1.J. Information Technology and Computer Science, 2013, 10, 39-61
Published Online September 2013 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2013.10.05

il

|
| Modern Education
| and Computer Science

| PREJSS

A Compression & Encryption Algorithm on DNA
Sequences Using Dynamic Look up Table and
Modified Huffman Technigues

Syed Mahamud Hossein
Regional Office, Kolaghat; Directorate of Vocational Education & Training, West Bengal, India
E-mail: mahamud123@gmail.com

HIT, Haldia, India

Abstract— Storing, transmitting and security of DNA
sequences are well known research challenge. The
problem has got magnified with increasing discovery
and availability of DNA sequences. We have represent
DNA sequence compression algorithm based on
Dynamic Look Up Table (DLUT) and modified
Huffman technique. DLUT consists of 4%(64) bases
that are 64 sub-stings, each sub-string is of 3 bases
long. Each sub-string are individually coded by single
ASCII code from 33(!) to 96(°) and vice versa. Encode
depends on encryption key choose by user from four
base pair {ajtg and c}and decode also require
decryption key provide by the encoded user. Decoding
must require authenticate input for encode the data.
The sub-strings are combined into a Dynamic Look up
Table based pre-coding routine. This algorithm is
tested on reverse; complement & reverse complement
the DNA sequences and also test on artificial DNA
sequences of equivalent length. Speed of encryption
and security levels are two important measurements for
evaluating any encryption system. Due to proliferate of
ubiquitous computing system, where digital contents
are accessible through resource constraint biological
database security concern is very important issue. A lot
of research has been made to find an encryption system
which can be run effectively in those biological
databases. Information security is the most challenging
question to protect the data from unauthorized user.
The proposed method may protect the data from
hackers. It can provide the three tier security, in tier
one is ASCII code, in tier two is nucleotide (a,t,g and c¢)
choice by user and tier three is change of label or
change of node position in Huffman Tree.
Compression of the genome sequences will help to
increase the efficiency of their use. The greatest
advantage of this algorithm is fast execution, small
memory occupation and easy implementation. Since
the program to implement the technique have been
written originally in the C language, (Windows XP
platform, and TC compiler) it is possible to run in other
microcomputers with small changes (depending on
platform and Compiler used). The execution is quite

Copyright © 2013 MECS

fast, all the operations are carried out in fraction of
seconds, depending on the required task and on the
sequence length. The technique can approach an
effective compression ratio of 1.98 bits/base and even
lower. When a user searches for any sequence for an
organism, an encrypted compressed sequence file can
be sent from the data source to the user. The encrypted
compressed file then can be decrypted & decompressed
at the client end resulting in reduced transmission time
over the Internet. An encrypt compression algorithm
that provides a moderately high compression with
encryption rate with minimal decryption with
decompression time.

Index Terms— Compression, Security,
Abbreviation— DLUT-Dynamic Look up Table

I. Introduction

With more and more complete genomes of
prokaryotes and eukaryotes becoming available and the
completion of Human Genome Project on the horizon,
fundamental questions regarding the characteristics of
these sequences arise. Life represents order. It is not
chaotic or random [1]. Thus, we expect the DNA
sequences that encode life to be nonrandom. In other
words, they should be very compressible. There is also
strong biological evidence that supports this claim, it
is well known that DNA sequences only consist of four
nucleotide bases {a, t,g,c},(note that T is replaced with
U in the case of the RNA), and one byte are enough to
store each base. All this evidence gives more concrete
support that the DNA sequences should be reasonably
compressible. It is well recognized that the
compression of DNA sequences is a very difficult task
[2-6]. However, if one applies standard compression
tools such as the Unix “compress” and “compact” or
the MS-DOS archive programs “pkzp” and “arj”, they
all expand the file. These tools are designed for text

1.J. Information Technology and Computer Science, 2013, 10, 39-61

mailto:mahamud123@gmail.com

40 A Compression & Encryption Algorithm on DNA
Sequences Using Dynamic Look up Table and Modified Huffman Techniques

compression [2], while the regularities in DNA
sequences are much subtler. It means that DNA
sequences do not have the same properties for the
traditional compression algorithms to be counted on.
This requires a better model for computing the DNA
content such that better data compression results can be
achieved. In fact, it is our purpose to reveal such
subtleties, such as dynamic Look Up Table of 3 letter
64 sub-string, match with source DNA sequences by
using a more appropriate compression algorithm. In
this article, we will present a DNA compression
algorithm, DLUT, based on exact matching between
Look Up Table and source file and that gives the best
compression results on standard benchmark DNA
sequences. We will present the design rationale of
dynamic LUT based on exact matching, discuss details
of the algorithm, provide experimental results and
compare the results with the one most effective
compression algorithm for DNA sequence (gzip-9).

We can find the compression rate and compression
rate over reverse, complement and reverse complement
of DNA sequences result of same cellular DNA
sequences. Also we can find the compression rate,
compression ratio of artificially sequence generated by
randomly of equivalent length of cellular DNA
sequence. Compare all result to each other. For that
purpose we can generate two different algorithms.

We devised a new DNA sequence compression
algorithm based on dynamic Look Up Table pre-
coding routine which maps the 3 letter 64 sub-sting
into 64 ASCII characters start from 33(!) to 96 (°) and
vice versa. Since the essence of compression is a
mapping between source file and destination file, the
compression algorithm dedicates to find the
relationship. We migrate this idea to our research on
DNA sequence compression. We are trying to build a
finite DLUT which implements the mapping
relationship of our coding process. Some experiments
indicate that the compression ratio is 3.1 bits/base.

Huffman CODING: Statistical codes represent
data blocks of fixed length with variab le-length code[7]
words. Huffman coding is one type of statistical
code[8-9]. This coding is also one type of entropy
coding. Entropy encoding is a lossless data
compression scheme that is independent of the media’s
specific characteristics. Entropy coding[10-11] assigns
codes to symbols so as to match code lengths with the
probabilities of the symbols. Typically, these entropy
encoders are used to compress data by replacing
symbols represented by equal-length codes with
symbols represented by codes where the length of each
codeword is proportional to the negative logarithm (is
—logyP, where b is the number of symbols used to
make output codes and P is the probability of the input
symbol) of the probability. Therefore, the most
common symbols use the shortest codes.

The efficiency of a Huffman[12-13] code depends
on the frequency of occurrence of all distinct fixed

Copyright © 2013 MECS

length blocks in a set of data. The most frequently
occurring blocks are encoded with short code words,
whereas the less frequently occurring ones are encoded
with large code words. In this way, the average
codeword length is minimized. It is obvious however
that, if all distinct blocks in a data set appear with the
same (or nearly the same) frequency, then no
compression can be achieved. Among all statistical
codes, Huffman offer the best compression since they
provably provide the shortest average codeword length.
Another advantageous property of a Huffman code is
that it is prefix free; i.e., no codeword is the prefix of
another one. This makes the decoding process simple
and easy to implement.

Let T be the fully specified test set. Let us ako
assume that if we partition the test vectors of T into
blocks of length I, we get k distinct blocks b1, b2, ...,
bk with frequencies (probabilities) of occurrence pl,

p2, .. ., pk, respectively. The entropy of the test set is
defined as
k
H(T)=->_R(log, P) &)
i=1

and corresponds to the minimum average number of
bits required for each codeword. The average
codeword length of a Huffman code is closer to the
aforementioned theoretical entropy bound compared to
any other statistical code. In practice, test sets have
many don’t care (X) bits. In a good encoding strategy,
don’t cares must be assigned such that the entropy
value H(T) is minimized. In other words, the
assignment of the test set’s X values should skew the
occurrence frequencies of the distinct blocks as much
as possible. We note that the inherent correlation of the
test cubes of T (test vectors with x values) favors the
targeted occurrence frequency skewing and,
consequently, the use of statistical coding. To generate
a Huffman code, we create a binary tree. A leaf node is
generated for each distinct block bi, and a weight equal
to the occurrence probability of block bi is associated
with the corresponding node. The pair of nodes with
the smallest weights is selected first, and a parent node
is generated with weight equal to the sum of the
weights of these two nodes. The previous step is
repeated iteratively, selecting each time the node pair
with the smallest sum of weights, until only a single
node is left unselected, i.e., the root (we note that each
node can be chosen only once). Starting from the root,
we visit all the nodes once, and we assign to each left-
child edge the logic 0 values and to each right-child
edge the logic 1 value. The codeword of block bi is the
sequence of the logic values of the edges belonging to
the path from the root to the leaf node corresponding to
bi.Ifcl, c2,...,ck are the codeword lengths of blocks
bl, b2, . . . , bk, respectively, then the average
codeword length is

1.J. Information Technology and Computer Science, 2013, 10, 39-61

http://en.wikipedia.org/wiki/Data_compression
http://en.wikipedia.org/wiki/Data_compression
http://en.wikipedia.org/wiki/Probability
http://en.wikipedia.org/wiki/Entropy_%28information_theory%29
http://en.wikipedia.org/wiki/Proportionality_%28mathematics%29
http://en.wikipedia.org/wiki/Logarithm

A Compression & Encryption Algorithmon DNA 41
Sequences Using Dynamic Look up Table and Modified Huffman Techniques

Kk

C(T)=> PC, @

i=1

Data Compression and ENCRYPTION: There is a
similarity between the process of data compression and
process of encryption. The goal for both the processes
is to reduce the redundancy in the source message.
According to Shannon [14], for perfect lossless
compression algorithm, the average bit rate is equal to
the source entropy. The redundancy of a source
message is the difference between average bit rate and
the source entropy of the message. The purpose of
reducing the redundancy in case of compression
algorithm is to conserver the storage space or
communication bandwidth. The goal of reduction of
redundancy in case encryption process is to thwart the
different cryptanalysis attack based on statistical
property of the source message. If we combine both the
process of compression and encryption as shown in the
fig below, then we can utilize another property of the
compression algorithm that the decompression
information are concentrated in a few portion of the bit
stream, to selectively encrypt those portion of the bit
stream which has got more impact on the
reconstruction of the message during decompression
process, keeping the remaining uncompressed bit
stream in the clear.

For a perfect compression scheme, the plain text of
the unencrypted portion of the message is statistically
independent of the encrypted plain text message. So by
knowing the unencrypted plain text, cryptanalyst
cannot infer anything for the encrypted plain text.

