
I.J. Information Technology and Computer Science, 2013, 12, 70-77

Published Online November 2013 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2013.12.09

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 12, 70-77

A Cluster Based Job Scheduling Algorithm for

Grid Computing

Reza Fotohi

Department of Computer Engineering, Germi branch, Islamic Azad University, Germi, Iran

E-mail: Fotohi.Reza@gmail.com

Mehdi Effatparvar

ECE Department, Ardabil Branch, Islamic Azad University, Ardabil, Iran

E-mail: Me.Effatparvar@gmail.com

Abstract— Grid computing enables sharing, selection

and aggregation of computing resources for solving

complex and large-scale scientific problems. The

resources making up a grid need to be managed to

provide a good quality of service. Grid scheduling is a

vital component of a Computational Grid infrastructure.

This paper presents a dynamic cluster based job

scheduling algorithm for efficient execution of user jobs.

This paper also includes the comparative performance

analysis of our proposed job scheduling algorithm along

with other well-known job scheduling algorithms

considering the parameters like average waiting time,

average turnaround time, average response time and

average total completion time.

The result has shown also exh ibit that Our proposed

scheduling algorithms (CHS
1

) has shown the best

average waiting times, average turnaround times,

average response times and average total completion

times compared to other job scheduling approaches.

Index Terms— Grid Computing, Scheduling Algorithm,

Cluster based Hybrid Scheduling, CHS

I. Introduction

Computational grid has the potential for solving

large-scale scientific problems using geographically

distributed and heterogeneous resources. Grid

scheduling is a vital component of a computational grid

infrastructure, which plays an important ro le in the

efficient and effective execution of various kinds of

scientific and engineering applicat ions [1, 2]. A grid

system is formed using many heterogeneous or

homogeneous resources to deal with large-scale

scientific problems. There are many issues in using grid

computing. How to appropriately and efficiently assign

resources to tasks, generally called job scheduling, is

one of the important issues. The main purpose of job

scheduling is to shorten the job completion time and

1
 Cluster based Hybrid Scheduling (CHS)

enhance the system throughput. A grid scheduling

system should take the various characteristics of grid

applications and resources into account. In a grid

environment, the resource providers and tasks are all

changing constantly, so the traditional scheduling

algorithms, e.g. „„First Come, First Serve‟‟ may not be

suitable for a dynamic grid system. It is very important

to assign appropriate resources to tasks. Through a good

scheduling method, the system can perform better and

applications can avoid unnecessary delays.

When science and technology advance, the problems

encountered become more complicated and need more

computing power. In contras t to the traditional notion of

using supercomputers, grid computing is proposed.

Distributed computing supports resource sharing.

Parallel computing supports computing power. Grid

computing aims to harness the power of both distributed

computing and parallel computing. The goal of grid

computing is to aggregate idle resources on the Internet

such as Central Processing Unit (CPU) cycles and

storage spaces to facilitate utilizat ion. The Search for

Extra-Terrestrial Intelligence (SETI) experiment [3] is

an early application of grids. The data Trans-Atlantic

Grid pro ject (TAG) [4] constructs a large-scale

intercontinental grid test bed which focuses on issues of

advanced networking and interoperability between these

intercontinental grid domains, hence extending the

capabilit ies of each and enhancing the worldwide

program of grid development.

In implementation, Globus Toolkit [5] is an open

source and a fundamental enabling technology for grid.

The latest version of Globus Toolkit is Globus Toolkit

5.2.0. Grid can achieve the same level of computing

power as a supercomputer does, but at a much reduced

cost. Grid is like a v irtual supercomputer. However, we

need to consider about many conditions such as

network status and resource status because the members

of grid are connected by networks. Grid is also a

heterogeneous system. Scheduling independent tasks on

it is more complicated. In order to utilize the power of

grid computing completely, we need an efficient job

scheduling algorithm to assign jobs to resources. This

mailto:Me.Effatparvar@Gmail.Com

 A Cluster Based Job Scheduling Algorithm for Grid Computing 71

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 12, 70-77

paper focuses on the efficient job scheduling

considering the average waiting t ime, average

turnaround time, average response time and average

total completion time of jobs in a grid computing.

Grid scheduling presents several challenges that

make the implementation of practical systems a very

difficult problem. Our research aims to design and

develop Grid scheduling algorithms that makes efficient

utilizat ion of resources, maintain a high level of

performance and possess a high degree of scalability.

