
I.J. Information Technology and Computer Science, 2013, 10, 78-84
Published Online September 2013 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2013.10.08

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 10, 78-84

A Modified Parallel Heuristic Graph Matching

Approach for Solving Task Assignment Problem

in Distributed Processor System

R Mohan

Department of Computer Science and Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu, India

E-mail: rmohan@nitt.edu

N P Gopalan

Department of Computer Applications, National Institute of Technology, Tiruchirappalli, Tamil Nadu, India

E-mail: npgopalan@nitt.edu

Abstract— Task assignment is one of the most

fundamental combinatorial optimization problems.

Solving the Task Assignment Problem is very important

for many real time and computational scenarios where a

lot of small tasks need to be solved by multiple

processors simultaneously. In this paper a Heuristic and

Parallel Algorithm for Task Assignment Problem is

proposed. Results obtained for certain cases are

presented and compared with the optimal solutions

obtained by already available algorithms. It is observed

that the proposed algorithm works much faster and

efficient than the existing algorithms .The paper also

demonstrates how the proposed algorithm could be

extended to multiple distributed processors.

Index Terms— Task Assignment Problem, Heuristic

Algorithm, Graph Matching Algorithm, Distributed

Systems

I. Introduction

The Task Assignment Problem plays an important

role in recent computational systems which involve

processing multiple tasks in a multiprocessor

environment. The Task Assignment Problem has been

proved to be a NP-Hard problem. Several Algorithms

and methodologies [1-5] have been proposed to solve

the Task Assignment Problem. Most Algorithms use

Graph Partitioning and Graph Matching Techniques.

Significant research has been carried out in solving the

Task Assignment Problem in a parallel environment.

This paper discusses the Shen Tsai‘s Algorithm [6]

on Task Assignment. Also, a detailed description about

the parallel algorithm suggested in the paper ―A parallel

Heuristic Graph Matching Method for Task

Assignment‖ [7], HGM Algorithm to solve the Task

Assignment Problem in a distributed environment is

given. The observations made in the above algorithms

were analyzed and scope for improvisations has been

identified and a new ―Parallel Heuristic Graph

Matching Algorithm‖ is proposed to improvise the

current techniques. Further, this paper contains a

detailed analysis, both qualitative and quantitative,

about the algorithm that signifies how efficient the

proposed algorithm is, compared to the existing ones.

The proposed algorithm tries to solve the basic Task

Assignment Problem of ―mapping ‗k‘ distinct tasks to

‗p‘ different processors‖ using ‗n‘ processor distributed

system. An analysis on Shen Tsai‘s Algorithm for Task

Assignment [6] based on A* Algorithm [8] describes

how the sequence of assigning various tasks to the

processors in the solution tree formed in the algorithm

contributes to the total computation time of deciding the

most optimal assignment. Hence, the proposed

algorithm tries to identify the optimal sequence of

Tasks for assignment to the processors in the solution

tree so that the Total Computational Time is optimized.

Further, a qualitative analysis on [7] shows how the

HGM algorithm deals with the Task Assignment

Problem of ―mapping ‗k‘ distinct tasks to ‗p‘ different

processors‖ using ‗n‘ processor distributed system

where n > p only. But our proposed algorithm is

designed to work for all general Task Assignment

Problem [9] cases where n>p, n<p or n=p. This paper

proposes a new algorithm which identifies the optimal

sequence of tasks in a sequential manner and further

solves the task assignment problem in a distributed

environment irrespective of the number of processors in

the distributed environment.

In the RELATED WORK section a detailed

description about Shen Tsai‘s paper on Task

Assignment based on A* Algorithm and HGM

Algorithm of [7] is provided . In the further section a

PROBLEM STATEMENT is provided. Later, the

actual solution is proposed in the SOLUTION section

and the ANALYSIS section provides a detailed

qualitative and quantitative analysis on the proposed

algorithm and sufficient justification about the

efficiency of the proposed algorithm is provided in the

EXPERIMENTATION section in the form of

 A Modified Parallel Heuristic Graph Matching 79

Approach for Solving Task Assignment Problem in Distributed Processor System

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 10, 78-84

mathematical and statistical observations and facts.

