
I.J. Information Technology and Computer Science, 2013, 01, 15-25

Published Online December 2012 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2013.01.02

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 01, 15-25

Fault Tolerant Message Efficient Coordinator

Election Algorithm in High Traffic Bidirectional

Ring Network

Danial Rahdari, Amir Masoud Rahmani

Department of computer Engineering, Science and research branch, Islamic Azad University, Tehran, Iran

d.rahdary@srbiau.ac.ir; rahmani@sr.iau.ac.ir

Afsane Arabshahi

Department of Computer Engineering, Sistan and Baloochestan University, Zahedan, Iran

afsane.arabshahi@gmail.com

Abstract— Nowadays use of distributed systems such

as internet and cloud computing is growing dramatically.

Coordinator existence in these systems is crucial due to

processes coordinating and consistency requirement as

well. However the growth makes their election

algorithm even more complicated. Too many algorithms

are proposed in this area but the two most well known

one are Bully and Ring. In this paper we propose a fault

tolerant coordinator election algorithm in typical

bidirectional ring topology which is twice as fast as

Ring algorithm although far fewer messages are passing

due to election. Fault tolerance technique is applied

which leads the waiting t ime for the election reaching to

zero.

Index Terms— Distributed System, Bid irectional Ring,

Coordinator Election, Improvement of Ring Algorithm

I. Introduction

Today’s use of distributed systems such as grid and

cloud computing is penetrating more in the daily life

because of wide range of their advantages. These

systems serve their services by processes cooperation

which could be handled through either message passing

or shared memory. To control these communications

and activities of the systems [1] and in order to achieve

more performance a central controller should be existed

which is named to be the coordinator (leader). If a

system doesn’t have a central controller, each process

must communicate with all others for doing its activities

which causes many more messages to be exchanged and

time to be passed.

A coordinator could be initiator of an activity (e. g.

reconstruction of lost Token in a Token Ring network),

recognizer of the deadlock or failures, the root of a

spanning tree [2] and it also needed in applications such

as video conferencing and multiplayer games.

Coordinator algorithms have lots of usages in different

research areas such as Ad Hoc networks [3, 4].

These algorithms are based on different network

topologies, process communication strategies, and

whether to assign a unique number to processes or not.

Network topologies could be directional ring,

bidirectional ring, directional graph, mesh graph or it

could be dynamic network such as wireless networks

and etc. processes can be referenced by unique numbers

or by no ones. One of the reasons for not setting a

unique number to the processes is because when the

number of the system processes increases, the

probability of setting a unique number to them will be

decreases which will convert it to harder activ ity.

Moreover type of communication between processes

can be synchronous or asynchronous.

The reminder of the paper is organized as follow:

Related works are discussed in section 2. Section 3

describes system’s assumptions. In section 4 three kinds

of message formats which can be used for coordinator

election are introduced and section 5 is dedicated to

describe our algorithms. The proposed algorithm is

simulated and evaluated in section 6 and 7, its

convergence is approved in section 8 and finally last

section is devoted to paper’s conclusion .

II. Related Work

Many algorithms have been proposed for electing

coordinators, such as ring [5], bully [6], Chang and

Robert [7], Franklin [8], and many other ones.

R.Bakhshi [9, 10] proposed an algorithm for electing

coordinator in a network which based on assumptions

that numbers aren’t assigned to any processes and

process’s fault probability is zero. The algorithm of

Highman [11] is useful in networks that processes have

no number and the numbers of network’s processes is

specified at start up time also. Burns [12] and Fich [13]

algorithms are based on networks with central demon as

16 Fault Tolerant Message Efficient Coordinator Election Algorithm in High Traffic Bidirectional Ring Network

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 01, 15-25

scheduler, like Highman [11] processes don’t have any

numbers and the number o f processes is determined at

the start up time. Zargarnataj [14] presented an

algorithm that elects assistant for the coordinator as

well, so if the coordinator failed, it won't be necessary

to launch new election, this algorithm isn’t based on

special topology so could be applied to any network.