This paper presents a dynamic cluster based job

scheduling algorithm for efficient execution of user jobs.

This paper also includes the comparative performance

analysis of our proposed job scheduling algorithm along

with other well-known job scheduling algorithms e .g.;

First Come First Served (FCFS), Longest Job First

(LJF), Shortest Process Next (SPN), Round Robin (RR),

Proportional Local Round Robin (PLRR), Multilevel

Dual Queue (MDQ). We evaluated the performance and

scalability of each scheduling a lgorithm on a

computational grid using six key performance

parameters, i.e. average waiting t ime, average

turnaround time, average response time and average

total completion time in a grid computing.

The remainder of this paper is organized as follows:

Section 2 g ives related research. Section 3 describes the

proposed cluster based hybrid scheduling algorithm.

Section 4 presents the performance evaluation of grid

scheduling algorithms. Conclusion is given in the final

section.

II. Related Research

A Grid is a high performance computational system

which consists of a large number of d istributed and

heterogeneous resources. Grid computing enables

sharing, selection and aggregation of resources to solve

the complex large scale problems in science,

engineering and commerce. Scientific applications

usually consist of numerous jobs that process and

generate large datasets. Processing complex scientific

applications in a Grid imposes many challenges due to

the large number of jobs, file transfers and the storage

needed to process them. The scheduling of jobs focuses

on mapping and managing the execution of tasks on

shared resources [6]. Most of the parallel jobs demand a

fixed number of processors, which cannot be changed

during execution [7]. Good job scheduling policies are

very essential to manage Grid systems in a more

efficient and productive way [8]. Grid job scheduling

policies can be generally div ided into space-sharing and

time-sharing approaches. In timesharing policies,

processors are temporally shared by jobs. In space-

sharing policies, however, processors are exclusively

allocated to a single job until its complet ion. The well-

known space-sharing policies are FCFS, Shortest Job

First (SJF), Shortest Remaining Time First (SRTF) and

Longest Job First (LJF) approaches. The famous time-

sharing scheduling policies are Round Robin (RR) and

Proportional Local Round Robin Scheduling (PLRR) [9,

10, and 11]. In [9] the authors have extended the

working of basic space sharing techniques like FCFS,

SJF, and LJF and proposed an SJF-backfilled

scheduling heuristic. First-Come, First-Served

Scheduling Algorithm (FCFS) is the simplest algorithm

for job scheduling. Jobs are executed according to the

sequence of job submitting. The second job will be

executed when the first job is done, and therefore FCFS

has a serious problem called convoy effect [12]. Or The

FCFS is the simplest and non-preemptive job

scheduling algorithm. For this algorithm the ready

queue is maintained as a FIFO queue. Each new

job/process is added to the tail of the ready queue and

then the algorithm dispatches processes from the head

of the ready queue for execution by the CPU. A process

terminates and is deleted from the system after

complet ing its task. The next process is then selected

from the head of the ready queue [10, 11].

[20] Proposes Grid level resource scheduling with a

Job Grouping strategy in order to maximize the

resource utilization and minimize the processing time of

jobs. A combination of the Best Fit and RR scheduling

policies is applied at the local level to ach ieve better

performance. With RR, a fixed time quantum is given to

each process that is present in the circular queue, for

fair distribution of CPU times. The RR scheduling

policy is extensively used for job scheduling in Grid

computing [20, 21, and 22].

This paper presents a dynamic cluster based job

scheduling algorithm for efficient execution of user jobs.

This paper also includes the comparative performance

analysis of our proposed job scheduling algorithm along

with other well-known job scheduling algorithms

considering the parameters like average waiting time,

average turnaround time, average response time and

average total completion time. The result has shown

also exh ibit that Our proposed scheduling algorithms

(CHS) has shown the best average waiting times,

average turnaround times, average response times and

average total completion t imes compared to other job

scheduling approaches.

III. Proposed Cluster based Hybrid Scheduling

Algorithm

In [13, 14 and 15] Shah et al proposed two

scheduling algorithms- MH and MDQ. They are based

on a fixed time quantum.

In this paper we propose new dynamic cluster based

hybrid job scheduling algorithm namely CHS will now

be described.