Finally the CONCLUSION section describes about the

conclusions of our propositions and the further scope

for improvisations.

II. Related Work

2.1 Shen Tsai’s Paper on Task Assignment Based

on A* Algorithm

Consider the Task Assignment Problem of ―mapping

‗k‘ distinct tasks to ‗p‘ different processors‖. Let the

tasks and available processors be represented by

following Task and Processor sets T and P.

Task Set - T = {t1, t2, t3,…, tk}

Processor Set - P = {p1, p2, p3,…, pp}

According to Shen and Tsai, all tasks can be

represented in a single task graph. Each node in the task

graph corresponds to a particular task while an edge

between 2 tasks corresponds to the communication cost

between 2 tasks when processed on 2 different

processors [Fig 1]. Similarly all the processors can be

represented by a processor graph where the graph

represents various interconnections between processors

in the actual distributed system [Fig 1].

Fig. 1: Processor graph and task graph

Shen & Tsai propose that the task assignment of ‗T‘

to ‗P‘ is nothing but a homomorphic mapping of the

task graph onto the processor graph. So the objective is

to find an ideal homomorphic mapping between the task

graph and the processor graph such that the total

completion time of all the tasks is minimum and most

optimized.

Mathematical Formulation:

Let us consider any general mapping M, M: T to P,

where T and P correspond to the Task Set and Processor

Set respectively.

Let the completion time of a particular mapping M is

denoted by Time (M) function.

To calculate Time (M),

1) We need to calculate Time (M, Pk) ,the time of

completion for a processor Pk in a given mapping M,

for all Pk belongs to P. We need to calculate the time of

completion individually for each processor because in

any parallel environment the total time for completion

of all tasks is the maximum of the times taken by each

processor to solve all the tasks assigned to the processor.

Consider a mapping of Tasks 1, 2, 3, 4, 5 to be

mapped to processors p1, p2 as 1p1, 2p2, 3p1, 4p1, 5p2.

Then,

Time (M) = Maximum (Time (M, P1), Time (M, P2))

Now Time (M, Pk) is calculated as

1

, ,1(communication cost)
i

i k i

t t

T
 (1)

Such that ―ti and tl belongs to T‖, ―ti is allocated to Pk‖

and ―tl belongs to T and tl is not allocated to Pk‖.

Where Ti,k is the computation time for i
th

 task when

executed on k
th

 processor.

2) Time (M) = Maximum (Time (M, Pk)) for all Pk

belongs to P.

It follows that Time (M) is the maximum of all the

times taken by each of the processor.

An optimal mapping ‗M‘ corresponds to a mapping

where Time (M) is minimum [10].

Solution for Optimal Mapping ‘M’:

The solution is represented as a tree, called as the

solution tree built according to the following rule:

―Let {t1, t2, t3, …, tk} be a permutation of all tasks in

task set T. At any level i of the tree only task ti is

assigned to all processors. Each node in the solution

tree has (tasks, processors) as its attributes. So in

building the solution tree we start with a dummy root

node (level zero) and proceed with level 1 by assigning

Task t1 to all processors and get the initial nodes. From

here we calculate ‗f‘ value for each node in level1 and

expand the node with least ‗f‘ value.‖

After expanding a node, we then scan through the

entire tree for minimum ‗f‘ value and go expanding

about it. This is continued until we end up in a goal

state such that all tasks are assigned to a processor.‖

Calculation of ‗f‘ value is done in a heuristic fashion:

The value of f is calculated as

n n nf g h
 (2)

Where gn is the computation time involved for

reaching a particular node ‗n‘ from start node and hn is

the Heuristic approximate for present node to reach

final goal state.

Calculation of the heuristic part (h) of the ‗f‘ value is

an interesting topic of research and many techniques

have been proposed to find the heuristic. It is assumed

that the heuristic is obtained from one of the existing

algorithms [7].