Effatparvar [15] modified bully algorithm to alleviate

exchanged message numbers during election and also

ring algorithm to apply fault tolerance to it by choosing

another process as surrogate coordinator. Shirali [16]

proposed an algorithm to improve election performance

in the bid irectional ring topology which creates groups

of processes, distributes the election in them, and then it

compared group’s coordinator with each other to elect

the main coordinator afterward. Gholipour [17]

introduced another algorithm based on Bully which

elects k alternatives in addition to coordinator. After

coordinator failure, alternatives are replaced as

coordinator in the system, so there won’t be any need to

launch new elect ion until k-1 alternatives will fail (this

idea is used in this paper’s algorithm). Ingram [18]

proposed an algorithm for based on reliab ility attribute

which nodes are reliab le but communication links aren’t.

He models the entire system by finite state machine that

nodes communicate through shared events which could

be links up/down, receipts of a message or sending a

message. Lots of other algorithms such as [19-21] are

also proposed, however, from all of these algorithms

Bully and Ring are the two most valuable ones. In

contrary of typical ring algorithms, token isn’t used by

Ring election algorithm. Its first assumption is that any

process just knows its successor and processes and they

also referenced by unique numbers. Ring algorithm

launches new election after failing the last coordinator

by two steps: Each process which figures out the failure

of the coordinator must create an Election packet and

collect all active processes numbers. When the packet

comes back to informer process, it’ll elect coordinator,

make a Coordinator packet, and broadcast new

coordinator’s number to the network. The algorithm in

the worst case is from O (n
2
) and on average and best

case is of O (n logn). If two processes realize

coordinator failure at the same time, the numbers of

packets will be twice more but the speed of election

won’t change. Effatparvar et al [22] presented another

algorithm based on ring topology which makes the

packet’s size passed throw the network smaller by

considering just a section for informer, but it also

causes denying coordinator fault tolerance. Moreover

they reduce the number of exchanged message when

more than one processes simultaneously find crash out,

but if other processes find it out during coordinator

crash time and the time which processes know about

new elected coordinator they’ll launch new election.

This will be worse when more processes find the crash

out, especially in high traffic networks.

In the real world, when a process knows its successor

and gives packets from its previous process in ring

topology, it can figure out its predecessor simply by

saving its delivered packet informat ion. Therefore, we

work on bidirectional ring topology where each process

can communicate to its successor and predecessor. Xie

et al, [23] presents an algorithm based on bidirectional

ring network. This algorithm is similar to ours in the

point of view of sending election messages

simultaneously by processes which find coordinator

crash out to their successor and predecessor. The

election speed is more than simple Ring algorithm and

its differences with ours are listed as follow:

1) It inherits the disadvantage of Ring algorithm which

is occurred when more than one process find out that

coordinator crashed. Hence if n processes find it out

the number of exchanged messages will be 2n.

2) It doesn’t care about coordinator failure tolerance in

network to avoid any losses in the network’s

functions. Therefore the number o f exchanged

messages by this algorithm is same as simple Ring

algorithm.

The algorithm which is proposed in this paper is

based on bidirectional ring too; it appreciates

coordinator election’s speed and applies coordinator

failure fault tolerance to the network by electing an

alternative as well.

III. System Assumption

The system which is based by our algorithm has the

following characteristics:

 Network’s topology is bidirectional ring.

 Communication links are reliable.

 There is no priority for each process to be elected as

coordinator.

 Each process just knows its successor and

predecessor and doesn’t have any information about

other network’s processes.

 Unique numbers are assigned to processes.

 Message’s format can be differing in the case of

network usages and system requirements.

Our election algorithm’s packets have label, so

system’s messages such as controlling message could

easily throw in the network

IV. Message Format

Message’s format which depends on networks

characteristics could be any of the below three.

1) N sections format: there are N processes in the

network and they add their numbers to message when

they receive it. Message passing is very fast by this

format but size of the packet goes larger and larger

 Fault Tolerant Message Efficient Coordinator Election Algorithm in High Traffic Bid irect ional Ring Network 17

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 01, 15-25

by increasing the number of process. The format is

shown in Fig. 1.

Fig. 1: N Section message format

2) Two sections format: Coordinator and informer

numbers are p laced in the message. If process

number be larger than coordinator’s number, it’ll be

placed in coordinator number section. Message has

small size but fault tolerant isn’t considered when

coordinator crashed and also one compare by each

process is required.

