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Abstract — Multistate operations within a network 

result in high-dimensional, multivariate temporal data, 

and are useful for systems, which monitor access to 

network entities like resources, objects, etc. Efficient 

self organization of such multistate network operations 

stored in databases with respect to relationships 

amongst users or between a user and a data object is an 

important and a challenging problem. In this work, a 

layer is proposed where discovered relationship 

patterns amongst users are classified as clusters. This 

information along with attributes of involved users is 

used to monitor and extract existing and growing 

relationships. The correlation is used to help generate 

alerts in advance due to internal user-object interactions 

or collaboration of internal as well as external entities. 

Using an experimental setup, the evolving relationships 

are monitored, and clustered in the database. 

 

Index Terns — Relationship Network, Network Access, 

Self-organization in Networks, Relationship Clustering 

 

I. Introduction 

Communication started to grow due to several 

factors in nineties, firstly, due to privatization and 

deregulation; secondly, due to penetration of mobile 

phones into the society; thirdly due to emergence of 

wavelength division multiplexing; and fourthly due to 

private companies entering into Internet business[1].  

This growth has been hit by Internet bubble burst that 

took place during 2001 to 2002. As recovery in 

telecommunication industry has recently been 

witnessed, a new paradigm of ubiquitous networking 

has emerged that is expected to change the scene of 

computing. This concept is creating new net- work 

topologies and relationship networks. 

The network of the future can also be visualized as 

we see the industry transitions today like from static 

markets to dynamic fast-paced innovations; low speed 

to high speed; divergence to convergence; local to 

global; fixed to mobile; sometimes to always-on; one 

medium to multimedia; and from distinct to bundled 

etc.[2]. The intelligence is moving from centers to edges, 

where key technology developers are surfacing in the 

area of tagging things, sensors, smart technologies, and 

nano-structures. The edges of the market include users, 

devices at user level and the applications riding on 

them. The growth of such technologies is going to 

affect the business and the ways of doing businesses. 

The ubiquitous networking, tagging, nano-structures, 

etc. is also enriching the concept of mobile networking 

A mobile ad hoc network (MANET)[3] provides a 

communication environment that is characterized by 

dynamic changes in the topology and in the availability 

of re- sources. In chaining partnerships and 

collaborations within this environment, various access 

control models have been proposed. The Enterprise 

Dynamic Access Control (EDAC) model[4] is based on 

basic principles of role based access control (RBAC) 

published by National Institute of Standards and 

Technology (NIST)[5], and accommodates complex and 

scalable access control situations with pre-configured 

conditions. The model criterion for resource access is 

based on user characteristics and environmentals. As 

collaborations among the participants of an ad hoc 

network cannot be set up, therefore there is a need for 

explicit specification of policies for each activity. This 

accounts only for relation- ships set within an access 

control model; but it is natural that users, computing 

nodes and devices do communicate with other users or 

objects in a user space or outside their specified domain 

occasionally and continually. 

Thus, new concepts in networking and corresponding 

access technologies have triggered a great interest in 
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study of possible new forms of relationships in 

networks. Typical applications include network access 

detection, frequency of use of each resource, tracking 

use of re- sources, user relationships, etc. 

In order to model evolving relationships and build 

relationship clusters from such databases, neural 

networks can be investigated as they have been 

reported to be flexible, fault tolerant, robust, and can 

solve difficult problems[6]. The learning/training 

features of neural net- works in absence of a 

supervisory role may be used to model relationship 

clusters. Unsupervised learning in the neural network 

helps in finding energy minima and is therefore more 

efficient with pattern association. Obviously, the 

disadvantage is that it is then up to the user to interpret 

the output. 

The Self-Organizing Map (SOM) with its related ex- 

tensions has been the most popular artificial neural 

algorithm for use in unsupervised learning and data 

visualization. There are quite a few types of self-

organizing networks, like the Instar-Outstar network, 

the ART-series, and the Kohonen network[7]. The 

Kohonen net- work is probably the best example, 

because it is quite simple and introduces the concepts 

of self-organization and unsupervised training easily. It 

provides an ordered display of data to facilitate 

understanding of the structures in the data and 

illustrates clustered density in the input space case 

temporally and sequentially. 

In the next section, the related research works found 

in the literature regarding detection of network accesses 

are highlighted. 