Due to the combination of the process of
compression and the process of encryption, two
benefits are realized:

1. Conservation of storage space and communication
bandwidth

2. Encryption costis reduced.

3. The attacks on the basis of statistical property of
the source bit stream are thwarted.

Client side decompression: We use compression &
selection encryption techniques for the general purpose
of sequence data delivery to the client. Existing DNA
search engines do not utiliz2 DNA sequence
compression algorithms & encryption for high security
for client side decryption & decompression, i.e. where
encrypted compressed DNA sequence is decrypted &
decompressed at the client end for the benefit of faster
transmission & information security. Because most of
the existing DNA sequence compression algorithms
aim for higher compression ratios or pattern revealing,
rather than client side & decryption decompression,
their decompression times are longer than necessary
information security. This makes these compression

Copyright © 2013 MECS

techniques unsuitable for the “on the fly”
decompression. We use encrypted compression
technique designed for client side decrypted followed
by decompression in order to achieve faster sequence
secure data transmission to the client.

UltOl’l'lplBS Datz

Transmlssnon Tinme T Client 2l

Enc rypted Compessed Data

Client Erel

|— Traremesion Tine T TineT. to
decompression

Effcency B zchieved when T+T <t

Fig. 1: Sender & receiver site encryption & Decryption process

If encrypted compressed sequence data is sent from
the data source to be decrypted decompressed at the
client end and the decryption to decompression time
along with the encrypted compressed file transmission
time is less than the transmission time for
uncompressed data transfer from the source to the
client, then efficiency is achieved. Fig. 1 illustrates the
situation. Note that the sequence data should be kept
pre-compressed within the datasource.

A Sequence compression algorithm with reduced
decompression time and moderately high compression
rate is the preferred choice for efficient sequence data
delivery with faster data transmission. As our target is
to minimize decompression time and high information
security, we use similar compression techniques to
those used in [15], based on a “Two phase” approach,
meaning, that the file is compressed followed by
encryption or decrypt followed by decompressed while
reading it. Unlike “four phase” algorithms there is no
need to re-read the input file. Our compression
technique is essentially a symbol substitution
compression scheme that encodes the sequence by
replacing four consecutive nucleotide sequences with
ASCI characters. Our technique is to find the best
solution for a client side decompression.

Work already carried out : So many biological
compression algorithms is available in market as in
paper[100] where showing that Huffman’s code also
fails badly on DNA sequences both in the static and
adaptive model, because there are only four kind
symbols in DNA sequences and the probabilities of

1.J. Information Technology and Computer Science, 2013, 10, 39-61

42 A Compression & Encryption Algorithmon DNA
Sequences Using Dynamic Look up Table and Modified Huffman Techniques

occurrence of the symbols are not very different. Here
this two phase technique solved this problem because
after the 1" phase compression we get the 252 ASCII
characters’ with nucleotide base pair a, t,g & C.

I1. Flowchart:

Input DNA sequence

Compression using DLUT

Iy

Key-I1

Compression using Modified Huffman
Technique ev-
—| Decompression |

Fig. 2: Process Diagram

11l. Methods
3.1 File Format:

We will begin discussing file type is text file (file
extension is dot txt) contain a series of successive four
base pair (a,t,g and c¢) and end with blank space ahead
the end of file. Text file is the basic element to which
we consider in compression and decompression. The
output file also text file, contains the information of
both unmatched four base pair and a coded value of
ASCII character.

The coded valued are located in the encoded section.
The coded information is written into destination file
byte by byte. The file size depends on number of base
pair present in the input file and output file measured
by byte, i.e. File size (in byte)= number of base pair in
a file(in byte).As perexample total no. of base pair in a
file is n, so the file size is n byte. ASCII character also
required one byte for storing. On the basis of ASCII

code availability, we can take input as a lower case
letter of a,t,g and c, if upper case input are taken,
algorithm convert into upper case letter to lower case
letter.

3.2 The Four Bases Pair at,g and c

The four bases pair a,t,g and ¢ possible orientation
43=64. All sub-string has 3 bases long. The look-up
table describes a mapping relationship between DNA
segment and its corresponding characters. We assume
that every three characters in source RNA sequence
without N? will be mapped into a character chosen
from the character set which consists of 64 ASCII
characters.

Consider a string S= aaaaaagaacatgatcttccc.........n
where n is the length of string.

So, n=Length of the string = Total no. of base pair in
S = File size in byte (n>0)

Due to DLUT facility we can take input from four
base pair {atg & c}in 24(Factorial of 4=24)
orientation and all times starting and ending ASCII
code range from 33(!) to 96(") and vice versa. That
means DLUT variation are 24X2 ie 48 no different
table. We can create 48 different LUT in this way. But
all times sub-string in a table is 64 (4°=64), 64 ASCII
code are sufficient to define the one particular LUT in
each encoding and decoding time.

2N Refers to those not available base in DNA
sequence

3.3 Encoding steps:

First input file encoded by Look Up Table-I,
encoded data store on another output file.

Look up Table structure is

Table 1: Lookup Table

LUT INPUT Structure LUT
Sr.No. | Inputcharacter | Sr. No. Sub-string for LUT S[i]

1 atgc 1 aaa

3 aag

4 aac

7 atg

8 atc

24 ttc

33 gaa

64 cce

Range of ASCII code A[j]
Start from(Increasing) | Start from(Decreasing)
33/96 96/33
96/33 33/96

We match the input string with pre coded LUT. For
that purpose we have break the string S into (n-2) sub

Copyright © 2013 MECS

string, each sub-string has length 3 bases long. n-2
because each sub-string length is 3.

1.J. Information Technology and Computer Science, 2013, 10, 39-61

A Compression & Encryption Algorithmon DNA 43
Sequences Using Dynamic Look up Table and Modified Huffman Techniques

S[il=12 3 4567 891011121314 ... n
[1<izn]

As forexample: S=aa aaaag aac at
g.......nn

n=1234567 8910111213 14.....n

Where S[i] array store each sub-string of S and i=1
to n-1.

S[1]=aaa,S[2]=aaa,S[3]=aaa,.........c.ceevvenerennnnn
S[n-2]ccc

Table 2: Sub Group press

Input string(S)

LUT starting charecter | Sub-string A[i]

Match condition S[i]=A[j] | ASCII code A[j] | Output

aaaaaagaacatgatcttccc atgc aat

S[1]=A[1] aat= - a

att

S[2]=Al2]

First match S[1] with A[1] to A[64], if match occur
place ASCII character in 1*' position otherwise left one
character in left hand side in S, place 1% character in
output file 1 position. This left single character are
place output file in 1% position. Progress one character
toward in right direction, take next sub-string and
match S[2] with A[1] to A[64], if match occur place
appropriate ASCII character in 2" place. This ASCII
character is put into the output file in 2" position. This
process will continue until and unless n-2 position
reaches.

The Encoding procedure mentioned this rule and
produce compression output file.

Match found then S[i]=A[]] ,place ASCII character
in the output file ith position. Each matching cases the
value of i is incremented by i=no. of unmatched
character+ (no. of sub-string match X 3+1)

Otherwise S[i]#A[]j] place base pair in output file ith
position. If unmatched occur, the value of i is
incremented by one andj is increased by one.

At theend, we can get the compress output file O

So, O=!Ac'(8cc.....n.n.... n; where nq is the length
of output file, Outputfile size is n; byte

3.4 Decoding

Decoding time, first create LUT (fix base pair which
are use in encoding time for single case , its depends on
user authenticate value and decryption key and
authenticate ASCII code starting position otherwise
proper decoding are not possible.

On this basis of input character set and ASCII code
starting value, the actual LUT are crated. On this
particular value, the encoded output string is decoded
and produces the output original file.

Look Up

Table 3: ASCII staring ending point

INPUT LUT ASCII
Authenticate Input | Sr. No. Sub-string for LUT SJi] Start from(Increasing/decreasing) A[j]
atgc 1 aaa 33
3 aag
4 aac
7 atg
8 atc
24 ttc
33 gaa
64 cce
O=!'AC'(8CC .ovvvvirininiiinn, nl where nl is the value of i is incremented by one. If unmatched found in

length of output string (n>n1).

At the time of decoding each character match with
ASCII code that is A[j] with O[i] one by one. If match
occur in between A[1] to A[64] with O[1], place ASCII
equivalent sub-string in 1°* places in output file. The

Copyright © 2013 MECS

between A[1] to A[64] with O[2], place base pair in 2"
position in output file. The value of i is incremented by
one. This process will continue until i=n1 position will
appear.

1.J. Information Technology and Computer Science, 2013, 10, 39-61

44

A Compression & Encryption Algorithmon DNA
Sequences Using Dynamic Look up Table and Modified Huffman Techniques

Table 4: ASCII code decompression

Input string(O)

LUT starting character

Match condition A[j]=5]i]

ASCII code Alj]

Output

11AC'(8cc

atge

O[1]=A[1] aat=
O[2]=A[2]

The Decoding process mentioned this rule and
produce original outputstring.

Match found if O[i]=A[j] place ASCII character
equivalent sub-string in ith position. If match found,
the value of i is incremented by one.

Otherwise S[iJ£A[j] place base pair in ith positionin
outputfile. If unmatched occur, the value of i is

incremented by one.

For easy implementation, characters a,u,g,c will no
longer appear in pre-coded file and A,T,G,C will
appear in pre-coded file. For instance, if a segment

“aaaaaagaacatgatcttccc

destination file,

we

........ n ” has been read,
represent them

in the
as

“aDNcOtxa....... n;”.0Obviously, the destination file is

case-sensitive

But at the end of file two base segments are
remaining (ideal case where total number of base pair

are not divisible by 3),

word is 3:1 when match is found.

In case of above example string length = 21 that
means 21 byte require for storing this string. After
encoding on the basis of lookup table of 3 sub string
length sizes , reduce string length 9, require 9 byte for
storing this string.