Fig. 2: Two section message format

Three sections format: It is obvious that during

election each process should check its number with

surrogate coordinator number in addition to coordinator.

Message’s size is s maller than N sections format and

coordinator failure fault tolerance is also considered.

The format is based in this paper and is shown in Fig. 3.

In each step the processes that receive messages with

same label and same init iator from it sides, will kill the

message to avoid exchanging waste extra messages. In

our algorithm we suppose that the end to end time

between each two process is the same, so if the number

of process is odd at the end two neighbor processes will

send messages to each other simultaneously. Therefore,

two processes will receive messages from their two

sides at the same time; they make Coord inator or

Surrogate Coordinator messages simultaneously (same

as each other) and will throw it in the network. But

since election result of these two processes are same as

each other, throwing Coordinator message in the

network isn’t important, therefore, if a p rocess receives

two Coordinator or Surrogate coordinator message, it’ll

stop one of them.

Fig. 3: Three section message format

V. Proposed Algorithm

Different kind of messages could be passed in a

typical system, but four kinds of messages are

considered in order to election in our algorithm.

1) Election message: When there is no coordinator in

the system, one process such as process 3 in Fig. 4

creates an Elect ion message, and then puts its number

in informer section and coordinator message’s

sections, after it puts zero in the surrogate coordinator

section, finally it’ll send message to its successor and

predecessor.

2) Coordinator message: At least one process such as

process 6 in Fig. 5 will receive Election messages

(which have the same informer number) from its two

sides. This process then works according to following

steps:

Fig. 4: Process number 3 creates Election message

Fig. 5: Coordinator message from process number 6 which delivered
election message from its two sides from one starter

 First of all it checks that whether these two Elect ion

messages have same labels and informer process or

not

 Then it doesn’t allow the messages to throw again in

the network.

 Next it compares the two messages coordinators and

surrogate coordinator’s number, and then it selects

greater ones as coordinator and other as surrogate

coordinator.

 After, this process creates a message, labels it as

Coordinator message, puts its number into informer,

elected coordinator section, and into surrogate

coordinator section.

 Finally new informer (this process) throws this

message into the network.

18 Fault Tolerant Message Efficient Coordinator Election Algorithm in High Traffic Bid irect ional Ring Network

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 01, 15-25

3) SElection message: If processes find coordinator

crash out (process number 3 in Fig. 4, they’ll tolerate

it by replacing the surrogate coordinator to

coordinator. While this process is continuing its

ordinary operation without any delay, it creates a

message, labels it as SElect ion and puts the last

surrogate coordinator into coordinator section, zero

into surrogate coordinator section and its own

number into informer. Then the process throws the

message into the network. Each process in the

network which didn’t notice about coordinator crash,

will rep laces the surrogate coordinator to coordinator

by receiving this message and then it compares its

own number with message’s surrogate coordinator to

elect new one. After that it’ll pass the message into

network in the same direction it received. This

scenario is shown in Fig. 6 and Fig. 7.

In each step the processes that receive messages with

same label and same init iator from it sides, will kill the

message to avoid exchanging waste extra messages. In

our algorithm we suppose that the end to end time

between each two process is the same, so if the number

of process is odd at the end two neighbor processes will

send messages to each other simultaneously.

Fig. 6: Coordinator (process number 6) failed

Fig. 7: SElection messages after denying failed node from process
number 6

Therefore, two processes will receive messages from

their two sides at the same time; they make Coordinator

or Surrogate Coordinator messages simultaneously

(same as each other) and will throw it in the network.

But since election result of these two processes are

same as each other, throwing Coordinator message in

the network isn’t important, therefore, if a p rocess

receives two Coordinator o r Surrogate coordinator

message, it’ll stop one of them.

1) Scoordinator message: Same as the Coord inator

message, at least one process receives message with

same label and in itiator from its two sides. Then each

of these processes will make a SCoordinator message

separately.

After electing coordinator and surrogate coordinator

they put the appropriate informat ion into the message’s

sections and throw it in the network to inform other

processes about new surrogate coordinator. This

scenario is also shown in Fig 8 which process 5 throws

SCoordinator message into the network. As it is obvious

in this figure some time it is possible that two or more

messages with similar labels and different init iator

numbers are passing in network.

