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Abstract— This paper presents a centrality 

measurement and analysis of the social networks for 

tracking online community. The tracking of single 

community in social networks is commonly done 

using some of the centrality measures employed in 

social network community tracking. The ability that 

centrality measures have to determine the relative 

position of a node within a network has been used in 

previous research work to track communities in 

social networks using betweenness, closeness and 

degree centrality measures. It introduces a new 

metric K-path centrality, and a randomized 

algorithm for estimating it, and shows empirically 

that nodes with high K-path centrality have high 

node betweenness centrality. 

 

 

Index Terms — Social Network Analysis, Centrality, 

Communities. 

 

 

1. Introduction  

Social network analysis [1] views social 

relationships in terms of network theory consisting of 

nodes and ties (also called edges, links, or connections). 

Nodes are the individual Communities [3, 7, 10] within 

the networks, and ties are the relationships between the 

Communities.  Measures of centrality [2, 8 ,15] reflect 

the prominence of communities/units within a network. 

Within graph theory and network analysis, there are 

various measures of the centrality of a vertex within a 

graph that determine the relative importance of a vertex 

within the graph. 

The Internet has spawned different types of 

information sharing systems, including the Web. 

Recently, online social networks have gained significant 

popularity and are now among the most popular sites on 

the Web.  Unlike the Web, which is largely organized 

around content, online social networks [4, 5 ,11] are 

organized around users. Participating users join a 

network, publish their profile and (optionally) any 
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content, and create links to any other users with whom 

they associate. The resulting social network provides a 

basis for maintaining social relationships, for finding 

users [9, 20] with similar interests, and for locating 

content and knowledge that has been contributed or 

endorsed by other users. 

Network centrality (or centrality) [8] is used to 

identify the most important/active people at the centre of 

a network or those that are well connected. Numerous 

centrality measures such as degree, closeness, 

betweenness [2, 12], information, eigenvector [17], and 

dependence centrality have been used for characterizing 

the social behaviour and connectedness of nodes within 

networks. The logic of using centrality measures is that 

people who are actively involved in one or more 

communities [16, 19] will generally score higher with 

respect to centrality scores for the corresponding 

network. 

Numerous studies in SNA [6] have proposed a 

diversity of measures to study the communication 

patterns and the structure of a social network. One of the 

most studied measures is centrality. Centrality describes 

a community’s relative position within the context of his 

or her social network [4, 13]. 

2. Background and related work 

There are four measures of centrality that are 

widely used in network analysis: degree centrality, 

betweenness, closeness, and eigenvector centrality.  

2.1 Degree centrality  

Degree centrality [8] is defined as the number of 

links incident upon a node (i.e., the number of ties that a 

node has). Degree is often interpreted in terms of the 

immediate risk of node for catching whatever is flowing 

through the network (such as a virus, or some 

information). If the network is directed (meaning that 

ties have direction), then we usually define two separate 

measures of degree centrality, namely in degree and out 

degree. In degree is a count of the number of ties 

directed to the node, and out degree is the number of ties 

that the node directs to others.  

For positive relations such as friendship or advice, 

we normally interpret in degree as a form of popularity, 

and out degree as gregariousness. 

For a graph G: = (V,E) with n vertices, the degree 

centrality CD(v) for vertex v is: 

CD(v)=deg(v)/(n-1)                                              (1) 

The definition of centrality can be extended to 

graphs. Let v * be the node with highest degree 

centrality in G. Let X: = (Y,Z) be the n node connected 

graph that maximizes the following quantity (with y * 

being the node with highest degree centrality in X): 

     |Y| 
H=∑  CD (y*)- CD (yj)                                           (2) 
     j=1 
Then the degree centrality of the graph G is defined as 

follows: 

            |Y| 
CD (G)=∑  (CD (v*)- CD (vi))/H                           (3) 
            i=1 

H is maximized when the graph X contains one node 

that is connected to all other nodes and all other nodes 

are connected only to this one central node (a star graph). 

