  approach  to  classify  data  mining  problems  
and  algorithms.  

 
According to Lin et al. [2], temporal data mining Is 

a single step in the process of Knowledge Discovery in 
Temporal Databases that enumerates structures 
(temporal patterns or models) over the temporal data. 
Examples of temporal data mining tasks are 
classification and clustering of time series, discovery of 
temporal patterns or trends in the data, associations of 
events over time, similarity-based time series retrieval, 
time series indexing and segmentation. In the stock 
market domain, temporal data mining could indeed play 
an essential role 
 
1.2 Time Series: 
 

A Time Series is an ordered sequence of data 
points. Typically it's measured at successive times 
spaced at uniform time intervals. A huge amount of data 
is collected everyday in the form of event time 
sequences. Common examples are recording of different 
values of stock shares during a day, each access to a 
computer by an external network, bank transactions, or 
events related to malfunctions in an industrial plant. 
These sequences represent valuable sources of 
information not only to search for a particular value or 
event at a specific time, but also to analyze the 

frequency of certain events, discover their regularity, or 
discover set of events related by particular temporal 
relationships. These types of analyses can be very useful 
for deriving implicit information from the raw data, and 
for predicting the future behavior of the process that we 
are monitoring. 

 
Examples of time series are the annual flow 

volume of the Nile River at Aswan or the daily value of 
a stock market index.A sequence of continuous real-
valued elements, such as stock prices is known as a time 
series. Time series form curves and can reveal trends 
through analysis, which leads to a large potential for 
analytical studies. The identification of trends takes 
place through the comparison of time series and the 
discovery of similar shapes between them, based on a 
predefined and domain-specific measure of similarity. A 
fundamental problem that needs to be addressed before 
any attempt of trend discovery is the representation of 
the time series.  
 
 

2. The principle of the aPriori algorithm. 
 

One  of  the  most  common  approaches  to  
mining  frequent  patterns  is  the  apriori  method  and 
when  a  transactional  database  represented  as  a  set 
of  sequences of  transactions  performed  by  one  entity  
is  used ,  the manipulation of temporal sequences 
requires that some adaptations be made to the apriori  
algorithm. The most important modification is on the 
notion of support: support  is now the fraction of entities, 
which had consumed the itemsets in any of their 
possible transaction,  i.e. an entity could only contribute 
one time to increment the support of each itemset, 
beside it could had consumed that itemset several times.   
After  identifying  the  large  itemsets,  the  itemsets 
with  support  greater  than  the  minimum  support  
allowed,  they  are  translated  to  an  integer,  and  each  
sequence  is  transformed  in a new  sequence, whose 
elements are the large itemsets of the previous-one. The 
next step is to find the large sequences. For achieve this, 
the algorithm  acts  iteratively  as  apriori:  first  it  
generates  the  candidate  sequences  and  then  it  
chooses the large sequences from the candidate ones, 
until there are no candidates.One  of  the most  costly  
operations  in  apriori-based  approaches  is  the  
candidate  generation. A  proposal  to  frequent  pattern 
mining  states  that  it  is  possible  to  find frequent 
patterns avoiding the candidate generation-test. 
Extending this to deal with sequential data is presented 
in . The discovery of relevant association rules is one of 
the most important methods used to perform data 
mining on transactional databases. An effective  
algorithm  to discover association rules is the apriori . 
Adapting this method to deal with temporal information 
leads to some different approaches. Common  sub-
sequences  can  be  used  to  derive  association  rules 
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with  predictive  value, as is done, for instance, in the 
analysis of discretized, multi-dimensional time series .  

 
A possible  approach  consists  on  extending  the 

notion  of  a  typical  rule X  →  Y (which states if X 
occurs then Y occurs) to be a rule with a new meaning: 
X  →T Y (which states: if X occurs then Y will occur 
within time T). Stating a rule in this new form, allows 
for controlling the impact of the occurrence of an event 
to the other event occurrence, within a specific time 
interval. Another method consists on considering cyclic 
rules. A cyclic rule is one that occurs at regular time 
intervals,  i.e. transactions that  support  specific  rules  
occur  periodically, for example at every first Monday 
of a month.  

 
In order to discover these  rules, it is necessary to 

search for them in a restrict portion of time, since they 
may  occur  repeatedly  at  specific  time  instants  but  
on  a  little  portion  of  the  global  time considered. A 
method to discover such rules is applying an algorithm 
similar to the apriori,  and  after  having  the  set  of  
traditional  rules,  detects  the  cycles  behind  the rules. 
A more  efficient  approach  to  discover  cyclic  rules  
consists  on  inverting  the process: first discover the 
cyclic large itemsets and then generate the rules. A 
natural  extension  to  this method  consists  in  allowing  
the  existence  of  different  time  units,  such as days, 
weeks or months, and is achieved by defining calendar 
algebra to define and manipulate groups of time 
intervals. Rules discovered are designated 
calendricassociation rules.  