Fig. 8: Process number 5 created Scoordinator message and throught

it in the network

The event happens because more than one process

find crash out or Election or SElection message don’t

receive to one process at the same time, so two

neighbors processes will throw the Coordinator and

Scoordinator messages with different in itiators and

same labels.

The solution for this issue is that each process in the

network which receives two messages with identical

labels but different init iators will check the init iator

numbers and will stop the message with lower init iator

in order to alleviate throwing waste extra messages. Our

algorithm in each step specified surrogate coordinator

and coordinator, so if one process with the larger

 Fault Tolerant Message Efficient Coordinator Election Algorithm in High Traffic Bid irect ional Ring Network 19

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 01, 15-25

number comes into the network before coordinator

failure, system will omit it in elect ion until next the next

one to avoid 2n message overhead.

The flowchart of the Election and SElect ion

message’s function of a typical process is determined in

Fig. 9. In this flowchart first of all processes find out

message type by message’s label. As we see, when

message type is Election, if process receives another

message with the same informer, this process finds out

that this message has gone all around the network and it

creates new coordinator message. Since we consider a

coordinator’s alternative, the number o f messages

which should be passed into the network in order to

inform processes about crash is equal to number of

processes.

This is also fewer than the number of messages

which passed by basic Ring algorithm. This fact is This

fact is illustrated by an example in Fig. 10. As we can

see when the number of processes in the particular

network is odd, the number of messages which is

passed among them to figure out crash and then to elect

a new coordinator is n+1, which n is the number of

processes. But if number of processes be even, the

number of message will be changed to n.

Fig. 10: exchanged message number between processes to find

coordinator crash and elect new one

Low message complexity of an algorithm is

considered as a great advantage. However if these

messages exchanged during long period of t ime, the

algorithm is almost impractical and useless so both of

message complexity and t ime complexity of an

algorithm should be analyzed.

Fig. 9: Election and SElection Operations of typical process

20 Fault Tolerant Message Efficient Coordinator Election Algorithm in High Traffic Bid irect ional Ring Network

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 01, 15-25

VI. Mathematical Analyze

6.1. Message Complexity Analyzing

The number of messages which exchanges via this

algorithm (MN) depends on the number of processes in

the network (N) and number of those which find

coordinator crash out (FPN). Therefore MN is

calculated by (1) which is from O (N) and Ω (N).

 () (

)

 (1)

A mathemat ical comparison between this algorithm

and basic ring is inserted in Table (1). In the rest of the

paper we’ll refer to our algorithm as FCEABR (Fau lt

tolerant Coordinator Election algorithm in bid irectional

Ring).

6.2. Time Complexity Analyzing

During election p rocedure Elect ion messages are

circulated among all the processes in the network, and

then they should be informed about elected coordinator

and its alternatives. Moreover any process compares its

own number with Elect ion message’s coordinator and

its alternatives. As discussed before, number of

messages passed by this algorithm is variable due to

number of processes in the network. Communication

time between each two processes (α) is considered to be

the same for simplicity so Communication Cost (CC) of

the algorithm is gained by (2).

 {
 ()

 (2)

Total Processing Time (PT) by processes in the

network also calculated by below equation when

considered as processing time for comparison between

two scalars by a typical process.

Table 1: Mathematical comparison between FCEABR and Ring

algorithm

FPN/Algorithm FCEABR RING

1 2N 2N

2 2N+N/2 4N

10 2N+ (9/10)*N 10N

. . .

. . .

. . .

N 3N-1 N
2

 () (3)

Therefore, (6) calcu lates Election process Consuming

Time ().

 (() ()) (4)

 (() (5)

 {

 (6)

However (3) and (6) will be changed to (7) and (10)

respectively when all coordinator alternatives are

already crashed but coordinator is still up.

 () (7)

 (() ()) (8)

 (()) (9)

 {

 (10)

β and α are constant variables, so time complexity of

the algorithm is from O (N) and Ω (N).

VII. Simulation Result

The simulation program has written by Microsoft

visual studio 2010, C#.Net Programming Language.

Random numbers are assigned to each process and

processes which find crash out are randomly selected.

Therefore number o f messages in each test may differ

from another same test because of this randomizat ion.