In this case 

H = (n − 1)(n − 2)                                                 (4) 

so the degree centrality of G reduces to: 

            |Y| 
CD (G)=∑  (CD (v*)- CD (vi))/(n-1)(n-2)               (5) 
            i=1 

 

2.2 Betweenness centrality 

Betweenness [8, 12] is a centrality measure of a 

vertex within a graph (there is also edge betweenness, 

which is not discussed here). Vertices that occur on 
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many shortest paths between other vertices have higher 

betweenness than those that do not. 

For a graph G: = (V, E) with n vertices, the betweenness 

CB(v) for vertex v is computed as follows: 

1. For each pair of vertices (s,t), compute all shortest 

paths between them. 

2. For each pair of vertices (s,t), determine the fraction 

of shortest paths that pass through the vertex in question 

(here, vertex v). 

3. Sum this fraction over all pairs of vertices (s,t). 

Or, more succinctly:[2] 

            |Y| 
CB (v)=∑  σst (v)/  σst                                                                  (7)   
            s≠v≠t∈V 

where σst is the number of shortest paths from s to t, and 

σst(v) is the number of shortest paths from s to t that pass 

through a vertex v. Calculating the betweenness and 

closeness centralities of all the vertices in a graph 

involves calculating the shortest paths between all pairs 

of vertices on a graph. In calculating betweenness and 

closeness centralities of all vertices in a graph, it is 

assumed that graphs are undirected and connected with 

the allowance of loops and multiple edges. When 

specifically dealing with network graphs, oftentimes 

graphs are without loops or multiple edges to maintain 

simple relationships (where edges represent connections 

between two people or vertices). In this case, using 

Brandi’s algorithm [21] will divide final centrality 

scores by 2 to account for each shortest path being 

counted twice.  

2.3 Closeness centrality 

In topology and related areas in mathematics, closeness 

[8] is one of the basic concepts in a topological space. 

Intuitively we say two sets are close if they are 

arbitrarily near to each other. The concept can be 

defined naturally in a metric space where a notion of 

distance between elements of the space is defined, but it 

can be generalized to topological spaces where we have 

no concrete way to measure distances. 

In graph theory closeness is a centrality measure of 

a vertex within a graph. Vertices that are 'shallow' to 

other vertices (that is, those that tend to have short 

geodesic distances to other vertices with in the graph) 

have higher closeness. Closeness is preferred in network 

analysis to mean shortest-path length, as it gives higher 

values to more central vertices, and so is usually 

positively associated with other measures such as degree. 

In the network theory, closeness is a sophisticated 

measure of centrality. It is defined as the mean geodesic 

distance (i.e., the shortest path) between a vertex v and 

all other vertices reachable from it: 

∑(dG(v,t))/(n-1)                                                 (8) 
t ∈V\v 
where n>=2 is the size of the network's 'connectivity 

component' V reachable from v. Closeness can be 

regarded as a measure of how long it will take 

information to spread from a given vertex to other 

reachable vertices in the network.  

Some define closeness to be the reciprocal of this 

quantity, but either way the information communicated 

is the same (this time estimating the speed instead of the 

timespan). The closeness CC(v) for a vertex v is the 

reciprocal of the sum of geodesic distances to all other 

vertices of V:  

Cc(v)=1/(∑(dG(v,t))                                             (9) 
              t ∈V\v 
 
 

Different methods and algorithms can be 

introduced to measure closeness, like the random-walk 

centrality [14] introduced by Noh and Rieger (2003) 

that is a measure of the speed with which randomly 

walking messages reach a vertex from elsewhere in the 

network—a sort of random-walk version of closeness 

centrality.  
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The information centrality [8, 18] of Stephenson 

and Zelen (1989) is another closeness measure, which 

bears some similarity to that of Noh and Rieger. In 

essence it measures the harmonic mean length of paths 

ending at a vertex i, which is smaller if i has many short 

paths connecting it to other vertices. 