3.1 Cluster based Hybrid job Scheduling Algorithm

(CHS)

72 A Cluster Based Job Scheduling Algorithm for Grid Computing

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 12, 70-77

In this method (Fig. 1), a central node considered as

Master Node plays the role of taking jobs from users

and storing them in its local memory. Then, the jobs are

ordered based on CPU calculating burst time, and the

jobs are distributed between the clusters. Thereafter, the

jobs are numbered from 1 to n for each cluster. Then,

the time quantum of Cluster 1 to Cluster n is calculated

in parallel. Then, the cluster with a lower quantum time

is CPU allocated and executed.

3.2 Method of Time Quantum Calculation

According to the below relation, time quantum is

calculated based on the square of CPU burst time

average for Cluster 1 to Cluster n in parallel. Then, the

cluster with a lower t ime quantum compared to other

clusters is CPU allocated and executed.

Quantum cluster1 =

SQRT (Average (JCT1, JCT2, JCT3, …, JCTi))

Quantum cluster2 =

SQRT (Average (JCTi+1, JCTi+2, JCTi+3, …, JCTj))

Quantum cluster3 =

SQRT (Average (JCTj+1, JCTj+2, JCTj+3,…, JCTn))

In the above relation, the JCT variable represents job

processing time. In this proposed method, due to the

fact that we cluster the jobs and that time quantum is

calculated in parallel for all clusters, hence, this method

results in improved wait ing time, return time, response

time, and total complet ion time, and acts better than

FCFS, RR, LJF, PLRR, and MDQ scheduling

algorithms. JCT (Job CPU TIME)

Fig. 1: Block Diagram of Cluster based Hybrid Scheduling (CHS)

IV. Performance Evaluation of Grid Scheduling

Algorithms

Performance metrics for the Grid scheduling

algorithms are based on three factors - Average Waiting

Time, Average Turnaround Time, and Average

Response Time. We performed experiments for

different scheduling algorithms [18]. We formed two

data sets by using workload i.e. 19000 and 38000

processes. We performed an experiment by varying the

number of CPUs from 8 to 128. We used „50‟ units as

the fixed time quantum for our experiment. In this

section, we describe a comparative performance

analysis of our proposed algorithms, i.e . CHS, with six

other Grid scheduling algorithms; i.e. FCFS, LJF, SPN,

RR, PLRR and MDQ.

4.1 Average Waiting Times Evaluation

The Waiting Time is the time for which a process

waits from its submission to complet ion in the local and

global queues [16], [17]. Fig. 1 and Fig.2 shows that the

average waiting times computed by each scheduling

algorithm for each real workload trace of 19000 and

38000 processes. That the PLRR and CHS scheduling

algorithms produce the shortest average wait ing times

as compared to the other scheduling algorithms. By

increasing the number of CPUs, each algorithm shows

the relative improvement in performance, except for the

FCFS and MDQ algorithms. Also, the FCFS and LJF

have shown the worst performance the average waiting

time measures. As a result, CHS has shown the optimal

average waiting times for 19000 and 38000 processes.

 A Cluster Based Job Scheduling Algorithm for Grid Computing 73

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 12, 70-77

0

2

4

6

8

10

12

14

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

M
il

li
o

n
s

S
ec

o
n

d
s

Processors

Average Wating Time For 19000 Process

FCFS LJF SPN RR PLRR MDQ CHS (Proposed Method)

Fig. 1: Average Waiting T ime Analysis for 19000 Processes

0

5

10

15

20

25

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

M
il

li
o

n
s

S
ec

o
n

d
s

Processors

Average Wating Time For 38000 Process

FCFS LJF SPN RR PLRR MDQ CHS (Proposed Method)

Fig. 2: Average Waiting T ime Analysis for 38000 Processes

0

2

4

6

8

10

12

14

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

M
il

li
o

n
s

S
ec

o
n

d
s

Processors

Average Turnaround Time For 19000 Process

FCFS LJF SPN RR PLRR MDQ CHS (Proposed Method)

Fig. 3: Average Turnaround Time Analysis for 19000 Processes

74 A Cluster Based Job Scheduling Algorithm for Grid Computing

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 12, 70-77

4.2 Average Turnaround Times Evaluation

The Turnaround time of the job is defined as the time

difference between the complet ion time and release

time [16], [17]. Fig. 3 and Fig. 4 shows that the average

turnaround times computed by each scheduling

algorithm for each real workload trace of 19000 and

38000 processes, That the average turnaround time

computed by the RR, PLRR and CHS scheduling

algorithms are shorter than the other Grid scheduling

algorithms, Also By increasing the number of CPUs,

each algorithm has an improved average turnaround

time, except for the LJF and FCFS scheduling algorithm.