3.5 Huffman Encoding:

Consider the test set shown in column 1 of Table I,
which consists of four test vectors of length 16 (64 bits
overall). If we partition the test vectors into blocks of
length 4, we get 16 occurrences of five distinct blocks.
Columns 2 and 3 present those five blocks and their
frequencies of occurrence, respectively. Column 4
presents the codeword of Table-5

Table 5.1: Encoded data set

. Encoded data set
_ We cgnnot find any 0 0 110 0
arrangement in ASCII table. In these circumstances, we 110 10 0 1110
just write the original segment into destination file. 0 10 1111 O
10 0 10 0
We know that each character require 1 byte (8 bit)
for storing. Using lookup table compaction ration per
Table 5: Huffman encoding example
Test set Block Frequency Code word
1010 7116 0
0000 1010 1111 1010 0000 5/16 10
1111 0000 1010 0001
1010 0000 0010 1010 1111 2/16 110
0000 1010 0000 1010 0001 1/16 1110
0010 1/16 1111

Block 1010

Copyright © 2013 MECS

1111

0001

Fig. 3: Left & right node

1.J. Information Technology and Computer Science, 2013, 10, 39-61

0010

A Compression & Encryption Algorithmon DNA 45
Sequences Using Dynamic Look up Table and Modified Huffman Techniques

Each block the corresponding Huffman tree and the
encoded data set are shown in Fig.2.3. The size of the
encoded data set is 31 bits, and the average codeword
length is

C(T)=1*(7/16)+2*(5/ 16)+3*(2/16)+4*(1/ 16)+4*(1/1
6) = 1.9375

Note that the entropy is equal to

H(T) = - [(7/16) * log,(7/16) + (5/16) * log,(5/16) +
(2/16) * log,(2/16) + (1/16) * log,(1/16) + (1/16) *
log,(1/16)] = 1.9218

The size of a Huffman decoder depends on the
number of distinct blocks that are encoded. Increased
encoded-block volumes lead to big decoders due to the
big size of the corresponding Huffman tree. For that
reason, a selective Huffman approach was adopted in
our project, according to which only the most
frequently occurring blocks are encoded, whereas the
rest are not.

3.6 Proposed Methods
3.6.1 Methodology of Experiments PERFORMED:

We have conducted our experiments in normal text
files of different sizes and on the basis of the statistical
property generated by Huffman tree for each text files.
Since our objective is to find out the selective portion
i.e. Rpart (discussed previously) fromthe text message
we made swapping of the branches in the Huffman tree
on at a particular level on the basic of a key and decode
the encoded symbols using the modified Huffman tree
which are specified in scheme I and Il. In scheme-I we
apply swapping method on two nodes at specified level
on Huffman tree, and in scheme-lIl we perform
swapping method between two specified nodes at
different level on Huffman tree. When we generate the
Huffman tree using the statistical property of symbols,
first we consider each character of input text message
asa symbol and later each word as a symbol.

Illustrating Huffman Code With Example: We take a
simple text containing alphabets A, B, C, D, E, F and
their frequencies 8, 3, 2, 4, 2, 1 respectively. The
Huffman tree in this case would be as in figure below
(fig. 4.2).

Table 6: Coding scheme

Char Codeword
A 0
C 100
B 101
F 1100
E 1101
D 111

Copyright © 2013 MECS

Fig. 4: Binary coding scheme

Example: We take a simple test their frequencies
8,3,2,4,2,1 would be as in figure above

Suppose we take a string “AABBC”, for example,
would be encoded as “00101101100”. And when we
decompress it according to 0 and 1 , we traverse the
tree from root to left or right until we get child node.
E.g. the bit stream “00101101100”. The first two*0”
will be decode traversing from root 20->8(A) [left
traversing since 0] and next “1”, then traversing from
root to left 20> 12, next “0”, then traversing from 12 to
left 12->5, next “17, traversing from 5 to right 5> 3(B)
and get leaf node B. Similarly we get original text
“AABBC”. Thus the original text is decompressed
from compressed text.

3.6.2 Swapping Nodes at Specified Level (Scheme-I)

Our objective is to find out the selective portion i.e.
R part (discussed previously) from the text message.
We made swapping of the branches in the Huffman
tree on at a particular level on the basis of a key and
decode the encoded symbols using the modified
Huffman tree. Now for selecting the R part, my first
experiment is swapping two nodes at specified levels.
Here | exchange by left most nodes with right most
nodes at specified level. So only those nodes, which are
changed their positions after swapping, are affects and
also corresponding codes are also altered. Remaining
other nodes is kept unchanged. Hence selective bits are
altered.

Let illustrate this with an example, Fig.4.2 is the
original tree and Huffman codes of W=00, X=01,
Y=10, Z=11.

Fig. 5: Code word

1.J. Information Technology and Computer Science, 2013, 10, 39-61

46 A Compression & Encryption Algorithmon DNA
Sequences Using Dynamic Look up Table and Modified Huffman Techniques

Suppose we apply swapping at level 1 then we find
out A is single node i.e. root node at level 0 i.e. root
node at level 0. Then we interchange the position of
left and right child node with their sub tree as shown in
fig.4.3. So corresponding code of W, X, Y, Z are
totally changed. W=10, X=11, Y=00, Z=01. So if the
original text is “WWXYXZ” then it will be encrypted
“101011001101”. If we decode it without change the

level the text willbe “YYZWZX”. DSID in this case is 6.

T Zz w X

Fig. 6: Tree

X\\\
EN c
=t

I = ¥

Fig. 7: Tree

Table-7: Binary code

After Encrypt
Character ,?negfyr,ft Swapping at | Swapping at
Level 1 Level 2
w 00 10 11
X 01 11 01
Y 10 00 10
z 11 01 00

Now we apply swapping at level 2(here B, C) then
we interchange the position of left child of B and right
child of C and with their sub tree as shown in fig.4.4.
In this case corresponding codes are selectively
changed. i.e. since in fig.4.4 we see on W and Z are
interchange their positions so code of Z and W are only
changed, other should be unchanged according to table
4.1. So if the original text is “WWXYXZ” then it will
be encrypted “111101100100”. If we decode it without

change the level the text will be “ZZXYXW”. DSID in

this caseis 3.

The results diverged from our expectations in some
simple cases due to the complexities in the alignments
of characters when calculating DS . In our experiment,

ID

Copyright © 2013 MECS

when we measure Lavenstein distance and effectness
on actual text we face some minor problems.

Suppose we compress a text file-applying node
swapping method at particular level. But if we measure
effectness on actual text by decoding the encoded text
without any swapping method apply, then in some
cases all codes may not be retrieved, for e.g. suppose
frequency of A=2, B=1 and C=1 then tree will be
generate like

Fig. 9: Tree structure

And their corresponding codeword A=0, B=10,
C=11.

And suppose the string ‘“AABBC’ would be encoded
as 00101011.

Now if we apply swapping method at level 0 then
the tree will generate like fig. 4.6

And their corresponding code A=1, B=00, C=01.
And same string then encoded as 11000001.

Now if we measure Lavenstein distance & % of
effectness on actual text then we must decode without
apply swapping method at level 0. Then that encoded
string is decoded using original tree (fig.4.5).

Table 8: Code Table

1 1 0 0 0 0 0 1
C c Al Al A[A] A -

The last 1 is left over because there is no such code
of only 1. So for measurement purpose the size of
original text is altered in these cases.

1.J. Information Technology and Computer Science, 2013, 10, 39-61

A Compression & Encryption Algorithmon DNA 47
Sequences Using Dynamic Look up Table and Modified Huffman Techniques

3.6.3 Swapping between Two Specified Nodes at
Different Level (Scheme-II)

In my second experiment we get another approach
for selecting the r part (discussed previously). In this
approach swapping can be perform at any specified
two nodes. By this approach we can interchange any
two nodes with its sub tree of the Huffman tree at any
level. Hence this scheme has flexibility to modify
Huffman tree and also use more than one key so it
obviously increase security concern. In this scheme we
need to specify two level values of two nodes and two
binary values. Number of binary digit must be same
with level value with respect to nodes. If we consider
above specified two values as a key then security
concern is improved than before experiment. Eg.
Fig.4.7 is the original tree and Huffman codes of W=00,
X=01, Y=10, Z=11.

0 1 0 1

W X Y Z

Fig. 10: Binary Tree

Suppose | want to swap between two nodes B and Z
then we need to specify first, level number, in this case
1and binary digit 0 for B node and level number for Z,
in this case 2 and binary digit 11. Then new tree will
generate like

Fig. 11: Binary Tree

After interchanging the position of left and right
child node with their sub tree as shown in fig.4.8 so
corresponding codes of W, X, Y, Z are totally changed
according to table 4.2. So if the original text is
“WWXYXZ” then it will be encrypted
“110110111101110”. If we decode it without change
the level the text will be decrypt like “ZXYZZXZ”.
DSID in this case s 6.

Copyright © 2013 MECS

Table 9: Character corresponding code word

After Encrypt

Character | Before Encrypt | Swapping | Swapping
between between

B and Z C and X

w 00 110 00
X 01 111 1

Y 10 10 010
Z 11 0 011

3.7 Random String Generation Method:

We have generate a string of four symbols (a,t,g and
c¢) of any arbitrary length, it is user requirement.

This method simply uses random function in C++
language.

3.8 Rewrse, Complement and Reverse
Complement Method

Suppose the original string is

S = aaaaaagaacatgatcttccen
Reverse string is R=n.............cccttctagtacaagaaaaa
Complement string is =tttttcttgtctagaggg............n

Reverse Complement is RC=n....gggaagatgttgttttt
Where n is the length of the string.

3.9 We Hawe Dewelop Four Algorithms

First: encoding (compression) algorithm, Second:
decoding(decompression) algorithm, Third: Random
string generator algorithm and Fourth is Reverse,
complement and Reverse complement algorithms.

IV. Following Algorithm Are:
4.1 Algorithm for Random String Generator

Procedure Generate

do
Integer i j;
character A[]="atcg";
Input("%ld",&j);
FILE * fp;
fo=0pen_file("input.txt”,"w");
for(i=0;i<j;i++)
do
Write_charcter(A[generate_random_num(4)],
fp);
end
fclose(fp);
end

1.J. Information Technology and Computer Science, 2013, 10, 39-61

A Compression & Encryption Algorithmon DNA
Sequences Using Dynamic Look up Table and Modified Huffman Techniques

48
4.2 Rewrse, Complement and Reverse
Complement the String Algorithm:
Procedure comp(Character xInteger p)
do
switch(x)
do
case 'A'":
if(p=0)
return 'T";
else
return 'U';
case 'T':
return 'A’;
case 'U':
return 'A’;
case 'C":
return 'G';
case 'G":
return 'C';
end
return x;
end

Procedure REVERSE_FILE

do

clrser();

FILE* fin,*fout[3];
Character * in,*out;
Charactercl,c2,c3,c4;
Characterp;

Integer count:=1,point:=1;

File.");

File.");

Display("\n Enter Source File:");
Input(*%s",in);
Display("\n The generated files are
rev.txt,r_comp.txt,comp.txt");
Display("\n\n Filetype? 0 -DNA / 1 -RNA :");
Input("%d",&p);
system("mkdirout™);
fin:=Open_file(in,"r");
if(fin=NULL)
do