Program has run 50 t imes for the same numbers of

processes and average is gained for variables. In

simulation procedure we will refer to basic Ring

algorithm as Ring. At first FCEABR is compared with

basic ring algorithm.

The result of first simulat ion which network has 35

processes is shown in Fig. 11. It is obvious that

FCEABR exchanged fewer message than basic Ring

algorithm.70 processes are placed in the second test

(Fig. 12). By comparing first test and second one it is

concluded that by appreciating the network’s process

number and number of processes that find coordinator

crash out, FCEABR decreased the number of

exchanged message in comparison to basic Ring

algorithm.

 In the rest of this section 3 scenarios are considered

and the result of FCEABR algorithm, basic Ring

algorithm, and Effatparvar algorithm will be

compared..The first ones is the number of messages

that passed to inform processes crash.

 Second ones is the number of passed message when

coordinator crashed and one process finds it out

 Third ones is the number of exchanged message

when coordinator crashed and three processes find it

out.

We show the result of these scenarios in Fig. 11, Fig.

12 and Fig. 13 respectively. In Fig. 10 it is obvious that

the number of exchanged message by FCEABR and

simple Ring algorithm is similar to each other but it is

more than Effatparvar algorithm. This is because of

putting out election to the time when coordinator and

 Fault Tolerant Message Efficient Coordinator Election Algorithm in High Traffic Bid irect ional Ring Network 21

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 01, 15-25

alterative of coordinator crashed. Our algorithm passed

more messages in this case but no wait time is inducted

to any processes during their run time because of

coordinator crash.

It should be mentioned that tolerating wait ing time by

processes may cause dangerous problem especially in

real time usages.

Fig. 11 shows the second scenario of our simulat ion

and we can see that our algorithm passed fewer and

fewer messages in comparison to other algorithms

especially when the number o f processes which find

coordinator crash out is going to be more and more.

This reduction happened because in other algorithm

each process that finds coordinator crashed creates

Selection message separately and its messages are fully

passed among processes but by FCEABR when a new

Election message is delivered to the process which

received the same message with other informer number

before, it’ll compare two Election message’s informer.

If the new received ones have lower number, the

process will stop it.

We also obtain the number of messages that was

passed among processes to inform them about crash for

four networks with d ifferent number of processes and

the result is inserted into Table 2. In this Table, it is

obvious that the number of messages exchanged among

the processes when coordinator crashed by our

algorithm is nearly half fewer a .than basic Ring

algorithm. A lso, it figures out the differences between

odd number of process and even number too.

Fig. 11: FCEABR and basic Ring Comparison when number of processes is 35

Fig. 12: FCEABR and basic Ring Comparison when number of processes is 70

22 Fault Tolerant Message Efficient Coordinator Election Algorithm in High Traffic Bid irect ional Ring Network

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 01, 15-25

Fig. 13: Total exchanged message number when coordinator crashed and one process finds it out after four time coordinator crash.

Fig. 14: Total number of messages that passed after four times that coordinator crashed and different number of processes fined this o ut

 Fault Tolerant Message Efficient Coordinator Election Algorithm in High Traffic Bid irect ional Ring Network 23

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 01, 15-25

Fig. 15: Message passed to inform processes about crash during four times coordinator crash

VIII. Convergence Approving

We select the processes that find coordinator is

crashed randomly, so we approve the final result

(number of messages passed in network) convergence

of our algorithm by calcu lating its standard deviation.

The average number of messages () that is exchanged

during 200 t imes of test repetition is gained by (11) and

due to unknown statistical community, sample variance

(
) that calculated by (12) should be used.

∑

 (11)

∑ ()

 (12)

Therefore standard deviation is calcu lated by be

below equation.

√
 (13)

We calculate variance and standard deviation for four

different networks. The specification of networks and

average number o f messages that passed after 200 times

repeating the test is inserted in Table 2.

In Table 3 different parameters of a network is

identified. For example when we run our simulator 200

times for a network with 320 processes which 11

processes finds crash out; the average number of

messages passed would be 1287. A lso, the standard

deviation of the messages is 0.302.