Furthermore, it is found that FCFS, MDQ and LJF

scheduling algorithms have shown the longer average

turnaround time measures.

0

5

10

15

20

25

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

M
il

li
o

n
s

S
ec

o
n

d
s

Processors

Average Turnaround Time For 38000 Process

FCFS LJF SPN RR PLRR MDQ CHS (Proposed Method)

Fig. 4: Average Turnaround Time Analysis for 38000 Processes

4.3 Average Response Times Evaluation

It is the amount of t ime taken from when a p rocess is

submitted until the first response is produced [16], [17].

Average response times for each algorithm have

decreased by increasing the number of CPUs. Fig. 5 and

Fig. 6 shows that the average response times computed

by each scheduling algorithm for each real workload

trace of 19000 and 38000 processes, The SPN, LJF and

FCFS scheduling algorithms result in poor response

times as compared to the other scheduling algorithms. It

also shows that MDQ and RR algorithms produces

better average response time compared to other

algorithms. However, FCFS, PLRR, SPN and LJF have

shown the worst performance average response time

measures, out of which LJF results in the longest

average response times.

Fig. 5: Average Response T ime Analysis for 19000 Processes

 A Cluster Based Job Scheduling Algorithm for Grid Computing 75

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 12, 70-77

Fig. 6: Average Response T ime Analysis for 38000 Processes

4.4 Average Total Completion Times Evaluation

Machine Completion time is defined as the time for

which a machine „m‟ will finalize the processing of the

previously assigned tasks as well as of those already

planned tasks for the machine [19]. Fig. 7 and Fig. 8

shows that the average total completion t imes computed

by each scheduling algorithm for each real workload

trace of 19000 and 38000 processes, That the average

total complet ion times computed by the RR, SPN and

CHS scheduling algorithms are shorter than the other

Grid scheduling algorithms, it is found that FCFS,

MDQ, PLRR and LJF scheduling algorithms have

shown the longer average turnaround time measures.

0

20000

40000

60000

80000

100000

120000

140000

160000

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

M
il

li
o

n
s

S
ec

o
n

d
s

Processors

Total Completion Time For 19000 Process

FCFS LJF SPN RR PLRR MDQ CHS (Proposed Method)

Fig. 7: Average Total Completion T ime Analysis for 19000 Processes

76 A Cluster Based Job Scheduling Algorithm for Grid Computing

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 12, 70-77

0

100000

200000

300000

400000

500000

600000

700000

800000

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

M
il

li
o

n
s

S
ec

o
n

d
s

Processors

Total Completion Time For 38000 Process

FCFS LJF SPN RR PLRR MDQ CHS (Proposed Method)

Fig. 8: Average Total Completion T ime Analysis for 38000 Processes

V. Conclusion

In this paper, the architecture of a cluster-based

scheduling framework of the Grid computing is

proposed, namely CHS. We compared the performance

of proposed job scheduling algorithm with other grid

scheduling algorithms on a computational grid.

Simulation results show that CHS has shown the

optimal performance in terms of average wait ing times,

average turnaround times, and total completion t imes.

Simulation results also exhib it that MDQ and RR has

shown the best average response times compared to

other job scheduling approaches.

References

[1] E. Shmueli and D. G. Feitelson, "Backfilling with

lookahead to optimize the packing of parallel

jobs," J. Parallel Distrib. Comput., vol. 65, pp.

1090-1107, 2005.

[2] Y. Zhang, H. Franke, J. E. Moreira, and A.

Sivasubramaniam, "Improving parallel job

scheduling by combining gang scheduling and

backfilling techniques," in Parallel and Distributed

Processing Symposium, 2000. IPDPS 2000.

Proceedings. 14th International, 2000, pp. 133-142.

[3] SETI@home, http://setiathmoe.berkeley.edu/>.

[4] The Data TransAtlantic Grid Pro ject,

<http://datatag.web.cern.ch/datatag/>.

[5] Globus Toolkit, <http://www.globus.org/toolkit/>.

[6] I. Foster and C. Kesselman, the Grid: Blueprint for

a New Computing Infrastructure, Morgan

Kaufmann, 1999.

[7] E. Shmueli and D.G. Feitelson, Backfilling with

look ahead to optimize the packing of parallel jobs.

J Parallel Distrib Comput, vol. 65, no. 9, pp. 1090–

1107. ISSN 0743-7315, 2005

[8] Y. Zhang, H. Franke and J.E. Moreira, A.