Dangalchev (2006), in order to measure the 

network vulnerability, modifies the definition for 

closeness so it can be used for disconnected graphs and 

the total closeness is easier to calculate: 

Cc(v)= ∑2-dG(v,t)                                                                              (10) 
          t ∈V\v 
 

An extension to networks with disconnected 

components has been proposed by Opsahl (2010). 

2.4 Eigenvector centrality 

Eigenvector centrality [17] is a measure of the 

importance of a node in a network. It assigns relative 

scores to all nodes in the network based on the principle 

that connections to high-scoring nodes contribute more 

to the score of the node in question than equal 

connections to low-scoring nodes.  

Betweenness centrality is mostly used to find and 

measure subgroup and community membership whereas 

degree and closeness centrality are used for 

characterizing influential members. Although network 

centrality measures are easy to calculate using computer 

programs such as Pajek [24] and UCINET [23], there 

has been no consensus among researchers as to the most 

meaningful centrality measure to use for finding 

subgroup members . In extremely large social networks, 

computational efficiency may become an issue in 

selecting which centrality measure to use. With respect 

to three commonly used centrality measures, degree 

centrality is the easiest to calculate, closeness centrality 

is more complex and between ness centrality has the 

highest calculation complexity. 

3.Proposed  measurement methodology 

Assume the traversal of a message (e.g., news or 

rumour) originating from some source s over a network 

and intending to finally reach some destination t in the 

network along a path, and assume that each node in the 

network has only its own local view (i.e., has 

information only of its outgoing neighbours). Thus, 

when the message is at a current node v, the node v 

forwards the message based on its local view to one of 

its outgoing neighbours chosen uniformly at random. 

The message continues to travel in this manner until it 

reaches the destination node t, and then stops.  

The notion of C-path centrality is based on a 

similar assumption regarding the random traversal of a 

message from a source s. However, we make two 

further assumptions in order to reduce the computation 

time without deviating much from the above random 

walk model. First, we consider message traversals along 

simple paths only, i.e., paths in which vertices do not 

repeat. As non-simple paths do not correspond to the 

intuitive notion of ideal message traversals in a social 

network, their consideration in the computation of 

centrality indices is a noisy factor. To discount non-

simple paths, we assume that each intermediate node v 

on a partially traversed path forwards the message to a 

neighbour chosen randomly, with probability inversely 

proportional to edge weights, from the current set of 

unvisited neighbours; the message traversal is assumed 

to stop if all the outgoing neighbours of the current node 

v already appear in the path up to v. Although choosing 

a random neighbour in this manner at each step requires 

the premise that the message carries the history of the 

path traversed so far, this premise is needed to express 

the average contribution of any simple path in the 

overall information flow and to efficiently simulate such 

random simple paths. Second, we assume that the 

message traversals are only along paths of at most C 

links (edges), where C is a parameter dependent on the 

network. It has been found in many studies on social 

networks that message traversals typically take paths 
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containing few links [22], and so this seems to be a 

reasonable assumption in the context of social networks. 

Based on these assumptions, we define C-path centrality: 

DEFINITION (C-Path Centrality) For every vertex 

v of a graph G = (V;E), the C-path centrality Cc(v) of v 

is defined as the sum, over all possible source nodes s, 

of the probability that a message originating from s goes 

through v, assuming that the message traversals are only 

along random simple paths of at most C edges. 

3.1 Estimating C-Path centrality 

We present a randomized approximation algorithm for 

estimating the C-path centrality of all vertices in any 

graph. The algorithm takes as input a graph G = (V;E), a 

nonnegative weight function W on the edges of G, and 

parameters α ∈ሾ‐1/2,1/2ሿ and integer C = f(m; n), and 

runs in time O(K3n2-2αln n). For each vertex v, it outputs 

an estimate of Cc (v) up to an additive error of n1/2+  α 

with probability at least 1 – 1/n2. We refer to this 

algorithm as Randomized-Approximate C path or in 

short RA-C path. 