 
A different approach to the discovery of relations 

in multivariate time sequences is  based on the 
definition of N-dimensional transaction databases. 
Transactions in these databases are obtained by 
discretizing, if necessary, continuous attributes .This 
type of databases can then be mined to obtain 
association rules. However, new definitions for  
association  rules,  support  and  confidence  are  
necessary. The  great  difference is the notion of address, 
which locates each event in a multi-dimensional space  
and allows for expressing the confidence and support 
level in a new way. 

 
Definition 1: The support of an item (or set of items) is 
the number of transactions in which that item (or items) 
occur. Given a set of transactions in a database where 
each letter corresponds to a certain product such as 
Jeans or T-shirt and each transaction corresponds to a 
customer buying the products A, B, C or D the first step 
in the apriori algorithm is to count the support (number 
of occurrences) of each item separately. 
 
 
 
 
 
 

 
Transactions   Items 
 
 T1                    A, B, C, D 
 T2                    B, C, D 
 T3                    B, C 
 T4                    A, B, D 
 T5                    A, B, C, D 
 T6                    B, D 
Table 1 

 
 
Item                Support 
 
A                   3 
B                   6 
C                   4 
D                   5 
Table 2 
 

The items in the transcations represented in 
Table 1 have their support represented in Table 2. 

 
Definition 2: The support threshold is defined by the 
user and is a number for which the support for each item 
(or items) has to be equal or above for the support 
threshold to befulfilled[14]. 
 

In this example we will use support threshold = 3. 
This means that in our example all items in 
table 2 meets this condition since none of them have a 
support below 2 as seen in Table 2. 
 
Definition 3: Given a set of items I = {I1 I2 … In} an 
item set is a subset of I[14]. 
 
Definition 4: A large item set is an item set whose 
number  of occurrences in the transactions are above the 
support threshold. We use the notation L to indicate the 
complete set of large item sets[14].  
 

In our example the complete set of large itemset L 
in this first iteration is L = {A, B, C, D} since all of 
these terms meets the support threshold. If any of these 
items had been below the support threshold they had not 
been included in the subsequent steps. In the next steps 
we will form all pairs, triples and so on of the items in 
Table 2. If A would have a support threshold below 
three all pairs, triples etc containing A would also be 
below the support threshold. This is the fundamental 
basis of the apriori algorithm since it allows us to prune 
all transactions having only items under the support 
threshold, hence reducing the amount of data in each 
step. 

 
The next step is to form all 2-pair item sets. We do 

this by making all possible combinations of 
the large item sets without regarding the order.  
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Item              Support 
 
A, B              3 
A, C              2 
A, D              3 
B, C              4 
B, D              5 
C, D              3 
Table 3. 
 
 
 
Large itemsets 
 
A, B 
A, D 
B, C 
B, D 
C, D 
Table 4. 
 

In table 3 the new item sets are illustrated together 
with respective support. The item set A, C only have 
support 2 and since our support threshold is 3 the item 
set is not a large item set. Next we generate the 3-sets 
by joining the full set of large item sets in table 4 over a 
common item. 
 
Item                   Support 
A, B, C                   2 
A, C, D                   2 
A, B, D                   3 
B, C, D                   3 
Table 5. 
 
 
 
Large itemset 
A, B, D 
B, C, D 
Table 6. 
 

The only 3-set that fulfills the support threshold is 
{A, B, D} and {B, C, D} as illustrated in table 6. If we 
continue this process by joining the item sets in the 
complete large item set over a common pair we get the 
last possible combination. 
 
 
Item              Support 
 
A, B, C, D    2 
Table 7. 
 
 
 
Large itemset 
Table 8. 
 

                                  {A,B,C,D} 
 
 
 
 
   {A,B,C}  {A,B.D}                   {A,C,D}  {B,C,D} 
       
 
 
 
  {A,B}   {A,C}  {B,C}  {A,D}  {B,D}     {C,D} 
 
 
 
 
     A                     B                      C                   D 
 
           
                                          {} 
 
Figure 1. Illustration of the possible combinations of the 
terms A, B, C, D without regarding the order in the 
apriori algorithm. 
 

The process of joining terms in the apriori 
algorithm is illustrated in figure 1. Note that the position 
of a item in the item set doesn’t matter. i.e. the item set 
{A, B, D} is regarded in the same way as {D, A, B} and 
to keep track of this so we don’t get any redundancies 
later in the implementation all items in each item set is 
ordered by its value. 

 
The apriori algorithm cuts some of the branches in 

the tree in figure 1, for example the item set {A,C} did 
only occur 2 times which was below the support 
threshold at 3. The apriori algorithm makes use of this 
by not generating any branches from this node and thus 
reduces the computational cost. This is as said the 
foundation of the apriori algorithm. 
 

We can summarize all the steps done in pseudo-
code.  