 

II. Related Work 

A lot of research work has recently been reported in 

the area of access control in network operations of field 

units. The primary target has been detection of 

intrusions in the form of events and development of 

computer audit data. In[8], the authors present studies 

for detecting intrusions into the information system, 

using frequency property of multiple audit event types 

for a given sequence of events. In another work[9], the 

authors present an algorithm for monitoring of frequent 

items in a distributed data stream environment, with 

advantages claimed as reduced communication cost and 

overall quality of output. The human signatures have 

also been investigated in[10] for intrusion detection. The 

respective authors consider signature based detection 

techniques and investigate the ability of various routing 

protocols to facilitate intrusion detection when attackers 

are completely known. In the research works [8][9] stated 

above, the main idea has been to identify the 

relationship in the form of intrusion after it has taken 

place. 

The authors in[11] present a survey on the state of the 

art work in intrusion detection in mobile ad hoc 

network and conclude that schemes that would be 

distributed and collaborative are more likely to succeed 

in intrusion detection. In a similar work[12], the authors 

investigate the placement of modules for misuse 

detection in ad hoc networks and propose a family of 

algorithms that approximate the optimal solution, with 

resource consumption tradeoffs. The Dempster-Shafer 

theory has also been investigated in[13] in the context of 

intrusion detection in networks and respective authors 

discuss its usefulness in distributed networked 

environment. In the research works [11] [12] [13], the main 

target has been the distributed environment and the 

placement of sniffers in order to monitor the data for 

subsequent analysis. 

Regarding data classification and self-organization, a 

lot of research has been reported in open literature, and 

many commercial projects employ the SOM as the tool 

for solving hard real-world problems[14][15]. The authors 

in[16] suggest a method for clustering time varying data 

by using self-organizing maps, by introducing 

dissimilarity measures for capturing the temporal 

structure of the data in a simple topology preserving 

model. In another work[17], a temporal extension of the 

Self-Organizing Map (SOM) is presented by authors, 

where the network learns local representations of the 

temporal con- text associated with a time series, and 

extends classical properties of SOM to time. The 

authors in[18] discuss self-organizing models that 

provide valuable tools for data mining, clustering and 

visualization. In that, they extend basic vector-based 

models by recursive computation to process sequential 

and tree-structured data directly. 

In[19], the authors present an approach to build an 

associative classifier composing consistent rules, and 

have shown the effectiveness of such classifiers over 

traditional classifiers in several datasets. The clustering 

within an application other than network has also been 

investigated in[20], where the authors discuss knowledge 

discovery (in melanomas domain) using combination of 

clustering and generalization to identify groups and 

build general descriptions of respective clusters. 

In summary, many approaches were found in 

literature for detection of network access (either online 

or offline), but objectives set for such works were either 

intrusion detection or subsequent analysis for audit 

purposes. In this work, the study and analysis of 

evolving relation- ships formed during multi-state 

operations within a net- work is the main focus. 

The Section III discusses modeling of relationships 

and the proposed scheme. In Section IV, experimental 

setup is discussed to implement the proposed algorithm. 

For purposes of simplicity and training, the Kohonen 

network is embedded in the model for developing 

classification and identifying evolving relationships in a 

network. The Section V presents comparative 

discussions followed by conclusions in Section VI. 
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III. Proposed Approach 

In order to understand relation between participating 

devices or nodes, it is desirable that a mathematical 

relation among features or attributes of participating 

nodes or devices be defined. Let X be a set of features, 

and R be a relation. Then x R y iff x and y satisfy 

following conditions[21]: 

Reflectivity: 

( x  X )  ( x R x)                                             (1) 

Symmetry: 

( x, y  X )  (if x R y, then y R x)                     (2) 

Transitivity: 

( x, y X )  (if x R y y R z, then x R z)         (3) 

Therefore, R is called an equivalence on X iff R 

obeys reflectivity, symmetry, and transitivity. In other 

words, the features of nodes and devices stored in 

databases may have relation if they satisfy reflectivity, 

symmetry, and transitivity. Further, equivalence clause 

of an element may be defined as follows[13]: 

a  X ,  a  {x    X  |  x  R  a}                     (4) 

Properties of Relation R: 

Let R be an equivalence relation on X, such that: 

1)   a, b  X  (if a Rb, then a b   )         (5) 

2)   a, b  X (if a R  b, iff a  b)                        (6) 

3)  X  U a , i  2  I                                                 (7) 

where [ai] and [aj] are pair wise disjoint subsets of X. 