Display("\n Could notopen Source

wait_for_keypress();

exit(1);
end
fout[0]:=Open_file(".//out//rev.txt","w");
if(fout=NULL)

do
Display("\n Could not open reverse
wait_for_keypress();
exit(1);

end

fout[1]:=Open_file(".//out//r_comp.txt","w");
if(fout=NULL)
do

Display("\n Could not open reverse

complement File.");

Copyright © 2013 MECS

wait_for_keypress();

File.");

end

exit(1);
end
fout[2]:=Open_file(".//out//comp.txt","w");
if(fout=NULL)
do
Display("\n Could not open complement

wait_for_keypress();
exit(1);
end
cl:=fgetc(fin);
while(c1<>EOF)
do
Put_Char_in_File(comp(c1,p).fout[2]);
cl:=fgetc(fin);
count++;
end
point:=count-1;
dodo
point--;
fseek (fin,point,SEEK_SET);
cl:=fgetc(fin);
(c1>90)?c1-:=32:¢c1-:=0;
Put_Char_in_File(c1,fout[0]);

Put_Char_in_File(comp(cl,p),fout[1]);
endwhile(point);

close_file(fin);

close_file(fout[0]);

close_file(fout[1]);

close_file(fout[2]);

4.3 Algorithm for DLUT
4.3.1 DLUT Encoding algorithm

Integer : eger : parse(Character : *tx);

Procedure check (Character: ch)

do

if (ch<97 AND ch > 64)
return ch+32;

return ch;

end;

Character: cod[4][4][4];
Character: LUT[4],vbx[20];

Real :

ibytes,obytes;

Procedure ret_pos(Character: x)

do
Integer : eger: i;
for(i:=0;i<4;i++)

if(LUT[i]=x)
break;

return i;

end;

Procedure isin(Characterch)

do

if (ch>=33 && ch<=96)
return 1;
else

1.J. Information Technology and Computer Science, 2013, 10, 39-61

A Compression & Encryption Algorithmon DNA 49
Sequences Using Dynamic Look up Table and Modified Huffman Techniques

return O;
end;
Procedure parse(Character: *tx)
do
Integer : eger: p,q,r;
p:=ret_pos(tx[0]);
g:=ret_pos(tx[1]);
r:=ret_pos(tx[2]);
return cod[p][allr];
end;
Procedure Compress_Input()
do
struct time st,sp;
Real : crl,cr2,crate;
FILE *fp,*ip,*op;
Character: BUT[3];
Integer : i,p,q,r,order rorder;
Character: ch;
Integer : match,t1,t2;
Display " Input 3 LUT initializing Character : acters:

(a,t,C,g) ")

Display " 1:";
LUT[0]:=get_character();

Display " 2:";
LUT[1]:=get_character();

Display " 3:";
LUT[2]:=get_character();
if(LUT[0]<>'a' AND LUT[1]<>'a' AND

LUT[2]<>"a")

LUT[3]:="a";
if(LUT[0]<>'t' AND LUT[1]<>'t' AND
LUT[2]<>'t)
LUT[3]:="t";
if(LUT[0]<>'g' AND LUT[1]<>'g' AND
LUT[2]<>'g")
LUT[3]:="g";
if(LUT[0]<>"c' AND LUT[1]<>'c' AND
LUT[2]<>'c")
LUT[3]:='c’;
Display " 4:"<<LUT[3];
do

Copyright © 2013 MECS

Display " LUT ordering (33/96)";
Get_User_Input order;
while(order<>33 AND order <>96);
if(order=33)

rorder:=96;
else
rorder:=33;
for(i:=0;i<64;i++)
do
p:=i/16;
q:=(i-p*16)/4;
r:=i-p*16-q*4;
cod[p][q][r%4]:=(order=33)?order+i:order-
end;

Display "LUT generated:";
fp:=fopen("LUT.txt","w");
for(i:=0;i<64;i++)

do

p:=i/16;

q:=(i-p*16)/4;
r:=i-p*16-q*4;
Write_to_Flle :

(fp," %d %c%c%c : %c",i+1,LUT[p],LUT[q] LUT[r]
cod[p][a]lrD);

end;
Close_File (fp);
Display " Enter inputfile:";
Get_User_Input vbx;
ip:=fopen(vbx,"r");
if(ip=NULL)
do
Display " Unableto open inputfile.";

exit(1);
end;
Display " Enter name for outputfile:";
Get_User_Input vbx;
op:=fopen(vbx,"w");
iflop=NULL)
do
Display " Unable to open outputfile.”;

exit(1);
end;
ibytes:=obytes:=match:=0;
gettime(&st);
gettime(&sp);
gettime(&st);
Display (" Starttime

is : %d:%d:%d.%d" st.ti_hour,st.ti_min,st.ti_sec,st.ti_h
und);

do

ch:=fgetc(ip);

ch:=check(ch);

if(ch=EOF)
break;

if(ret_pos(ch)>2)
do
Put_Char_to_File(ch,op);

end;
else
do
BUT[0]:=ch;
if(ch=EOF)
break;
BUT[1]:=fgetc(ip);
BUT[1]:=check(BUT[1]);
if(BUT[1]=EOF)

do

Put_Char_to_File(ch,op);
break;

end;

BUT[2]:=fgetc(ip);
BUT[2]:=check(BUT[2]);
if(BUT[2]=EOF)
do
Put_Char_to_File(ch,op);

1.J. Information Technology and Computer Science, 2013, 10, 39-61

50

A Compression & Encryption Algorithmon DNA

Sequences Using Dynamic Look up Table and Modified Huffman Techniques

Put_Char_to_File(BUT[1],0p);
break;
end;

Put_Char_to_File(parse(BUT),0p);
match++;
end;
while(ch<>EOF);
gettime(&sp);
Display (" Completed

if(LUT[0]!="c' && LUT[1]!='c' && LUT[2]!="c")
LUT[3]="c";
Display " 4:"<<LUT[3];
do
Display " LUT ordering (33/96)";
Get_User_Input order;
while(order!=33 && order '=96);
if(order==33)
rorder=96;
else
rorder=33;

at : %d:%d:%d.%d",sp.ti_hour,sp.ti_min,sp.ti_sec,sp.ti Display " Enter compressed file:";

_hund); Get_User_Input vbx;
tl:=st.ti_hund+st.ti_sec*100+st.ti_min*6000+st.ti_ ip=fopen(vbx,"r");

hour*360000; if(ip==NULL)
t2:=sp.ti_hund+sp.ti_sec*100+sp.ti_min*6000+sp.t do

i_hour*360000; Display " Unableto open file.";

ibytes:=ftell(ip);

obytes:=ftell(op);

Close_File (op);

Close_File(ip);
crl:=((ibytes-obytes)/ibytes*100);
crate:=(obytes*8)/ibytes;
cr2:=((1-crate/2)*100);

Display " Input Size: "<<ibytes<<"bytes";
Display " output Size: "<<obytes<<"bytes";
Display " Total words matched from

LUT :"<<match;

Display " Compresstion ratio: "<<crl;

Display " Biological compressionratio : "<<cr2;
Display " Compresstion rate :"<<crate;

Display " Total Time taken : "<<(t2-t1)<<"

hundreths seconds";

end;

4.3.2 DLUT Decoding algorithm

Character: LUT[4],vbX20];

Procedure Decompress ()

do

struct time st,sp;

FILE *fp,*ip,*op;

Integer : i,p,q,r,order,rorder;

Integer : t1,t2;

Character :ch;

Display " Input3 LUT initializing Characters:

(a,t,c,g) " ;

Display " 1:";

LUT[0]=get_character();

Display " 2:";

LUT[1]=get_character();

Display " 3:";

LUT[2]=get_character();

if(LUT[0]!="a' && LUT[1]!="a' && LUT[2]!="a")

exit(1);
end;
Display " Enter name for outputfile:";
Get_User_Input vbx;
op=fopen(vbx,"w");
iflop==NULL)
do
Display " Unable to open outputfile.”;
exit(1);
end;
gettime(&st);
gettime(&sp);
gettime(&st);
Display (" Starttime

is : %d:%d:%d.%d" st.ti_hour,st.ti_min,st.ti_sec,st.ti_h
und);

do
ch=fgetc(ip);
if(ch==EOF)
break;
if(lisin(ch))
do
Put_Char_to_File(ch,op);
end;
else
do
rorder=Integer: (ch);
rorder=rorder-order;
if(rorder<0)
rorder*=-1;
p=rorder/16;
gq=(rorder-p*16)/4;
r=rorder-p*16-q*4;
Put_Char_to_File(LUT[p],0p);
Put_Char_to_File(LUT[q],op);
Put_Char_to_File(LUT[r],op);
end;
end;

LUT[3]="a"; Whil_e(ch!:EOF);
if(LUT[0]'="t' && LUT[1]!="t' && LUT[2]'="t) gettime(&sp);
LUT[3]="t"; Display (" Completed _ o . .
if(LUT[0]!="g' && LUT[1]'='g' && LUT[2]'="g") at : %d:%d:%d.%d",sp.ti_hour,sp.ti_min,sp.ti_sec,sp.ti
LUTB]="g"; _hund);

Copyright © 2013 MECS 1.J. Information Technology and Computer Science, 2013, 10, 39-61

A Compression & Encryption Algorithmon DNA 51
Sequences Using Dynamic Look up Table and Modified Huffman Techniques

tl=st.ti_hund+st.ti_sec*100+st.ti_min*6000+st.ti_h
our*360000;

t2=sp.ti_hund+sp.ti_sec*100+sp.ti_min*6000+sp.ti
_hour*360000;

Display " Total Time taken : "<<(t2-t1)<<"
hundreths seconds";

Close_File (op);

Close_File(ip);

end;

4.4 Huffman Algorithm:

This algorithm recursively find a weighted binary
tree with n given weights wq, ws,wy. (Here weights
mean frequency of n characters in text).

1. Arrange the weights in increasing weights.

2. Construct two leaf vertices with minimum weights,
say w; and w;in the given weight sequence and parent
vertex of weight w; + w;.

3. Rearrange remaining weights (excluding w; and w;
but including parent vertex of weight w; + w;) in
increasing order.

4. Repeat step 2 until no weight remains.

5. To find out Huffman code for each given weights
(i.e. frequency of characters) traversing tree from root
assign 0 when traverse left of each node & 1 when
traverse right of each node.

4.5 Proposed Algorithm for Scheme-I:

This algorithm recursively find a weighted binary
tree with n given weights wy, w;,wy. (Here weights
mean frequency of n characters in text). LEVEL is the
input where the tree is altered.

1. Arrange the weights in increasing weights.

2. Construct two leaf vertices with minimum weights,
say w; and w;in the given weight sequence and parent
vertex of weight w; + w;.