80 A Modified Parallel Heuristic Graph Matching

Approach for Solving Task Assignment Problem in Distributed Processor System

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 10, 78-84

Observations:

The efficiency of Shen Tsai‘s Algorithm is

determined by the number of nodes generated in the

solution tree. Our analysis proves that the number of

nodes generated depends on the permutation of T i.e.

the sequence in which we assign the tasks to the

processors in the solution tree reflects the number of

nodes generated in the solution tree.

i.e., The Permutations

 T1= {t1, t2, t3,…, tn},

 T2= {tn, tn-1, tn-2,…, t1},

 ……

All of the above permutations generate a different

number of nodes in the solution tree thereby resulting in

different computational times to get the optimal

assignment.

“Hence, finding the optimal permutation, i.e. the

permutation which results in the most optimal solution

is an interesting point of research.”

2.2 HGM Algorithm for Task Assignment Proposed

in[7]:

This paper discuss about parallelizing the Shen Tsai‘s

Algorithm to solve the Task Assignment Problem [9] of

―mapping ‗k‘ distinct tasks to ‗p‘ different processors‖

in an n processor distributed system.

The algorithm works as follows:

Assumptions:

―The number of processors available in the

distributed system to solve the task assignment problem

is greater than or equal to the number of processors

involved in the task assignment problem.‖

Algorithm:

(i) Initially consider the Task Assignment Problem of

mapping ―k tasks to n different processors‖ to be solved

on an ‗n‘ processor distributed system.

(ii) Each processor in the Task Assignment Problem

is assigned to a single processor in the distributed

system. If processor A of the problem is assigned to

processor 1 in the distributed system, then Processor 1

can assign tasks only to Processor A.

(iii) The processors in the distributed system start

assigning tasks to the processors in the problem until a

fixed interval (3 or 4 tasks) after which the ‗f‘ value is

calculated for the assignment in each of the processor in

the distributed system.

(iv) All the processors in the distributed system

communicate and interchange the f values to decide the

optimal assignment. Once the optimal assignment is

decided all the processors proceed with assigning the

tasks about this optimal assignment.

(v) Steps (iii) and (iv) are repeated until all the tasks

are assigned and an optimal mapping is achieved.

The Algorithm is best explained by the following

example:

Consider ―2 processors and 5 tasks ―TASK

ASSIGNMENT problem. We a have 2 distributed

processors to solve this problem. Let us assign

processor A to processor 1 and processor B to processor

2. Hence processor 1 will only assign tasks to A

processor and processor 2 will assign tasks to B

processor. Now,

Fig. 2: First Cycle of Execution

So 1A 2A 3A is much better. Both the processors

start expanding about 1A 2A 3A.Now,

Fig. 3: Second Cycle of Execution

Hence the optimal assignment is 1A2A3A4B5B

Observations

We observe that the above parallel algorithm can be

extended to the following cases only:

 A Modified Parallel Heuristic Graph Matching 81

Approach for Solving Task Assignment Problem in Distributed Processor System

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 10, 78-84

(i) ―n tasks- p processors‖ Task Assignment Problem

and you have p processors to solve the Task

assignment problem

(Or)

(ii) ―n tasks- p processors‖ Task Assignment Problem

and you have greater than p distributed processors

to solve the task assignment problem

“Hence, finding the parallel algorithm which works

for solving all general Task Assignment Problems of

“mapping „k‟ distinct tasks to „p‟ different processors”

in n processor distributed system where n>p, n<p or

n=p is an interesting point of research.”

III. Problem Statement

To develop a modified parallel heuristic task

assignment algorithm which:

1. Identifies the ideal permutation of tasks that results in

the least computational time to find the most optimal

assignment, and

2. Extends the parallel HGM Algorithm to run for any

number of Generic Processors in the Distributed

System.

IV. Solution

4.1 Identify the Ideal Permutation:

Consider Tasks - T = {t1, t2, t3,…, tk}

Processors - P = {p1, p2, p3,…, pp}

It is needed to map ‗k‘ Tasks to ‗p‘ processors. Now

to obtain the solution tree, we should decide on the

optimal permutation,

1 2 3{ , , ,..., }kY Y Y Y
 (3)

Such that π is a permutation of T = {t1, t2, t3,…, tk}.