Table 2: Number of messages when coordinator crashed in four
networks with different number of processes before coordinator crash

(NPBCC)

NPBCC Modified Ring Ring

50 98 50

187 372 186

1290 2578 1290

5890 11778 5890

Table 3: Standard deviation and other parameters for different ring

networks.NPS: Network process number, NOF: number of fault,
ANSRM: average number of send and receive messages, EF:

Standard deviation, PR: program run

NPS NO F ANSRM SD

40 3 112 0.022

115 6 392 0.011

320 11 1287 0.302

830 20 3820 0.405

IX. Conclusion and Future Work

As we read in prev ious section, our method to

identifying a coordinator was based on bidirectional

ring network. We found that our algorithm passed fewer

messages than Ring algorithm to elect new coordinator

and also it increased the elect ion’s speed. In each step a

coordinator and its surrogate coordinator was identified

so if a coordinator was failed, each process could

continue its functions without waiting which means the

process’s waiting time is leaded to zero. Each process

24 Fault Tolerant Message Efficient Coordinator Election Algorithm in High Traffic Bid irect ional Ring Network

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 01, 15-25

could tolerate one failure. Also three sections message

format which min iaturizes the size of the message was

used. Processes in our algorithm saved the information

of coordinator and its alternative in each step which

doesn’t consume much memory especially when we

have just one alternative. The only operation that was

added to election procedure was comparison between

numbers in processes and received messages. Control

packets could easily pass between processes in the

network because the labels of coordinator election

algorithm messages made them d iffer from other types

of messages. As the future work we are going to apply

this algorithm into mult i management sites systems

which can share their resources among processes in

their sites or even other site’s processes

References

[1] Y.Afek and A. Gafni, ―Time and message bounds

for elect ion in synchronous and asynchronous

complete networks,‖ in Proc. 4th Annu. ACM

Symp. on Princip les of Distributed Computing,

Minaki, Canada, Aug. 1985, pp. 186-195.

[2] R. Gallager, P. Humblet and P. Spira, ―A

Distributed Algorithm for Minimum Weight

Spanning Trees,‖ In ACM Transactions on

Programming Languages and Systems,vol.4, no.1,

pages 66-77, January 1983.

[3] N. Malpani, J. Welch and N. Vaidya, ―Leader

Election Algorithms for Mobile Ad Hoc Networks,‖

In Fourth International Workshop on Discrete

Algorithms and Methods for Mobile Computing

and Communications, Boston, MA, August 2000

[4] P. Basu, N. Khan and T. Little, ―A Mobility based

metric for clustering in mobile ad hoc networks,‖

In International Workshop on Wireless Networks

and Mobile Computing,, April 2001 Page(s):658 –

663

[5] A. Obeidat and V. Gubarev. ―Leader Election in

peer to peer systems. Siberian conference on

control and communications SIBCON-2009.

[6] N. Fredrickson and N. Lynch, ―Electing a Leader

in a Synchronous Ring.‖ J.ACM, 1987, vol.34,

no.1, pp.98-115.

[7] H. Garcia Molina, ―Elect ions in a Distributed

Computing System. Y. Afek and A. Gafn i, ―Time

and message bounds for election in synchronous

and asynchronous complete networks,‖ in Proc.

4th Annu. ACM‖ IEEE Trans. Comp, 1982, vol.31,

no. 1, pp.48-59.

[8] E. Chang and R. Roberts, ―An improved algorithm

for decentralized ext rema finding in circular

configurations of processes, ‖Communications of

the ACM}, pp. 281-283, 22,5, 1979.

[9] R. Bakhshi, W. Fokkink, J. Pang, and J. van de Po l.

µCRL specification of probabilistic Franklin leader

election algorithm. http://www.few.vu.nl/~

rbakhshi alg/franklin.mcrl

[10] R. Bakhshi, W. Fokkink, J. Pang, and J. van de

Pol.Leader. Election in Anonymous ring, Franklin

Goes probabilistic, http://www.few.vu.nl/~

rbakhshi/ alg/franklin.mcrl

[11] L. Higham and S. Myers. Self-stabilizing token

circulat ion on anonymous message passing. In

Proc. 2nd Conf. on Princip les of Distributed

Systems, pages 115– 128z Hermes, 1998.

[12] J. Burns and J. Pachl. Uniform self-stabilizing

rings. ACM Trans. Program. Lang. Systems,

11(2):330–344, 1989.