We can narrate here an example of relation R on 

modular arithmetic as follows: 

Consider X = Z, where x, y Є Z; n Є N (and is fixed), 

n > 1. If  

x R y iff n | ( x  y) i.e., n divides (x  y)            (8) 

then R is reflective, symmetric, and transitive. This 

relationship is examined further in the next section, 

once sample user activities in the form of attributes of 

each node are considered for relationship detection. 

3.1 Relationship Network 

Relationship network analysis concerns itself with 

measuring of relationships and flows among different 

measurements of attributes[22]. Once a database 

containing attributes or features of participating devices 

is developed, relations among attributes can be 

developed. Thus, it is possible to model such an 

analysis as a relationship network, as each individual 

activity measurement of the device is an entity and their 

interactions or interactions between users and data 

objects imply relationships and flows. Such relationship 

networks can provide a mathematical analysis of 

relationships in an expert system, yet visual 

representations are often easier to comprehend. 

The relationship network can be modelled as a graph, 

consisting of a set of nodes and edges, where each node 

represents a device or a data object and an edge 

represents a relationship between a pair of such entities, 

as shown in Fig. 1. The Fig. 1 represents network 

relationship among six entities (p1, p2,., p6) within a 

net- work.  Some of them are derived from others, in 

that some relationships are prerequisite to others which 

may further be termed as consequence. The connection 

between any two entities is weighted, and the weighted 

link may be termed as an edge of the relationship. The 

edge can be strong or weak depending on the value of 

corresponding weight. Once this strength is correlated 

with a threshold, it may be defined as: the higher the 

value of this weight, the stronger the link and hence 

stronger the relationship. 

 

Fig. 1: A simple relationship network 

 

Based on correlation, the relationships can be 

exploited to develop clusters of similar and close 

attributes. The correlations may further be used to 

generate triggers or alerts once new instances of 

relationships are sensed and correlated with these 

clusters. The question that needs to be addressed is how 

such a relation is to be inferred and how many such 

instances are needed for ensuring confidence that a 

stronger relationship has occurred between users or 

between a user and a data object. In the following 

section, this is further investigated 

3.2 Modeling Relationship in a Network 

Modeling or discovering a new relationship has been 

an open problem. Generally, a threshold is deemed 

necessary to trigger an alert before new relationship 

amongst users or between a user and a data object 

affects the sys- tem. In order to understand this, 

consider the example of an intrusion detection system 

where port scan, buffer overflow are considered as 

attacks and corresponding messages from intrusion 

detection system are called as alerts. An alert 

correlation system with a known model database, which 

uses the correlation technique based on a-priori 

knowledge, clusters the alerts that act as a pattern 

defined in the model database. The matching threshold 

is used to generate an alert. Let us classify this alert 
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typically as Orange_alert (O_alert). This type of modeling may be illustrated as shown in Fig. 2. 

 

Fig. 2: Alert correlation based on known patterns 

 

Since the models in the database are limited to 

known patterns, hence the new pattern of relationship is 

different from a-priori knowledge based alert 

correlation. The alerts based on discovery of new 

relationships can help to solve this problem. For this, 

the strength and rising process of the new relationship 

may be used to define the threshold for triggering the 

tolerance mechanism of the Relationship Detection 

System (RDS). This seems rationale as the rising 

process of achieving new strengths in relationships on 

the network increases the vulnerability of the targeted 

system. 

In order to model this rising process of achieving 

new strength in relationship, consider a node/device 

which is trying to access an object in a network. The 

capability of the developing relationship may be 

described as a six-tuple, as follows: 

Capability ={src, trgt, actn, srvc, prprty, crdntls}  (9) 

where capability describes the initiator (source ~src) 

of the relationship to perform an action (~actn) on the 

property (~prprty) of the service (~srvc) with given 

credentials (~crdntls) on the target (~trgt) destination. 

In order to illustrate this, a state transition diagram can 

be used where edges are new relationships and nodes 

are new capabilities. This is shown in Fig. 3, where Co 

is the initial capability state. After a relationship Ri is 

formed, a new strength Si is achieved. Looking at Fig.3 

as an example, the union of C1, C2 and C3 is the pre-

requisite to new relationship R4. After R4 is formed, a 

new strength is achieved and reaches capability state 

C4. Thus, a capability state has a prerequisite before a 

new relationship can be formed. This gives rise to new 

relationships and capability states. Thus, this may form 

a chain of relationships, one derived from the preceding 

one and so on, in a temporal fashion. 