The sequence of the tasks is significant (as discussed)

because in the solution tree only the k
th

 task in

permutation is mapped to all processors in the k
th

 level

of the solution tree.

Now the various ways of choosing the permutation

are:

a) Based On Computation Time

We should choose a permutation,

1 2 3{ , , ,..., }kY Y Y Y

Such that,

Mean computation time (Yj) > Mean computation

time (Yj+1)

i.e.,

,1 ,2 , 1,1 1,2 1,j j j p j j j pT T T T T T

p p

 (4)

where, Tj,i refers to the cost of processing when Yj is

executed on Processor ‗I‘

b) Based On Communication Cost

We should choose a permutation,

1 2 3{ , , ,..., }kY Y Y Y

Such that

Total communication time (Yj) > Total

communication time (Yj+1)

i.e.,

[] [(1)]CC j CC j

Where CC [j] corresponds to the summation of all the

communication costs of Task Yj with all other tasks

which do not run in the same processor as that of Yj.

The 1
st
 way of choosing the permutation is useful if

the computation costs of tasks are more significant than

the inter task communication costs. While the 2
nd

 way is

better in cases where the inter task communication cost

is greater than the computation cost of tasks.

This paper proposes an alternate way which takes

care of all average cases where both computation cost

and communication cost are equally significant.

At this stage, a quantity referred to as ‗α‘ is defined

for each task which proves helpful in deciding the most

optimal permutation. α is defined for any particular task,

tj as

,1 ,{ } []
()

j j p

j

T T CC j
Y

p k

 (5)

Now a permutation of T is chosen,

1 2 3{ , , ,..., }nY Y Y Y
 ,such that

1() ()j jY Y
 (6)

Hence, the ideal permutation which gives an optimal

assignment in the most optimal time is found.

4.2 Modified HGM Algorithm:

Consider the Task Assignment Problem of ―mapping

‗k‘ distinct tasks to ‗p‘ different processors‖ in an n

processor distributed system [11].

82 A Modified Parallel Heuristic Graph Matching

Approach for Solving Task Assignment Problem in Distributed Processor System

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 10, 78-84

Algorithm

Step1: Distribute the ―p processors‖ of the problem

into ‗n‘ processors.

Step2: Any processor in the distributed system can

assign the tasks only to those which are assigned to it.

I.e. if processors A, B, C are assigned to Processor1

in the distributed system, Processor1 can assign tasks

only to A, B and C.

Step3: Now in each of the processor 1, 2, 3 . . .N of

the distributed system a solution tree is built

individually, containing only the assignments to the

processors which are assigned to this particular

processor up to 3 levels, break and find the best node

space from each solution tree based on the ‗f‘ value.

Step4: Each of the distributed processors

communicates to decide on the ideal state space and

start expanding about it.

Step5: Step3 and Step4 are repeated until all the tasks

are assigned to the processors and an optimal

assignment is obtained.

Example:

An example illustrates the above algorithm. Consider,

Task Set, T = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

Processor Set, P = {A, B, C, D, E, F}

Let p1, p2, p3 be the Processors in the distributed

System to solve the Task Assignment problem

Then, the following figure represents the state spaces

after 3 allocations based on above algorithm in the 3

processors of the distributed system,

Fig. 4: Execution of the Algorithm in all Processors

Say at the end of 3
rd

 level fp1, fp2 and fp3 correspond

to the ideal f values from Processors P1, P2 and P3

respectively, amongst which fp2 has the least ‗f‘ value.

Let us say fp2 corresponds to the node 1D2D3C in

P2‘s solution tree. Now, all 3 processors p1, p2, and p3

start expanding about 1D 2C 3D state space. This

process is repeated until a goal state where all the tasks

are assigned to processors is achieved.