3. Rearrange remaining weights (excluding w; and w;
but including parent vertex of weight w; + w;) in
increasing order.

4. Repeat step 2 until no weight remains.

5. Find out left most nodes and right most nodes at
specified LEVEL and interchange their position with
respect to their parentnode.

6. To find out code for each given weights (i.e.
frequency of characters) traversing tree from root
assign 0 when traverse left of each node & 1 when
traverse right of each node.

Copyright © 2013 MECS

4.6 Proposed Algorithm for scheme-II:

This algorithm recursively find a weighted binary
tree with n given weights wq, ws,wy. (Here weights
mean frequency of n characters in text). LEVEL is the
input where the tree is altered.

1. Arrange the weights in increasing weights.

2. Construct two leaf vertices with minimum weights,
say w; and w;in the given weight sequence and parent
vertex of weight w; + w;.

3. Rearrange remaining weights (excluding w; and w;
but including parent vertex of weight w; + wj;) in
increasing order.

4. Repeat step 2 until no weight remains.

5. Find out two nodes at specified LEVEL by binary
digits and interchange their position with respect to
their parent node.

6. To find out code for each given weights (i.e.
frequency of characters) traversing tree from root
assign 0 when traverse left of each node & 1 when
traverse right of each node.

4.7 Algorithm for file mapping
e Stepl: frame_size=LENGTH(String_1);
e Step2: Repeatstep 3 to 5 while String_1isNULL.

e Step3: Index=MISMATCH-
INDEX(String_1,String_2).

e Step4: IF Index>Length(String_1)-1then goto step
6.

e Step5: IF Index=Length(String_1)-1
then String_1=NULL.

ELSE
String_1=SUBSTRING(String_1,(Index+1)).
String_2=SUBSTRING(String_2,(Index+1)).

e Step6: Error_no=Error_no+ 1.

e Step7: Percentage = ((Frame_size-
Error_no)/Frame_size)*100.

e Step8: Return Percentage.

V. Algorithm BEvaluation
5.1 Accuracy

As to the DNA sequence storage, accuracy must be
taken firstly in that even a single base mutation,
insertion, deletion or SNP would result in huge change
of phenotype as we see in the sicklemia. It is not
tolerable that any mistake exists either in compression
or in decompression. Although not yet proved

1.J. Information Technology and Computer Science, 2013, 10, 39-61

52 A Compression & Encryption Algorithmon DNA
Sequences Using Dynamic Look up Table and Modified Huffman Techniques

mathematically, it could be infer from DLUT that our
algorithm is accuracy, since every base arrangement
uniquely corresponds to an ASCII character.

5.2 Efficiency

You can see that the pre-coding algorithm can
compress original file from 3 characters into 1
character for any DNA segment and destination file
uses less ASCII character to represent successive DNA
bases than source file.

5.3 Time Hapsed

Today many compression algorithms are highly

desirable, but they require considerable time to execute.

As our algorithm is based on a DLUT rather than
sequence statistics, it can save the time of obtaining
statistic information of sequence, and more, after the
pre-coding routine, the character number is 1/3 of
source one. You can see the elapsed time of our
algorithm is in fraction of second.

5.4 Space Occupation

Our algorithm reads characters from source file and
writes them immediately into destination file. It costs

very small memory space to store only a few characters.

The space occupation is in constant level. In our
experiments, the OS has no swap partition. All
performance can be done in main memory which is
only 512 MB on our PC.

V1. Experimental Results

We tested DLUT on standard benchmark data used
in [17]. For testing purpose we use two types of data
sets. These standard sequences come froma variety of
sources and include the complete genomes of two
mitochondria: MPOMTCG, PANMTPACGA (also
called MIPACGA), two chloroplasts: CHNTXX and
CHMPXX (also called MPOCPCG); five sequences
from humans: HUMGHCSA, HUMHBB,
HUMHDABCD, HUMDYSTROP, HUMHPRTB; and
finally the complete genome from two viruses:
VACCG and HEHCMVCG (also called
HS5HCMVCG).

These tests are performed on a co mputer whose CPU
is Intel P-1VV 3.0 GHz core 2 duo(1024FSB), Intel 946
original mother board, IGB DDR2 Hynix, 160GB
SATA HDD Segate.

The definition of the compression ratio® is the same
as in [18-19]; i.e.,1— (|O)2] 1)), where |I] is number of
bases in the input DNA sequence and |O| is the length
(number of bits) of the output sequence, other

Copyright © 2013 MECS

compression ratio? which is defined as 1- (JOJ|I]),
where [I| is the length(number of byte) number of bases
in the input DNA sequence and |O] is the length
(number of byte) of the output sequence. The
compression rate, which is defined as (|OJ/| 1]), where
[I] is number of bases in the input DNA sequence and
[O] is the length (number of bits) of the output sequence.
The improvement[9] over gzip-9, which is defined as
(Ratio_of gzip-9 — Ratio_of LUT-3)/Ratio_of _gzip-9
*100 or Improvement =((Ratio_of HUFFLUT-
Ratio_of DLUT)/ Ratio_of HUFFLUT).The
compression ratio and compression rate are presented
in Table-10 & Table-11. Our result compared with
gzip-9[20] in the same table.

Compression ratio and Compression rate and speed
for the DNA sequences shown in Table | to Table-IV.
From top to bottom, each row displays the result for an
algorithm showing average compression and
decompression speed in seconds per input byte
(average computed over five runs for each
sequence).“encode” means compression While
“decode” mean decompression. Each operation is
evaluated in two units, CPU clock and second.

Using Scheme-I

Table 14: Encryption using following levels

File size I\zAr/:(:l}%z:\eC?/ level }/:leecigre]:]ecg/
(byte) forf!“pUt output file
ile
2 20
7550 162 3 20
4 19
2 26
11358 183 3 25
4 25
2 59
26655 434 3 59
4 58
2 124
59890 778 3 124
4 123

We measure weighted frequency for different input
and output text shown in table-14. We can conclude
that weighted frequency of an input text and encrypted
text are maintaining approx 8:1 ratio. That mean in
case of input text and output text, number of characters
having same frequency maintains the ratio nearly 8:1.
So the chance of frequency analysis attack is reduced.

1.J. Information Technology and Computer Science, 2013, 10, 39-61

53

A Compression & Encryption Algorithmon DNA
Sequences Using Dynamic Look up Table and Modified Huffman Techniques

Table 10: Compression Ratio & Rate are shown in the Table for first data set

apoaq 00T> 00T> 00T> 00T> 00T> 00T> 00T> 00T> 00T> 00T> 00T>
(puodas
u1)paads abelany
apoou3 00T> 00T> 00T> 001> 00T> 00T> 00T> 00T> 00T> 00T> 001>
< juswanosdw| 960.€0
=z
[a}
= 6-d1z6 yum aredwoo G0929'F
e
< | (eseqssnq)sres uoissaiduwios 29T02€ 9976T'€ 0/S6T°E G6002°€ v29TZ'E 25002°€ 8907°€ TTL6TE 0TY6TE gesoze | z8Toze | sovsoE
onel uorssaidwiod £ET80009- | £0£e96S- | erssres- | 6SLv009- 60218°09- 6192009- | 8vere09- | sssg6s- | 0ss0s6s- | Ts9eTog- | SETEO09
a1Aq 8215 3|14 30npay 9vTOY vl 5229 vzrey ££192 87562 96562 p6YST £5922 6819. 6116
apodaq 00T> €0 00T> 20 00T> 00T> 00T> 00T> 00T> 00T> 00T>
(puo2as ul)paads
abelony
apoou3 00T> 50 00T> 50 00T> 00T> 00T> 00T> 00T> 00T> 00T>
(sseqy sua) 259962 LTvETE 0550 966062 68502°€ 80060°€ 18852°€ 895E0'E TLv0TE £65967 | Tovoze | sovsoe
sousnbasg | @rel uorssalduiod
wewa|dwo)
ssianey _ T60E209
oneruoissaidwod | szozesy- | eserros- | sczsres- | ersevsy- 51762°09- 82v0svs- | 99g6929- | 62ve9Ts- | ossezss- | 889678Y- «
(aseq/ suq) ;
< Lo | e uorsoiduos | 989967 LeveTs 0850° 96606' 68502°€ 0£060°€ VIpSTE 60vE0'E 1L00T'E £6596'7 | Tovoze | TIvSOE
S|JuUannas -
M Wwewa|dwo) .
E] oneruoissaidwod | szeTesy- | eseTros- | sizsrzs- | zvssvsy- S1762°09- yISTSPS- | SzloLrze- | e6v0LTS- | o9ssezss- | ssoezey- | LOUECO9
8
(sse0/ S1a) 61162 A TAR SEPLOE £1506'C 60202°€ 9r5L0'€ 51807°€ 2250 81860°€ 095967 | 6zveTE | vIvLOE
?el Co_mww‘_QEOu
saouanbag
3519N9Y]
oner uoisseidwod | T8g6S'Sy- | 6T990°9s- | T8LTLES- | 8898ZSH- 16v5€°09- TTeLres | Tosewoo- | veziozs | oveesvs | etToszey- | LVHL6S
(sse0/ S14) 61162 A TAR SEPLOE £1506'C 890Z°€ v25.0°€ 61807°€ v81S0'E 81860°€ 095967 | 9eveTe | lovioe
?el Co_mmm‘_QEOU
saouanbag
[ewIoN
onel uoissaidwod | T886S'SY- | 6T990°9S- | T8.TL€S- | 8898z SH- 88Z7€09- 1229285 | 19.8v09- | ozzeszs- | ovesevs- | etoszey- | IBWL6S
a1kq 8215 8114 ¥T£00T 809981 p8ssT v20TZT G6v99 80SEL $9885 01188 18195 LELT6T bSE622
Ired aseg ¥TE00T 809981 ¥v8SST A S6v99 80sEL 79885 01188 18195 LeLT6T | vsesze
ao doy g 90A
aouanbag VOOVALN | OOLNOAN | XXINHO | XXdWHO | VSOHOWNH | sgHwnH | oo 99 1 908 1 8 | ooowva | S5, | ebeseny

1.J. Information Technology and Computer Science, 2013, 10, 39-61

Copyright © 2013 MECS

A Compression & Encryption Algorithmon DNA
Sequences Using Dynamic Look up Table and Modified Huffman Techniques