Sivasubramaniam, Improving parallel job

scheduling by combining gang scheduling and

Backfilling techniques. In: Parallel and distributed

processing symposium, IPDPS 2002, pp. 133–142.

ISBN: 0-7695-0574-0, 2002.

[9] B. Lawson, E. Smirni and D. Puiu, Self-adaptive

backfill scheduling for parallel systems. In:

Proceedings of the international on ference on

parallel processing (ICPP 2002), pp. 583–592, and

2002

[10] D. Tsafrir, Y. Etsion and D. G. Feitelson,

Backfilling using system-generated predictions

rather than user runtime estimates. IEEE Trans

Parallel Distrib Syst, vol. 18, no. 6, pp. 789–803.

ISSN: 1045-9219, 2007

[11] J.H. Abawajy, Job Scheduling Po licy for High

Throughput Grid Computing, Lecture Notes in

Computer Science, Springer, 2005

[12] Abraham Silberschatz, Peter Baer Galv in, Greg

Gagne, Operat ing System Concepts, eighth ed.,

John Wiley & Sons, 2011.

[13] S. N. M. Shah, A. K. B. Mahmood and A. Oxley,

Development and Performance Analysis of Grid

Scheduling Algorithms, Communications in

Computer and Informat ion Science, Springer, vol.

55, pp. 170–181, 2009

[14] S. N. M. Shah, A. K. B. Mahmood and A. Oxley,

Hybrid Scheduling and Dual Queue Scheduling,

2009 the 2nd IEEE International Conference on

Computer Science and Information Technology

(IEEE ICCSIT 2009), 8-11 Aug 2009

[15] S. N. M. Shah, A. K. B. Mahmood and A. Oxley,

 A Cluster Based Job Scheduling Algorithm for Grid Computing 77

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 12, 70-77

Analysis and Evaluation of Grid Scheduling

Algorithms using Real Workload Traces, The

International ACM Conference on Management of

Emergent Dig ital EcoSystems, MEDES‟10, 26-29

October 2010.

[16] W. Stallings, Operating Systems Internals and

Design Principles: Prentice Hall, 2004.

[17] J. Blazewicz, Ecker, K.H., Pesch, E., Schmidt, G.

und J. Weglarz, Scheduling Computer and

Manufacturing Processes: Berlin (Springer), 2001.

[18] S. N. M. Shah, A. K. B. Mahmood and A. Oxley,

Dynamic Hybrid Scheduling Algorithms for Grid

Computing, 2011 International Conference on

Computer Science (Science Direct ICCS 2011),

402-411.

[19] F. Xhafa and A. Abraham, "Computational models

and heuristic methods for Grid scheduling

problems," Future Gener. Comput. Syst., vol. 26,

pp. 608-621, 2010.

[20] R. Sharma, V. K. Soni and M. K. Mishra, An

Improved Resource Scheduling Approach Using

Job Grouping strategy in Grid Computing, 2010

International Cornference on Educational and

Network Technology, 2010

[21] J.H. Abawajy, Job Scheduling Po licy for High

Throughput Grid Computing, Lecture Notes in

Computer Science, Springer, 2005

[22] T Laurence, M. G. Yang, Chapter 17 o f “High-

Performance Computing: Paradigm and

Infrastructure”, Wiley, ISBN: 978-0-471-65471-1,

2005

Authors’ Profiles

Reza Fotohi received his B.Sc. in

computer engineering from Shabestar

University of Applied Science And

Technology, Tabriz, Iran, in 2009, and

his M.Sc. in Computer Engineering

from Islamic Azad University, Germi

branch, Ardabil, Iran, in 2013. His

research interests include Mobile Ad-hoc Networks,

Performance Evaluation, and Optimization Algorithms.

Mehdi Effatparvar is faculty

member of computer engineering

department in Islamic Azad

University of Ardabil, Iran. He is PhD

student in Islamic Azad University of

Science and Research. He received his

BSc in Computer engineering and

MSc in Informat ion Technology from

Islamic Azad University of Qazv in, Iran. His research

interests include wireless sensor networks, ad-hoc

networks, distributed systems and operating systems.

How to cite this paper: Reza Fotohi, Mehdi Effatparvar,"A

Cluster Based Job Scheduling Algorithm for Grid Computing",

International Journal of Information Technology and

Computer Science(IJITCS), vol.5, no.12, pp.70-77, 2013. DOI:

10.5815/ijitcs.2013.12.09