V. Analysis

i) The efficiency of the first part of the algorithm to

find the most optimal task permutation is very much

obvious and evident. It is well supported by the

experimental data represented in the next section.

ii) The parallel part of the algorithm is very efficient

because:

c) In a general problem of k tasks- p processors Task

problem to be solved using ‗n‘ processors, the

proposed algorithm will work for all:

(i) p> n

(ii) p=n

(iii) p<n

(Though it is highly efficient in case of p>n.)

d) This algorithm uses Shen Tsai‘s algorithm to the

fullest by implementing it in finding intermediate

ideal state spaces in each of the distributed processors

unlike the HGM algorithm which uses a brute force

approach and simple heuristic based on A*

Algorithm to find intermediate ideal state spaces.

VI. Experimentation

A test case is represented in figure below. The figure

represents a task graph with vertices pointing to tasks

and the edges pointing to inter task communication cost

when processed on different processors.

Fig. 5: Task Graph – Test Case

In Figure 5, the number of nodes in the task graph is

6, which means that there are 6 tasks defined by T = {0,

1, 2, 3….5} which need to be mapped. The computation

time associated with these tasks is defined by the set TP

= {10.0, 15.0, 5.0, 20.0, 15.0 and 10.0}. The inter task

communication is defined by the matrix C.

 A Modified Parallel Heuristic Graph Matching 83

Approach for Solving Task Assignment Problem in Distributed Processor System

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 10, 78-84

C is given as under

Fig. 6: Communication Matrix

Let us assume the above tasks should be mapped on

to 2 processors.

e) To test the efficiency of the first part of the algorithm

which identifies the optimal permutation

A Task Assignment is made first using the regular

Shen Tsai‘s Algorithm. Later task assignment is done

using the most optimal assignment .

An index called the optimality index denoted by ‗ ‘

is introduced as,

Optimal Turnaround Time in the proposed Algorithm

Optimal Turnaround Time in Shen Tsai's Algorithm

 (7)

Similarly an index, ‗ ‘ is defined as,

Number of Nodes Generated in proposed Algorithm

Number of Nodes Generated in Shen Tsai's Algorithm

 (8)

The results are expressed in the following Table 1,

Table 1: Results Comparing Proposed Algorithm and Shen Tsai‘s Algorithm

Optimal Mapping

Turnaround Time

In Shen Tsai‘s
Algorithm

Turnaround Time

In Proposed
Algorithm

No. Of Nodes
Generated In

Shen Tsai‘s

Algorithm

No. Of Nodes
Generated In

Proposed

Algorithm

0A1B2B3A4B5A 42.09 41.8 32 12 0.993 0.375

The indices and represent time comparison

factor and space comparison factor of both the

algorithms. We observe that both and fall below

1 signifying the superiority of proposed algorithm over

the Shen Tsai‘s Algorithm. It is observed that though

the change in time complexity is less significant, the

change in space complexity is very significant and

appreciable.

f) To test the efficiency of the parallel part of the

proposed algorithm

Now, let us consider the following two scenarios

Scenario 1: The above task problem is solved in a

parallel way with HGM Algorithm using 4 processors.

Scenario 2: We solve the above task problem in a

parallel way using the proposed parallel algorithm with

2 processors.

Let and be redefined to this context as follows,

Effective Turnaround Time in the proposed Algorithm

Effective Turnaround Time in HGM Algorithm

 (9)

Where, Effective Turnaround time is defined as

Optimal Turnaround Time per processor used in the

distributed system

Similarly,‘ ‘ is defined as,

Number of Nodes Generated in proposed Algorithm

Number of Nodes Generated in HGM Algorithm

 (10)

The results are expressed in the following Table 2,

Table 2: Results Comparing Proposed Algorithm and HGM Algorithm

Optimal Mapping
Turnaround Time

In HGM Algorithm

Turnaround Time
In Proposed

Algorithm

No. Of Nodes
Generated In

HGM Algorithm

No. Of Nodes

Generated In

Proposed
Algorithm

0A1B2B3A4B5A 21.2 16.38 24 19 0.77 0.79

84 A Modified Parallel Heuristic Graph Matching

Approach for Solving Task Assignment Problem in Distributed Processor System

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 10, 78-84

It is observed that both and fall below 1

signifying the superiority of proposed algorithm over

the HGM algorithm proposed in the research paper [7].