[13] F. Fich and C. Johnen. A space optimal,

deterministic, self-stabilizing, leader election

algorithm for unidirectional rings. In Proc. 15th

Conf. on Distribute Computing, volume 2180 of

LNCS, pages 224–239. Springer, 2001. S.-T.

Huang. Leader election in uniform rings. ACM

Trans. Program. Lang. Systems, 15(3):563–573,

1993.

[14] M. Zargarnataj, ―New Election Algorithm based

on Assistant in Distributed Systems‖IEEE 2007.

[15] M. EffatParvar, MR.Effatparvar, A.Bemana and

M.Dehghan‖ Determining a Central Controlling

Processor with Fau lt To lerant Method in

Distributed System‖, ITNG apos;07, 2-4 April

2007 Page(s):658 – 663.

[16] M. Shirali, A.Hagighattoroghi and M.Vojdani.

―Leader Election Algorithms: History and Novel

Schemes‖ ICCIT 2008.57, pp.1001-1006

[17] M. Gholipour,M.S.Kordafshari,M.Jahanshahi and

A.M.Rahnami.―A new approach for election

algorithm in distributed systems‖.CTRQ 2009.32,

pp 70-74.

[18] R. Ingram,P.Sh ield,J.E.Walter,J.L.Welch . ―An

asynchronous leader election algorithm for

dynamic networks‖.IEEE 2009

[19] J. E. Burns. ―A formal model for message

passingsystems,‖ Tech. Rep. TR-91, Indiana

University, Sep. 1980

[20] D. Dolev, M. Klawe, and M. Rodeh, ―An O(nlogn)

unidirectional d istributed algorithm for ext rema

finding in a circle,‖ Journal of A lgorithms, vol. 3,

no. 3, pp. 245-260,Sep. 1982.

[21] G. Fredrickson and N. Lynch, ―The impact of

synchronous communication on the prob lem of

electing a leader in a ring,‖ in Proc. 16th Annu.

ACM Symp. onTheory of Computing, Washington,

D.C., 1984, pp. 493-503.

[22] M. R.Effatparvar, N.Yazdani, M.Effatparvar,

A.Dadlani, A.Khonsari. ―Improved Algorithm for

 Fault Tolerant Message Efficient Coordinator Election Algorithm in High Traffic Bid irect ional Ring Network 25

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 01, 15-25

Leader Election in Distributed Systems‖. 2
nd

international conference on computer engineering

and technology. 2010.

[23] Y. Xie, Hong.L. ―A BI-d irectional Election

Algorithm based on Ring Topology‖. International

conference on information science and technology.

March 26-28, 2011 Nanjing Jiangsu, China

Authors’ Profiles

Danial Rahdari: received his B.S. in

computer engineering from Sistan and

Balouchestan University, in 2010 and

he is studying computer engineering in

M.S. at IAU University. His research

interests are in the areas of distributed

systems, cloud services, quality of

service, load balancing and resource

allocations algorithm in cloud computing and ad hoc

networks.

Amir Masoud Rahmani: received h is

B.S. in computer engineering from

Amir Kabir University, Tehran, in

1996, the M.S. in computer engineering

from Sharif University of technology,

Tehran, in 1998 and the PhD degree in

computer engineering from IAU

University, Tehran, in 2005. He is associate professor in

the Department of Computer Engineering at the IAU

University. He is the author/co-author of more than 140

publications in technical journals and conferences. He

served on the program committees of several national

and international conferences. His research interests are

in the areas of distributed systems, ad hoc and sensor

wireless networks, scheduling algorithms and

evolutionary computing.

Afsane Arabshahi: received her B.S.

in computer engineering from Sistan

and Baloochestan university Zahedan,

Iran in 2011. His research interests are

in the areas of distributed systems,

cloud computing and cloud services,

quality control, load balancing

algorithm in cloud computing and ad

hoc networks.

How to cite this paper: Danial Rahdari, Amir Masoud

Rahmani, Afsane Arabshahi,"Fault Tolerant Message

Efficient Coordinator Election Algorithm in High Traffic
Bidirectional Ring Network", International Journal of

Information Technology and Computer Science(IJITCS),

vol.5, no.1, pp.15-25, 2013.DOI: 10.5815/ijitcs.2013.01.02