54

Table 11: Compression Ratio & Rate are shown in the Table for second data set

8podad 00T> 00T> 007> 00T> 007> 00T> 00T> 001>
(puoaas ur)paads abelany
8apoau3 007> 007> 007> 007> 001> 00T> 001> 001>
ANn Juswanodw| 8G60€°0
[a)
.ﬂm 6-dizb yum aredwod S09¢9'Y
=
< (eseqy suq)aies uoissasdwod G6699T°€ 9S8V T'€ ¢enoc’e GGE90C'E 9/¢10¢°¢ €08T0C'¢ 9€ceC’e CTLEBT'E
oneJ uoissaldwo) €.6v€°8G- 8.C¢¥'LG- | L6STO'09- GLLTE09- L1.€90°09- ¥15.0°09- 12,7909 8G589°6G-
81Aq 8z1s 8|1) 83NpaY 6T8¢€ 0L€¢ 900¥ 6TTC 685€¢C 6.80¢ LLEY 0clLL
(puodss ur)pasds 3podsg 00T> 00T> 00T> 00T> 00T> 00T> 00T> 00T>
abelony
|apoau3 00T> 00T> 007> 00T> 00T> 00T> 00T> 001>
aouanbas 1 | (8seq/ suq)ares uoisseadwod| z9/£0°€ 99¢60°¢ 6ET6CE 2809¢°E 978.6°C LT2€T’E 88T9C’¢ 0T6ET'E €€69.°¢C
uswiajdwo)d
9SI9NSY onel uoissaldwo) 0VT88°'TS- TOEE9 VG- 09695°19- ¢v1v0€9- L€806°81- 6¥7809°'19- ¥Zv60°€9- T12556'9G-
<
w s80UBNbas 1 (eseq/ suq)eres uoisseidwod | 29/£0°€ 99¢60°¢ 6ET6C°E G8€9C’E €v8.6°C YANAXARS 88T9C'¢ €66ET'E ¥2eotT’e
Pw uswia dwo)d
= oneJ uoissaidwod 0¥188°'TG- TOEEQ VG- 09695'19- €LC6T°E9- G6TC6'8Y- 67809°'T9- ¥¢v60°€9- 85966°9G-
o
saouanbasg (eseqy snq)eres uoisseadwod| TT900°E 8g€c0’e c9geTe 908S0°¢ €6710°¢ 12692°¢ ¥6€6T'E Tevetre 9¥S0T'E
ESENEN
oneJ uoissaidwod 6.G0€°0G- TO6LT' TG- VE€T8T'9G- 7€€06°'¢S- G89Y¢'¢S- G8E9Y'E9- ¢CL69°6G- 9G0T¢ 9G-
seouanbag (eseq/ snq)eres uoissesdwod| TT900°€ €29¢0°¢ z9geTe G0SS0°E 0¢sv0’€ 1689¢°¢ 917¢6T'€ 8EeeT’€e Z180T°€
ewio
! N oneJ uoissaidwod 6.50€°0G- 98TTE TG~ VE€T8T'9G- ¢0¢SL' ¢S ¢v09¢°¢S- ¢S8Y1'E9- LE€E€CI°6G- 0¢691°9G-
81Aq 8z1S 814 LY96 ¢¢09 77007 18¢S 676859 €L7¢S €€80T 8EEBT
Jied sseg L¥96 2209 #1007 182S 617685 €LT12eS €€80T 8EE6T
aouanbas sBsyere cZeTiome Jeupiie reup.iie ZT3/.0M199 uabpdobsy Bfedzww 2TShIXIX abelony

Using modified Huffman algorithm Scheme-l and Scheme-Il, theresult are shown in below Table-12 &13

1.J. Information Technology and Computer Science, 2013, 10, 39-61

Copyright © 2013 MECS

http://www.cs.tut.fi/~tabus/genml/sequences/atatsgs
http://www.cs.tut.fi/~tabus/genml/sequences/atatsgs
http://www.cs.tut.fi/~tabus/genml/sequences/atef1a23
http://www.cs.tut.fi/~tabus/genml/sequences/atef1a23
http://www.cs.tut.fi/~tabus/genml/sequences/atrdnaf
http://www.cs.tut.fi/~tabus/genml/sequences/atrdnaf
http://www.cs.tut.fi/~tabus/genml/sequences/atrdnai
http://www.cs.tut.fi/~tabus/genml/sequences/atrdnai
http://www.cs.tut.fi/~tabus/genml/sequences/celk07e12
http://www.cs.tut.fi/~tabus/genml/sequences/celk07e12
http://www.cs.tut.fi/~tabus/genml/sequences/hsg6pdgen
http://www.cs.tut.fi/~tabus/genml/sequences/hsg6pdgen
http://www.cs.tut.fi/~tabus/genml/sequences/mmzp3g
http://www.cs.tut.fi/~tabus/genml/sequences/mmzp3g
http://www.cs.tut.fi/~tabus/genml/sequences/xlxfg512
http://www.cs.tut.fi/~tabus/genml/sequences/xlxfg512

55

A Compression & Encryption Algorithmon DNA
Sequences Using Dynamic Look up Table and Modified Huffman Techniques

Table 12: Comparison Compression Ratio & Rate are shown in the Table for first data set

(%)44NH Jano uswanoidwi L0VSTY 0
(%) LN 4910 JuswdA0Idw] G6TCSS0-
(puooos 9p0od%ea 6120 ¥8€°0 62€0 6120 60T°0 60T°0 60T°0 6070 ¥50°0 6EVO’ ¥6%°0
ur)psads
dpoou3z 6070 ¥910° 60T°0 6070 ¥50°0 ¥50°0 ¥50°0 6070 ¥50°0 ¥9T0 6120
S
= JuswaAoidw| 888T.S0
o
W 6-d1z6 yym asedwod §S09¢29'%
=
2
o (eseqy smq)ates uotssardwod| 0080T6'T L8¥500C 995200¢C 8CV6.8'T 18¥¥00°C 8.6886'T 075820°¢C L29¥86'T €8¢800¢C ¥085S6'T CETITO0C 997086'T
.w
o13es uolssaidwo)d 66577700 €¥2200°0- €82700°0- §82090°0 0%2200°0- 0TSS00°0 042¥T0°0- 9892000 T¥T¥00°0- 1602200 9908000~
a1Aq azis 3|14 20npay 096€¢ 0829% T1106€ [4534°14 T9997T 9¢es8t 926¥T 8796 eveyt §/89% T08.S
(puogss 9p0od%a 6070 ¥8€°0 62€0 ¥.2°0 970 970 60T°0 6070 60T°0 ¥8€0 ¥6%°0
unpaads _ : _
8poouz 60T0 ¥.2°0 61C0 970 ¥50°0 60T°0 ¥50°0 ¥50°0 ¥50°0 61C0 62€0
W juswianoidw 607050
<
i
W 6-diz6 yum aredwo)d S09¢9'v
I
(=2
= |(eseqy syq)etes uotssardwod| 9€LEVE'T Z¥0000¢C 150000¢C ¥2L0€6'T 0ST000C 60T000C GET000C 60£000C 9¥2000°¢C €.0000C 2500002 €69886'T
>
o13e1 uoISs3IdWOD T€T820°0 S0-3vyTC- G0-3.95°2- | 9L.€9V€0°0 G0-3615L- G0-395¥°G- §0-3561°9- 87570000~ ¥€21000°0- S0-3T59°€- G0-3919°¢C-
81Aq az1s 8|14 2onpay €LEVC €599Y 2968¢ 80¢6¢ G299T 8¢€8T LTL9T 7696 98T¥T 9€6.LY 0v€LS
(pucoss 8p0d%eQ 00T> €0 00T> 0 00T> 00T> 00T> 007> 00T> 007> 007>
99d
uppoads apoouz 001> S0 00T> S0 00T> 00T> 00T> 00T> 001> 00T> 001>
W Juswanosdwi 8YSEE0
=
w 6-d1z6 yym asedwod §S09¢9'v
2
.w (oseqy s1q)aes uoissardwod L6TT6C 431433 GEVL0E €1506C §890¢C°€ ¥2S.0°€ §/802°€ ¥8TS0'€ 8.860°€ 09596'C 9EY6T'E L0YL0°€
o13e1 uoISsaIdwOD 18865 G- 6799096~ 18LTL€S- 88982 G- 882¥€09- 12292°€S- T9LEV'09- 02265'2S- 976€6' 7S~ 6108¢C 8- 9T8TL'6G-
81Aq 8z1s 8|1y 3ONpPaY y159¢€ 808¢CL 06865 856EY §599¢ 08182 0T9€T 06.¥T L16TC L10TL 08516
a1hgazis ali4 ¥7€007 809987 ¥¥8GST 20127 S6¥99 80€€L 79885 0,28¢ L€199 LELTET ¥5€62C
Jred aseg ¥T€00T 809987 ¥¥89ST ¥20T2T S6¥99 80€€L 79885 0,28¢ L€199 LELTET ¥5€62C
aouanbag VOOVdLIN 9O LWNOdN XXLNHO XXdWHD VSOHONNH | 99HANH aosgvaHnNH mM%M%I g14dHNNH 9IOVA OOAWOHIH abelany

1.J. Information Technology and Computer Science, 2013, 10, 39-61

Copyright © 2013 MECS

A Compression & Encryption Algorithmon DNA
Sequences Using Dynamic Look up Table and Modified Huffman Techniques