A very significant change in both time complexity and

space complexity is observed experimentally thereby

establishing the efficiency of the proposed algorithm. It

should also be noted that only half the number of

processors were used in the distributed system to solve

the task assignment problem. Still the algorithm works

efficient when compared to the traditional HGM

algorithm.

VII. Conclusion

This paper establishes a methodology to parallelize

the Heuristic Graph Matching Algorithm proposed by

Shen Tsai, which can be solved with the help of any

generic distributed system containing any number of

processors. Further the paper provides an approach to

minimize the number of nodes generated in the solution

tree developed to obtain the Optimal Task Assignment

Mapping in the Shen Tsai‘s Algorithm. Due to

parallelizing and proceeding with an optimum

Permutation of tasks the number of state spaces

generated is reduced significantly and hence the

complexity reduces. The proposed Parallel Algorithm

follows a divide and conquer approach to solve the

discussed Task-Assignment Problem.

VIII. Further Research

The following areas are identified for further research:

1. To investigate the algorithm for larger test cases

2. To identify the ideal permutation based on other

properties specific to the Task Assignment Problem.

3. To devise an algorithm for heterogeneous processor

systems.

References

[1] W.-H. Chen, C.-S. Lin, A hybrid heuristic to solve

a task allocation problem, Comput. Oper. Res. 27

(3) (2000) 287–303.\

[2] K.Efe, Heuristic models of task assignment

scheduling in distributed systems, IEEE Comput.

15 (6) (1982) 50–56.

[3] H. El-Rewini, T.G. Lewis, H.H. Ali, Task

Scheduling in Parallel and Distributed Systems,

Prentice-Hall, Englewood Cliffs, New Jersey, USA,

1994.

[4] A. Giersch, Y. Robert, F. Vivien, Scheduling tasks

sharing files on heterogeneous master-slave

platforms, PDP‘2004, 12th Euromicro Workshop

on Parallel Distributed and Network-based

Processing, IEEE Computer Society Press, Silver

Spring, MD, 2004.

[5] Y.Hamam, K.S. Hindi, Assignment of

programmodules to Processors: A simulated

annealing approach, European J. Oper. Res.122 (2)

(2000)

[6] Chien-chung shen and Wen-hsiang tsai, ―A Graph

Matching Approach to Optimal task assignment in

Distributed computing systems using a Minimax

Criterion‖, IEEE Transactions on Computers, vol.

C- 34,No.3, March 1985.

[7] R.Mohan, N P Gopalan, and et.al, ―Parallel

Heuristic graph Matching Algorithm for Task

Assignment Problem in Distributed Computing

Systems‖, IEEE International Conference on

Computer & Information Science (ICCIS 2012),

12-14 June 2012, pp 575-579.

[8] Cormen, Leiserson, Rivest, Stein, ―A star

Algorithm, Introduction To Algorithms‖ edition

2001.

[9] R.Mohan, Amitava Gupta, ―A Parallel Task

Assignment using Heuristic graph Matching‖, First

International Conference (PDTCTA 2011),

Tirunelveli, Tamilnadu, india Sep2011, Springer

LNCS CCIS Proceedings, pp. 334-343.

[10] P.Sadayappan, F.Ercal and J.Ramanujam, Cluster

Partitioningapproach to mapping parallel program

onto a hypercube, Parallel Computing, 13(1990),

pp. 1-16.

[11] S. Salcedo-Sanz, Y. Xu, X. Yao, ―Hybrid meta-

heuristics algorithms for task assignment in

heterogeneous computing systems‖, An article

from: Computers and Operations Research.

Authors’ Profiles

R.Mohan: Assistant Professor of Computer Science

and Engineering Department, National Institute of

Technology, Tiruchirappalli, TamilNadu. Interested in

Distributed Computing and Data Structures &

Algorithms.

N.P.Gopalan: Professor of Computer Applications

Department, National Institute of Technology,

Tiruchirappalli, TamilNadu, India. Done Phd from IISC

Bangalore. Interested in Data mining, Web Technology,

Distributed Computing and Theoretical Computer

Science.