 
Algorithm 1. aPriori algorithm[14] 
Input: 
I //Itemsets 
D //Transactions 
S //support threshold 
 
Output: 
L // large itemsets 
aPriori algorithm 
k = 0 // k is used as the scan number 
L = Ø 
C1 = I //Initial candidates are set to be the items 
repeat 
k = k + 1 
Lk = Ø 
for each Ii  € Ck do 
ci = 0 //Initial counts for each itemset are 0 
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for each tj  € D do 
for each Ii  € Ck do 
if Ii  € tj then 
ci = ci + 1 
for each Ii  € Ck do 
if ci ≥ s do 
Lk = Lk U Ii 
L = L U Lk 
Ck+1 = aPriori-Gen (Lk) 
 
Algorithm 2. aPriori-Gen algorithm[14] 
Input: 
Li-1 //Large itemsets of size i-1 
 
Output: 
Ci //Candidates of size i 
Apriori-Gen algorithm 
Ci = Ø 
for each I  € Li-1 
for each J ≠ I  € Li-1 do 
if i-2 of the elements in 
I and J are equal 
then 
Ck = Ck U {I U J}. 
 
2.1 The impact of the algorithm 

 
Many of the pattern finding algorithms such as 

decision tree, classification rules and clustering 
techniques that are frequently used in data mining have 
been developed in machine learning research 
community. Frequent pattern and association rule 
mining is one of the few exceptions to this tradition. 
The introduction of this technique boosted data mining 
research and its impact is tremendous. The algorithm is 
quite simple and easy to implement. Experimenting with 
Apriori-like algorithm is the first thing that data miners 
try to do. 
 
 

3. Proposed work: 
 

A formal definition of utility mining and 
theoretical model was proposed in [1], namely MEU, 
where the utility is defined as the combination of utility 
information in each transaction and additional resources. 
Another algorithm named Two-Phase was proposed in 
[5], which is based on the definition in [19] and 
achieves for finding high utility itemsets. It presented a 
Two-Phase algorithm to prune down the number of 
candidates and can obtain the complete set of high 
utility itemsets. In the first phase, a model that applies 
the“ transaction-weighted downward closure property”  
on the search space to expedite the identification of 
candidates. In the second phase, one extra database scan 
is performed to identify the high utility itemsets. 
However, this algorithm must rescan the whole database 
when added new transactions from data streams. It need 
more times on processing I/O and CPU cost for finding 
high utility itemsets. Hence, Two-Phase algorithm is 

just only focused on traditional databases and is not 
suited for data streams. Although there existed 
numerous studies on high utility itemsets mining and 
data stream analysis as described above, there is no 
algorithm proposed for finding temporal high utility 
itemsets in data streams. This motivates our exploration 
on the issue of efficiently mining high utility itemsets in 
temporal databases like data streams in this research. 
The goal of utility mining is to discover all the itemsets 
whose utility values are beyond a user specified 
threshold in a transaction database. Utility mining is to 
find all the high utility itemsets in [4]. An itemset X is a 
high utility itemset if u(X) ≥ε, where XUI and ε is the 
minimum utility threshold, otherwise, it is a low utility 
itemset. Two-Phase algorithm for pruning candidate 
itemsets and simplify the calculation of utility. First, 
Phase I overestimates some low utility itemsets, but it 
never underestimates any itemsets. The transaction 
utility of transaction Tq, denoted as tu(Tq), is the sum of 
the utilities of all items in Tq and the transaction-
weighted utilization of an itemset X, denoted as twu(X), 
is the sum of the transaction utilities of all the 
transactions containing X,  So Phase I overestimates 
some low utility itemsets, it never underestimate itemset, 
Second, one extra database scan is performed to filter 
the overestimated itemsets in phase II.a progressive 
transaction-weighted utilization set of itemsets is 
composed of the following two types of transaction-
weighted utilization itemsets, i.e., (1) the transaction-
weighted utilization itemsets that were carried over 
from the previous progressive candidate set in the 
previous phase and remain as transaction weighted  
utilization itemsets after the current partition is taken 
into consideration and (2) the transaction-weighted 
utilization itemsets that were not in the progressive 
candidate set in the previous phase but are newly 
selected after only taking the current data partition into 
account.  
 
 

4. The proposed Algorithm: 
 

Generally researches have proposed various 
interesting measures for analyzing the patterns from the 
data. The term utility stands for usefulness of the 
itemsets. Motivated by the decision theory, stated that 
the “interestingness of a pattern = probability with 
utility”. Based on the user’s specific objectives and the 
utility of the mined patterns, utility - based approaches 
may be more useful in real applications, especially in 
decision making problems. Utility Miner finds all item 
sets in a transaction database with utility values higher 
than the minimum utility threshold. Utility mining refers 
to the process of allowing a user to conveniently express 
his or her perspectives concerning the usefulness of 
patterns [3]. To achieve a user’s goal two types of 
utilities are stated (i) transaction utility and (ii) external 
utility. Transaction utility of an item is directly obtained 
from the information stored in the transaction data set. 
The external utility reflects user preference and can be 
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