 

Fig. 3: State transition based on new relationships and strengths 

 

To understand this further, an example of an 

unauthorized file access may be phrased as: getting 

knowledge of the service  port of the address   

getting the root access  installing the components to 

access the file  get the file. There is a logical 

relationship between two capability states. For example, 

if C0 = {src, trgt, sniff, address, content, Anne} and C1 

= {src, trgt, sniff, all addresses, content, [Anne, Bill]}, 

this means C0 can be logically inferred from C1. 

It can be inferred that every relationship is related to 

two capability states: one is prerequisite state providing 

the necessary strength for a new relationship, and the 

other the consequence state, which includes the new 

achieved strengths. This, in turn, raises a new concept 

of an alert which embeds existing alert level, 

prerequisite state and the consequence state. This new 

alert may be classified as Yellow alert (Y_Alert), and 

defined as a three-tuple 

Y_Alert (YA) =(Alert,Prerequisite,Consequence)  (10) 

Where Alert is a four-tuple message from RDS and it 

carries four information components: name, time, 
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source, target. The name is name of the relationship 

that triggers this alert, time = (begin, end) of the 

relationship, source and target are net addresses of the 

relationship entities; Prerequisite includes prerequisite 

capability of the alert, and Consequence is the current 

capability state after alert is finished. To find new 

relationship patterns, alerts are transformed into 

Y_Alerts, then correlated into a new relationship 

incident to uncover logic relations. The Y_Alerts can 

be listed along with their capabilities states and 

corresponding timing ranges. This helps in correlating 

Y_Alerts with Meta-Relationship (R), and thus new 

relationships can be discovered and ultimately stored in 

the database.  This Meta-relationship triggers another 

level alert, say Red_Alert (RA), and is defined as a 

three- tuple: 

R_Alert ‗RA‘ = {set_R,  set_C,  Time}                (11) 

Where set_R is the set of correlated Y_Alert, set_C is 

the set of the capabilities of all consequences of the 

Y_alert, Time is begin_time and end_time of these 

Y_Alerts. Meta relationship R resulting in R_Alert can 

be easily proved that it is a partial relationship. For this, 

it can be easily seen that they do not follow (1) and (2). 

For reflectivity, it can be easily verified that end_time 

of YA1> begin_time of YA1 and the reverse is not true, 

if YA1 ε R. For symmetry, it is also easy to see that 

YA2 is derived from the other YA1 and the converse is 

not true. 

 

Fig. 4: Relationship measurement & description model 

 

Based on these Y_Alerts and Meta-relationship ―R‖, 

an experimental model for alert correlation and 

generating Red Alert ‗RA‘ is depicted as shown in 

Fig.4.  The Fig. 4 shows a self-evolving model for 

relationship correlation and detection. The alerts are 

correlated and the ones which exist in the database are 

reported as existing relationship incidence.  This step 

reduces a greater number of alerts for modeling of 

relationships in the network. In the second step, the 

isolated alerts are correlated with Meta-relationship ‗R‘. 

If correlated, the Meta- relationship is reported as 

R_Alert and termed as a new relationship. After that, it 

is described in the database. The setup illustrated in Fig. 

4 may be summarized in an algorithm as follows: 

3.3 Relationship Detection Algorithm:  

After an alert is sensed, the following sequence of 

events takes place: 

1) If there is an existing Red_Alert ‗RA‘, whose 

set_C contains consequence of new YA, go to 

step ―g‖, else go to step ―b‖. 

2) If prerequisite of ‗YA‘ is empty go to step ―e‖, 

else go to step ―c‖. 

3) If there is a Red_Alert ‗RA‘ and union of 

capability of RA‘s set_C implies prerequisite of 

‗YA‘, go to step ―e‖, else go to step ―d‖. 

4) If there are some meta-relationships existing 

and the union of the set_C of these meta-attacks 

implies the prerequisite of YA, then combine 

these meta_relationship to a new Red_Alert RA, 

go to step ―e‖, else go to step ―f‖. 

5) If the union of set_C of the newly combined 

meta-relationship ‗R‘ implies consequence of 

YA, go to step ―g‖, else go to step ―f ‖. 

6) Let YA join the red_alert ‗RA‘, put YA into 

RA‘s set_R and let consequence of RA join 

set_C, determine RA‘s time stamp. Break. 