56

Table 13: Table shown the comparative result for second data set

44NH J8A0 uswanoidw| 692008°G-
1N J8A0 1uswanoldw| ¢€9¢859°0-
(Puo2es ur) 3p0Jsd ¥50'0 00T> 00T> 00T> 60T°0 60T°0 00T> ¥S0°0
= poads spodu3g ¥50°0 00T> 00T> 00T> ¥50'0 7500 7500 001>
M Juswanoidw] 689990
W 6-di1z6 yum atedwod §0929'Y
W (sseq/ suq)ayes uoissaidwo)d L02996'T TT0L6'T ¥STEE0'C 160702 7.7G86°T 6¥7S10°C 805€00'¢ 989%10°¢C L06666'T
.,w oneJ uoissaidwo) 9689T0°0 Sy6vT00 LLS9T0°0- G81500°0- €Tv.,00°0 ¥¢L.00°0- ¥S.700°0- €v€L00°0-
a1Aq azIs |1y 8aNpay TLEC €811 1414 6¢ET 8¢9rT YYIET €TLC 0.8v
(Puodas ur) 3p0dsd 00T> 001> 7500 7500 60T°0 60T°0 7500 ¥S0°0
peads apoou3 750°0 001> 001> 001> 750°0 60T°0 001> ¥50°0
ﬂmW JusWwaAoIdw| S€¥L95°0
W 6-dizb yum aredwo)d S09¢9'Y
W (eseq/ suq)ares uoissaidwod LEO0TO0'C €66T00°¢C 86TT00°¢C T168T00°¢C LE2000°¢ 89¢000°¢ ¢6¢100°¢ 129000°¢ 190T00°¢
B ones uoissaldwod 815000°0- 966000°0- 665000°0- 9760000~ 6110000~ ¥€1000°0- 91790000~ T€000°0-
a1Aq azIs 3|1y 3ONpay €1ve L0ST §0S¢ €ceT 6ELVT SY0ET 0T.¢ 9€8Y
(Pu02as ur) 3p0Ja3d 00T> 00T> 00T> 00T> 00T> 00T> 00T> 00T>
peads 8poou3 001> 001> 001> 001> 001> 001> 001> 001>
mv juswanoidw] 1182€°0
M 6-d1zb yum aredwod S0929'v
.,nms (sseqy snq)ares uoissardwod TT900°€ €2920°'¢ 29gCT'e §0S50°€ 0¢sv0'e 16892°€ 9¥26T'€ 8€eCT'e ¢150T°€
oneJ uoissaidwon 6.50€°05- 98TTE TG~ YE€T8T'9G- ¢0¢S.L'2s- Zv092°'2S- ¢S8vy'€9- LEETI'6G- 0269196~
a1Aq azis 9|1y 30npay G2o¢ 8.¢¢ 0T6¢€ 6T0¢C 6EVCC 6TETC 145474 0842
a1Aq 8z1S 9|14 L796 ¢¢09 ¥T00T L8¢S 67685 €L1¢2S €€80T 8EE6T
Jied sseg L¥96 ¢¢09 ¥T00T L8¢S 67689 €.1¢S €€80T 8EE6T
aouanbas sBsyeie czeTlale Jeupie leup.ie Z219.0M192 uabpdobsy Bedzww 2150)x1x abelany

1.J. Information Technology and Computer Science, 2013, 10, 39-61

Copyright © 2013 MECS

http://www.cs.tut.fi/~tabus/genml/sequences/atatsgs
http://www.cs.tut.fi/~tabus/genml/sequences/atatsgs
http://www.cs.tut.fi/~tabus/genml/sequences/atef1a23
http://www.cs.tut.fi/~tabus/genml/sequences/atef1a23
http://www.cs.tut.fi/~tabus/genml/sequences/atrdnaf
http://www.cs.tut.fi/~tabus/genml/sequences/atrdnaf
http://www.cs.tut.fi/~tabus/genml/sequences/atrdnai
http://www.cs.tut.fi/~tabus/genml/sequences/atrdnai
http://www.cs.tut.fi/~tabus/genml/sequences/celk07e12
http://www.cs.tut.fi/~tabus/genml/sequences/celk07e12
http://www.cs.tut.fi/~tabus/genml/sequences/hsg6pdgen
http://www.cs.tut.fi/~tabus/genml/sequences/mmzp3g
http://www.cs.tut.fi/~tabus/genml/sequences/mmzp3g
http://www.cs.tut.fi/~tabus/genml/sequences/xlxfg512
http://www.cs.tut.fi/~tabus/genml/sequences/xlxfg512

A Compression & Encryption Algorithmon DNA

57

Sequences Using Dynamic Look up Table and Modified Huffman Techniques

Table 15: Percentage of encryption

Input file Compress Swapping Lavenstein % effect on % of
size (byte) (%) at Level Dist. actual text encryption
1 64471 94.58 100
2 64278 93.893 60.3
71077 58
3 64178 93.685 51.85
4 63985 93.049 44.32
1 45365 94.22 100
2 45123 93.717 58.17
43958 60
3 44930 93.52 52.93
4 44838 92.78 47.67
1 28499 93.897 100
2 28432 93.7 62.44
36514 61
3 28350 93.329 51.33
4 28087 92.251 44.48
1 16266 93.85 100
2 16242 93.62 61.14
14790 62
3 16238 92.8 55.67
4 16204 91.9 48.95
1 8582 93.65 100
2 8508 93.525 58.33
7550 67
3 8482 92.588 50.02
4 8462 91.48 44.16

From the above table-4 we can conclude with the
ratio of encryption of about 45% to 60%, we could
achieve the ratio of damage to the file of nearly 94% in
some cases.

We also observe that if we change at the top level (1)
then Lavenstein Distance is at highest point & % of
damage is highest. When we change at lower level
Lavenstein Distance is decrease & % of damage also
decrease. According to above results we draw two
graphs for five different real text cases; one is

e

B
m
'

Yomuoilifiestim fronthe actabied
i

effectiveness on the output text by different input file
size at different level (Graph-1) and other is
effectiveness on the output text file by increasing
encryption. From fig. a, we observe if the file size is
decreased then %of modification from the actual text is
decreased and from Graph-II; if %of encryption is
increased then %of modification from the actual text is
also increased.

Effectiveness on the outputtext by different input
size at different level.

—— mwap pimz atlevell =— zwapping at leveld

mwrap pimg atleveld

kb A0kb kb 1Bkb

file size

0 kb

Fig. 12: (% modification for the actual text vs. file size)

Copyright © 2013 MECS

1.J. Information Technology and Computer Science, 2013, 10, 39-61

58

A Compression & Encryption Algorithmon DNA

Sequences Using Dynamic Look up Table and Modified Huffman Techniques

Effectiveness on the output text file by increasing %
ofencryption

-

™ 945 4

=

5 S 4

E 035

-

L-| o3 4

E) —— fila 1{T0KY)
£ 925 o fila X405
- - fila 33 240
E‘ 915 4

g 9 :)

Z 0 0 100 150

=

% of encryp tion

Fig. 13: (% modification fromthe originalfile vs. % of encryption)

Using Scheme-II

From the table 16 we observe that if we apply
swapping at lower level then percentage of encryption
is also reduced but original text will affect minimum
85%. This also provides higher security if we consider
two binary values as a key and encryptthem.

According to above results we draw graph for three
different real text cases. From Graph-Ill; if %of
encryption is increased then %of modification from the
actual text is also increased.

Table 16: Effect using level charge

Specification of two nodes
Input file . m 7 Lavenstein % of % effect on
size (byte) ComfIEEs () e 27 ge: Dist. encryption | actual text
Level | Binary value | Level | Binary value
3 110 4 0100 64182 51 92.13
6 111111 4 0010 60985 47.19 89.049
71077 58
4 0101 5 11111 63116 49.3 90.6
5 00001 6 111111 61089 46.5 87.69
5 10100 4 0001 41545 49.8 90.15
A39Es 60 2 11 3 000 44838 53.13 93.125
3 001 4 1110 44797 51.06 91.98
2 00 2 10 45790 54.68 94.02
4 1000 3 101 27997 51 93.65
5 00101 3 101 28087 47.98 91.051
36514 61
2 01 2 10 29502 53.39 94.65
4 0000 4 1111 28511 49.35 91.47
Table 18:
C¥acivanses on ths GUEpAE DA e By Incracaing s ryptan
H . Base pair
] . A
-: gi . Sequence /Eile size GZIP BZIP2
i a3 A MTPACGA 100314 2.2919 2.12
N 2z — =
i a1 - MPOMT CG 186609 2.3288 2.17
’ :; ez CHNT XX 155844 2.3345 2.18
- a3 CHMPXX 121024 2.2818 2.12
a7 T T T 1 HUMGHCSA 66495 2.0648 1.31
13 50 55 63
HUMHBB 73308 2.2450
% of encryption HUMHDABCD 58864 | 2.2380 | 2.07
Fig. 14: (% modification from the original file vs. % of encryption) HUMDYST ROP 38770 2.3618 2.18
HUMHPRTB 56737 2.2662 2.09
Table 17: VACCG 191737 2.2518 2.09
Sequence Base pair/File size GZIP BZIP2 HEHCMVCG 229354 2.3275 2.17
atatsgs 9647 2.1702 2.15
atefla23 6022 2.0379 | 215 The results from Table 12 & 13 show our algorithms
atrdnaf 10014 2.2784 | 2.15 to be the best solution for client side decryption -
atrdnai 5287 1.8846 | 1.96 decompression with the shortest and linearly increasing
celk07e12 58949 decompression time. However, our algorithm doesn’t
hsg6pdgen 52173 22444 | 207 compress sequences as much as others for many of the
mmzp3g 10833 23225 | 213 cases in 'Fhe compression rano_ table_l? & 18 but it
XIxfg512 19338 18310 | 180 prow_de high information security. This is because our
algorithm uses less than 2 bits to represent one
Average .
nucleotide

Copyright © 2013 MECS

1.J. Information Technology and Computer Science, 2013, 10, 39-61

http://www.cs.tut.fi/~tabus/genml/sequences/atatsgs
http://www.cs.tut.fi/~tabus/genml/sequences/atef1a23
http://www.cs.tut.fi/~tabus/genml/sequences/atrdnaf
http://www.cs.tut.fi/~tabus/genml/sequences/atrdnai
http://www.cs.tut.fi/~tabus/genml/sequences/celk07e12
http://www.cs.tut.fi/~tabus/genml/sequences/hsg6pdgen
http://www.cs.tut.fi/~tabus/genml/sequences/mmzp3g
http://www.cs.tut.fi/~tabus/genml/sequences/xlxfg512

A Compression & Encryption Algorithmon DNA 59
Sequences Using Dynamic Look up Table and Modified Huffman Techniques

In order to compare the overall performance, we
conducted further studies involving sending actual
sequence files of varying sizes (without compression)
to measure the calculated time (T.) needed for the
transmission from the source to the destination. Then
we compressed those files using both compression &
encryption algorithms. The total time T, defined as the
sum of the encryption compressed file transmission
time (Tec) plus the client side decompression time (Tq),
is measured by both these methods.

VII. Result Discussion

We can feel the time of program running since they
are in second level. Some ones even cost minutes or
hours of time to run. But our algorithm runs almost 10°
times faster. Our algorithm performances is better than
it in both compression ratio and elapsed time. Our
algorithm is very useful in database storing. We can
keep sequences as records in database instead of
maintaining them as files. By just using the pre-coding
routine, users can obtain original sequences in a time
that can’t be felt. Additionally, our algorithm can be
easily implemented while some of them will take you
more time to program.