Input: Graph G = (V;E), Array W of edge weights, α ∈  

[-1/2, 1/2],and integer C 

Output: Array K of C-path centrality estimates 

begin 

foreach v ∈ V do 

count[v] ←0; Explored[v] ←false; 

end 

/* S is a stack and n = |V | */ 

T  ←2C2n1-2α ln n; S ← Ø; 

for i ←1 to T do 

/* simulate a message traversal from s containing e 

edges */ 

s ← a vertex chosen uniformly at random from V ; 

e ← an integer chosen uniformly at random from [1, C]; 

Explored[s] ← true; push s to S; j ← 1; 

while (j <=e and ∃(s; u)  ∈	E such that !Explored[u]) do 

v  ← a vertex chosen randomly from {u | (s,u) ∈ E 

and !Explored[u]} with probability proportional to 

1/W(s; v); 

Explored[v]   ←true; push v to S; 

count[v]   ←count[v] + 1; 

s ← v; j ←  j + 1; 

end 

/* reinitialize Explored[v] to false */ 

while S is nonempty do 

pop v  ← S; Explored[v] ←  false; 

end 

end 

foreach v ∈V do 

K[v]   ←Cn .count[v]/T ; 

end 

return K;  

end 

The algorithm performs T = 2C2n1-2α ln n iterations 

(the expression for T comes from the analysis of the 

algorithm).In each iteration, a start vertex s ∈ V and a 

walk length e ∈ [1, C] are chosen uniformly at random, 

and then a random walk consisting of e edges from s is 

performed that essentially simulates a message traversal 

from s in G using the assumption made in Definition. 

The number of times any vertex v is visited over all the 
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random walks is recorded in a variable count[v]. The 

estimated C-path centrality K[v] of any vertex v is then 

defined as the scaled average of the times v is visited 

over T walks: K[v]←Cn .count[v]/T . 

 

3.2 Example 

Above mentioned centrality measures work on 

various   nodes 

I1,I3,S1,S4,W1,W2,W3,W4,W5,W6,W7,W8,W9 and 

track community using influential nodes in following 

manner: 

 

I1 W1 W2 W3 W4 

I3 

W1 I1 W2 W3 W4 W5 S1 

W2 I1 W1 W3 W4 S1 

W3 I1 W1 W2 W4 W5 S1 

W4 I1 W1 W2 W3 W5 S1 

W5 W1 W3 W4 W7 S1 

W6 W7 W8 W9 

W7 W5 W6 W8 W9 S4 

W8 W6 W7 W9 S4 

W9 W6 W7 W8 S4 

S1 W1 W2 W3 W4 W5 

S2 

S4 W7 W8 W9 

 

 

Table1: Comparison of various centrality   measures using UCINET 

Simulator 

 
 
 

 

Fig1: Visualization of centrality measures work on various 

communities using UCINET   simulator 

 

Node Degree Close 

ness    

Between
ness 

Eigen 

vector 

C-path  

I1          30.769 23.636    0.000    43.368    4.00 

I3         0.000      0.000   --- 0.000     0.00 

S1         38.462 26.531    1.923    52.043    6.75   

S2         0.000 --- 0.000 0.000     0.00 

S4         23.077 23.636 0.000     4.070 3.00 

W1        46.154    27.083    4.808 58.960   10.583 

W2        38.462 24.074    0.321    51.669    5.05 

W3        46.154 27.083 4.808    58.960   10.583 

W4        46.154   27.083    4.808    58.960 10.583  

W5        38.462 28.889    38.462    45.718   31.000 

W6        23.077    23.636    0.000     4.070     3.000     

W7        38.462    27.660    36.325 12.011   37.667 

W8        30.769 24.074    0.427     4.719     4.667 

W9       30.769    24.074    0.427     4.719     4.667 
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4. CONCLUSION 

This paper present a new approach for identifying 

highly influential nodes based on their C-path centrality 

score, according to the following observations. First, we 

observe that the value of the C-path centrality is 

irrelevant: it is the relative “importance” of communities 

(as measured by C-path centrality) that matters. Second, 

we observe that for the vast majority of applications, it 

is sufficient to identify categories of nodes of similar 

importance. Third, we observe that distant communities 

in social networks are unlikely to influence each other. 
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