7) Discard false alert YA; go to ‗a‘ to deal with 

next yellow alert ‗YA‘. 

In the next section, an experimental setup is 

described to simulate the discovery and clustering of 

relationships developed in a local area network. 

 

IV. Experimental Setup 

A typical local area network was selected with about 

five hundred and fifty user accounts. The accounts were 

grouped into five categories of access (i.e. credentials) 

on the network. These categories were ‗administration‘, 

‗faculty‘, ‗student‘, ‗staff‘, and ‗public‘. The actions 

supposed to be carried through these accounts during 
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network access involved five different types of actions 

on twelve different target hosts or servers. The actions 

involved were ‗create‘, ‗modify‘, ‗read‘, ‗delete‘, and 

‗not available/ unauthorized‘. The target hosts were 

centrally placed in a room. The service available on 

different target hosts contained files and programs.  The 

objective was to examine the network setup vis-à-vis 

Fig. 4, using the procedure outlined in the algorithm 

described in the previous section. 

Based on this information, six-tuple data was 

generated using (9) for any user access. A data map- 

ping followed that coverts these tuples to numerical 

values to train the network. The time stamp was added 

to make it to seven-tuple data to show evolution of the 

relationships during run time.  These data values enable 

self-organizing feature of Kohonen network to allow 

data values to be mapped onto a two-dimensional plane 

with similar data residing in closer proximity. 

The architecture of such a network can be reduced to 

two key issues: input layer and output layer[14]. The 

number of input nodes (say 7 based on source address, 

time stamp, target, service, property, action, credentials) 

equals the dimension of the input vector. The output 

layer processes the input data and gives an output. The 

number of output nodes determines the maximum 

number of clusters to be found. Each neuron (node) in 

the output sheet has a location in the configuration and 

represents a cluster, or alternatively a set of common 

features. 

The proposed system uses Kohonen Self Organizing 

Maps (SOM) to plot a matrix of the available data. This 

is a two dimensional plane containing 1024 cells 

(32x32 plot). The size of 32x32 clusters is arbitrary 

(although above than required number of clusters 

adequate for possible relationship clusters in a typical 

local area network) and has been selected only for 

experimental purposes. 

Activity on the network was monitored for users on a 

full working day. The period of network activity for a 

typical user ranged from few minutes to less than 

seventy minutes.  Out of five hundred and fifty user 

accounts, one hundred and eighty–five users accessed 

the network at different times. The mapped values for 

these users accumulated in a database were processed 

to train the SOM network to generate capability clusters. 

Once built, the SOM takes the data from the database 

and decides the position of a user entity or the source of 

activity in the network based on the attributes attached 

to it. It contains 32×32 output nodes along with input 

network were updated each time an input pattern (i.e., 

seven-tuple data) was presented for training. This 

process continued till convergence of its training 

algorithm. The algorithm used for training of the 

network typically undergoes the following steps [14]: 

 Define input value range. 

 Present an input pattern (i.e., twenty data values). 

 Compute distance between input and weight, and 

sum them. 

 Select the output node with minimum distance – 

this is the node that is closest to the input vector. 

 Alter weights for the closest node (and its 

neighbours) so that it is even nearer to the input 

vector. 

 Go to step 2 until convergence is achieved. 

Effectively, this training algorithm is very simple, 

following a familiar equation: 

wij  k ( xi   wij )                                                   (12) 

Where k is the learning coefficient, x is input pattern, 

wij is weight in two dimensions, and ∆ wij is the change 

in the weight. So all neurons in neighbourhood (say N) 

to neuron xd0    (i.e., the one with minimum distance) 

have their weights adjusted. The adjustment of k and N 

is an area of much research, but Kohonen suggested 

splitting the training up into two phases. Phase 1 

reduces down the learning coefficient from 0.9 to 0.1 

(or similar values), and the neighbourhood reduces 

from half the diameter of the network down to the 

immediately surrounding cells (N = 1). Following that, 

phase 2 reduces the learning coefficient from perhaps 

0.1 to 0.0 but over double or more the number of 

iterations in phase 1. The neighbourhood value is fixed 

at 1. It was seen that the two phases allow firstly the 

network to quickly ‗fill out the space‘ with the second 

phase fine-tuning the network to a more accurate 

representation of the space. The resulting output 

diagram may be visualized showing clusters, evolving 

as time progresses. The examples of typical clusters 

include each user accessing the network, each object to 

be accessed on the network, each targeted host, each 

action, each service, and each credential of the user, etc. 