From these experiments, we conclude that pre
coding matching patter are same in all type of sources
and pre coding Look up Table plays a key role in
finding similarities or regularities in DNA sequences.
Straight line graph declared that compression rate are
same in all type of sources. Output file contain ASCII
character with unmatched a,u,g and ¢ so, it can provide
information security which is very important for data
protection over transmission point of view. Also, at the
time of encoding require authenticate input base pair
(froma,t,g and c¢) and ASCII character starting position
for derivate LUT table, produce original sequence
which is encode by this techniques. These techniques
provide the high security to protect nucleotide
sequence in a particular source. Not necessary to derive
all combinational result because this method created
24 X2 =48 different types of LUT but total sub-string
are same in all cases but their position is different only.

Here we can get better security than static LUT. In
static LUT encode/decode does not depends on LUT
sub-tring input value from a,t,g and c, but dynamic
LUT must depends on LUT sub-string input value from
at,g and c. In that situation authentication is very
important.

Encoding time “Sub-sequence size-1” base segment
are remaining, (if at the end of file segment are not
match exactly with pre-coded table)We cannot find any
arrangement in table-l or table-ll. In these
circumstances, we just write the original segment into
destination file. To increase the probability of
compaction we match the sequence in other orientation
such as reverse , complement and reverse complement
the input file. But experimental result showing no

Copyright © 2013 MECS

meaningful changes are found using other orientation
taking as input.

The ratio of decompression time to original
transmission time of the uncompressed sequence file
(Tqq / T¢), reduces with increasing file size. This means
our client side decryption decompression technique
with our algorithm is a better choice for larger
sequence files. Our client side decryption
decompression technique can be implemented by a
genome search agent and decryption decompression
time can be estimated by two empirical equations
according to our experiments.

The graph of compression time versus sequence file
length is somewhat non-linear, because of the
complexity that arises when the sequence length is not
divisible by 4, which means that not all the bit pairs in
the last byte of the compressed file may represent valid
nucleotides. One solution to this problem is to add an
extra byte at the end of compressed file which is the
count (1-4) of the number of valid nucleotides in the
previous byte.

Our algorithm combines moderate encryption
compression with reduced decryption decompression
time to achieve the best performance for client side
sequence delivery compared with existing techniques.
Its linearity in decompression time and close linearity
in compression time make it an effective compression
tool for commercial usage. Given, for a particular
connection speed, the efficiency achieved using our
algorithm; this compression technique is recommended
for transmission of queried sequence files.

VIII. Conclusion

In this article, we discussed a new DNA
compression algorithm whose key idea is dynamic
LUT. This compression algorithm gives a good model
for compressing DNA sequences that reveals the true
characteristics of DNA sequences. The compression
results of dynamic LUT for DNA sequences also
indicate that our method is more effective than many
others. Dynamic LUT is able to detect more regularity
in DNA sequences, such as mutation and crossover,
and achieve the best compression results by using this
observation. Dynamic LUT fails to achieve higher
compression ratio than others standard method, but
dynamic LUT has provide very high information
security and high authentication user.

In this work we have performed computational
experiments to selectively encrypt the compressed text
of different sizes generated through static Huffman
encoding technique and compare the effectiveness in
terms of dissimilarity from the original file if one has
to decrypt without the key and the resistance of the
cipher text from the attacks based on statistical
property of the plain text. We have used two different
schemes; in scheme-l swapping of nodes is done at

1.J. Information Technology and Computer Science, 2013, 10, 39-61

60 A Compression & Encryption Algorithmon DNA
Sequences Using Dynamic Look up Table and Modified Huffman Techniques

specified level based on key and in scheme-ll
swapping is done between two specified nodes at
different levels. We have found from our experiments,
the effectiveness of the encryption system increases as
the level at which swapping is done, increases. We
have achieved in the both the scheme with 45% to 60%
encryption of original text, near about 90% to 93% of
damage in original file.

We have also measures the redundancy on the basis
of weighted frequency. We have observed weighted
frequency of an input text and encrypted text are nearly
8:1 ratio. That mean in case of input text and output
text, number of characters having same frequency
maintain the ratio approx 8:1. So the probability of
frequency analysis attack is low.

In our experiments of selective encryption of text, on
the basis of statistical property of words therein, we
have found that to get 90% effectness on actual text
then %of encryption should be more than 60, since
number of distinguishable words are huge and their
frequency is much less than number of frequency of
characters. This approach has a good scope as a
selective encryption scheme because of the fact that in
a text of any language the articles, verbs, and
prepositions have a higher frequency compared to the
other words relevant to the core content of the text.

The problem small key space has to be sorted out to
effectively apply this encryption systemin real world.

IX. Future Work

We are trying to do more, such as combining our
dynamic LUT pre-coding routine with other
compression algorithms, to revise our algorithm in
order to improve its performance. We are trying to
build a finite LUT which implements the mapping
relationship of our coding process.

Here in this work, we have taken into consideration
the statistical property of a character or a word while
doing compression. Instead, one can consider the
statistical property of any number characters or bits, the
number of bits may be provided by the user depending
on the application or may be chosen automatically on
the basis of entropy. In that case this encryption
technique may be extended to any type of media. The
effectiveness of selective encryption may be studied for
the otherstatistical compression algorithms available.

Acknowledgements

Above all, author is grateful to all our colleagues for
their valuable suggestion, moral support, interest and
constructive criticism of this study.

Copyright © 2013 MECS

References

[1] M. Li and P. Vitayi, An Introduction to
Kolmogorov Complexity and Its Applications,
2nd ed. New York: Springer-Verlag, 1997.

[2] R. Curnow and T. Kirkwood, “Statistical analysis
of deoxyribonucleic acid sequence data-a review,”
J. Royal Statistical Soc., vol. 152, pp. 199-220,
1989.

[3] S. Grumbach and F. Tahi, “A new challenge for
compression algorithms: Genetic sequences,” J.
Inform. Process. Manage., vol. 30, no. 6, pp. 875-
866, 1994.

[4] E Rivals, O. Delgrange, J.P. Delahaye,
M.Dauchet, M.O. Delorme et al., “Detection of
significant patterns by compression algorithms:
the case of Approximate Tandem Repeats
inDNAsequences,” CABIOS, vol. 13, no. 2, pp.
131-136,1997.

[5] K. Lanctot, M. Li, and E.H. Yang, “Estimating
DNA sequence entropy,”in Proc. SODA 2000, to
be published.

[6] D. Loewenstern and P. Yianilos, “Significantly
lower entropy estimates for natural DNA
sequences,” J. Comput. Biol.,, to be published
(Preliminary version appeared in a DIMACS
workshop, 1996.)

[71 Two algorithms for constructing efficient
huffman-code based reversible variable length
Codes Chia-Wei Lin; Ja-Ling Wu; Yuh-Jue
Chuang

[8] Bentley J. L., Sleator D.D., Tarjan R.E., and Wei
V., "A locally adaptive data compression scheme",
Communications of the ACM, 29(4), 320-330,
1986.

[9] J. G. Cleary and I. H. Witten. Data compression
using adaptive coding and partial string matching.
IEEE Trans. Comm., COM-32(4):396-402, April
1984.

[10] C. E. Shannon, “A mathematical theory of
communication,” The Bell System Technical
Journal, vol. 27, 1948.

[11] D. A. Huffman, “A method for the construction of
minimum-redundancy codes,“Proc. IRE, vol. 40,
pp. 1098-1101,1952.

[12] On the competitive optimality of Huffman codes
by Thomas. M. Cover.

[13] Guaranteed Synchronization of Huffman Codes
with Known Position of Decoder Marek Tomasz
Biskup, Wojciech Plandowski,

[14] C. E. Shannon, “Communication theory of
secrecy systems,” Bell Systems Technical Journal,
v. 28, October 1949, pp. 656-715.

1.J. Information Technology and Computer Science, 2013, 10, 39-61

A Compression & Encryption Algorithmon DNA 61
Sequences Using Dynamic Look up Table and Modified Huffman Techniques

[15] Chen, L., Lu, S. and Ram J. 2004. “Compressed
Pattern Matching in DNA Sequences”.
Proceedings of the 2004 IEEE Computational
Systems Bioinformatics Conference (CSB 2004)

[16] Toshiko Matsumoto, Kunihiko Sadakane and
Hiroshi Imai. “ Biological Sequence Compression
Algorithms”, Genome Informatics 11 : 43-52
(2000)

[17] S. Grumbach and F. Tahi, “A new challenge for
compression algorithms: Genetic sequences,” J.
Inform. Process. Manage., vol. 30, no. 6, pp. 875-
866, 1994.

[18] Xin Chen, San Kwong and Mine Li, “A
Compression Algorithm for DNA Sequences
Using Approximate Matching for Better
Compression Ratio to Reveal the True
Characteristics of DNA”, IEEE Engineering in

Medicine and Biology,pp 61-66,July/August 2001.

[19] Adam Drozdek “ Elements of Data Compression”,
Vikas Publishing House (2002)

[20] T. Matsumoto,K.Sadakame and H.

Imani, ”Biological sequence compression
algorithm”, Genome Informatics 11:43-52 (2000).
[21] ASCII code. [Online]. Available:

http://www.asciitable.com

[22] National Center for Biotechnology Information,
http://mww.ncbi.nlm.nih.gov

Author’s Profiles

Syed Mahamud Hossein is
perusing Ph.D for Computer
Science in Vidyasagar University.
He had received his post graduate
degree in Computer Applications
from Swami Ramanand Teerth
) I Marathawada University, Nanded

& and Master of Engineering in
Information Technology from West Bengal University
of Technology, Kolkata. He has worked as the Senior
Lecturer in Haldia Institute of Technology, Haldia,
Lecturer on contract basis in Panskura Banamali
College, Panskura and Lecturer in Iswar Chandra
Vidyasagar Polytechnic, Govt. of West Bengal,
Jgargram. Presently he is working as a District Officer,
Regional Office, Kolaghat, Directorate of Vocational
Educational & Training, West Bengal since 2010. His
research interests includes Bioinformatics,
Compression Techniques & Cryptography, Design and
Analysis of Algorithms & Development of Software
Tools. He is a member of professional societies like
Computer Society of India & Indian Science Congress
Association.

{

Copyright © 2013 MECS

How to cite this paper: Syed Mahamud Hossein, S.Roy,"A
Compression & Encryption Algorithm on DNA Sequences
Using Dynamic Look up Table and Modified Huffman
Techniques”, International Journal of Information
Technology and Computer Science(1JITCS), vol.5, no.10,
pp.39-61,2013. DOI: 10.5815/ijitcs.2013.10.05

1.J. Information Technology and Computer Science, 2013, 10, 39-61

http://www.asciitable.com/
http://www.ncbi.nlm.nih.gov/