This part of the experiment did not involve any 

correlation as there were previously, in fact no 

capability clusters present in the database. Rather, this 

activity filled up the database with relationship 

description, to the extent of entering second part of the 

activity where correlation is to be examined and 

database is to be enriched with new relationships. This 

part of the experiment is also considered equivalently 

as setting threshold for correlation. 

For the second part of the experiment, the network 

was monitored for second and third day of the 

experiment. This enabled to see most of the users 

accessing the similar objects on the network, thus 

generating an alert. In this part of the experiment, a 

total of seventy (70) new users were identified, and thus 

relationships were described in the database, and 

clusters created onto the map. 

A visualization application was added to the network 

(with the database) to enable analysis of emerging in- 

formation from these activities, as access to the 

network evolves. The double click, for example on an 

object cluster shows data from the database, about how 
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many users accessed it with respective credentials and 

actions with respect to time. Though, it was visualized 

in real time through alerts. In another example, a user 

access along with its credential was monitored in real 

time with a range of objects accessed on a particular 

host with respective actions. In each instance, 

respective alert generated was observed. 

 

V. Comparative Discussion 

The clustering approach proposed in this work is 

simple and addresses the objectives for real time 

notification of (registered) alerts and enriches the 

database with evolving relationships. 

An important component of network policy in many 

commercial environments is separation of duty and 

monitoring of network traffic for network management 

purposes.  Nowadays, many networks deploy policy 

based access to the network to implement separation of 

duty. The role based access control (RBAC) model [5] 

provides a conceptual framework for implementing a 

role based activity in a policy. However, it does not 

detect an evolving capability of the user growing 

beyond its legitimate strength or access limits.  This  

weakness  is generally found in networks, when the 

status of a (private & secured) object on the network 

that is being accessed, modified or deleted by a user 

exceeding one‘s role. The approach in this work 

identifies the relation- ships while they are evolving or 

in other words the object contents are to be accessed. 

Such a weakness in the sys- tem deploying only RBAC 

may be addressed using the proposed approach by 

setting role of the respective ac- count with objects on 

the targeted hosts. The threshold is set accordingly to 

generate alert. Thus, the system gets added capability. 

In fact, the proposed model provides a self-adaptable 

approach to trigger the tolerance level of the system. 

The six-tuple capability data is user-defined and may 

replace source with an IP address by its role; or 

capability may even be increased beyond six-tuple by 

adding role of the user entity to existing six-tuple data. 

This tends to in- crease the number of clusters and in 

turn strengths the correlation process of the system. 

The other examples of undetected activities include 

access to the object by interaction of (internal or 

external) users, etc.  This situation may be addressed 

using our approach, as described in (10), and outlined 

in the algorithm. In other words, the evolving 

relationship between the user and the object is alerted 

during the correlation stage, earlier than it takes place. 

The proposed approach is independent of many 

constraints. At a centralized place, it provides a real 

time discovery of evolving relationships amongst users 

or between users and network object. The proposed 

approach can also be easily embedded in distributed 

environments to trigger alerts before systems become 

vulnerable to attacks. In that case, a modification may 

be suggested such that the six-tuple capability data 

would be provided by distributed sniffers rather than a 

set of closely and fixed-placed sniffers. 

There are many correlation algorithms available in 

the literature like [19][20], which may be used in 

conjunction with our proposed approach. 

 

VI. Conclusions and Future Work 

The proposed model for detecting relationships is 

highly customizable as it is dependent on capability 

model which is user defined. The approach may be 

independently deployed or used in conjunction with 

existing approaches, for example, intrusion detection. 

The database evolves with time as new relationships are 

discovered and capabilities are formed as clusters. The 

detection of relationships may be done using network 

sensors or sniffers by reading the network packets. Two 

stages of correlation are performed; first one detects 

using cluster knowledge compared with capability of 

the entity; the second stage meta-correlation enables 

enriching of net- work database by identifying new 

relationships. As more and more events are registered, 

lesser becomes the probability of finding new patterns 

of relationships and easier becomes the job of the 

network management. 

As a future work, we intend to modify some 

parameters of the clustering: first we want to confirm 

the relevance of the pattern with role based access and 

set the threshold to initiation of possible new 

relationship; secondly we want to develop distributed 

monitoring of these relationships and observe 

frequency of such events to discover new associations 

within the data. 
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