
I.J. Information Technology and Computer Science, 2013, 02, 80-87
Published Online January 2013 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2013.02.09

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 02, 80-87

Self-organized Detection of Relationships in a

Network

P.Lokesh Kumar Reddy

Rama Raja Institute of Technology and Science, Tirupati, A.P., India

E-mail: lokesh.palapati@gmail.com

B.Rama Bhupal Reddy

Dept. of Mathematics, K.S.R.M. College of Engineering, Kadapa, A.P., India

E-mail: reddybrb@gmail.com

S.Rama Krishna

Dept. of Computer Science, S.V. University, Tirupati, A.P., India

E-mail: drsramakrishna@yahoo.com

Abstract — Multistate operations within a network

result in high-dimensional, multivariate temporal data,

and are useful for systems, which monitor access to

network entities like resources, objects, etc. Efficient

self organization of such multistate network operations

stored in databases with respect to relationships

amongst users or between a user and a data object is an

important and a challenging problem. In this work, a

layer is proposed where discovered relationship

patterns amongst users are classified as clusters. This

information along with attributes of involved users is

used to monitor and extract existing and growing

relationships. The correlation is used to help generate

alerts in advance due to internal user-object interactions

or collaboration of internal as well as external entities.

Using an experimental setup, the evolving relationships

are monitored, and clustered in the database.

Index Terns — Relationship Network, Network Access,

Self-organization in Networks, Relationship Clustering

I. Introduction

Communication started to grow due to several

factors in nineties, firstly, due to privatization and

deregulation; secondly, due to penetration of mobile

phones into the society; thirdly due to emergence of

wavelength division multiplexing; and fourthly due to

private companies entering into Internet business[1].

This growth has been hit by Internet bubble burst that

took place during 2001 to 2002. As recovery in

telecommunication industry has recently been

witnessed, a new paradigm of ubiquitous networking

has emerged that is expected to change the scene of

computing. This concept is creating new net- work

topologies and relationship networks.

The network of the future can also be visualized as

we see the industry transitions today like from static

markets to dynamic fast-paced innovations; low speed

to high speed; divergence to convergence; local to

global; fixed to mobile; sometimes to always-on; one

medium to multimedia; and from distinct to bundled

etc.[2]. The intelligence is moving from centers to edges,

where key technology developers are surfacing in the

area of tagging things, sensors, smart technologies, and

nano-structures. The edges of the market include users,

devices at user level and the applications riding on

them. The growth of such technologies is going to

affect the business and the ways of doing businesses.

The ubiquitous networking, tagging, nano-structures,

etc. is also enriching the concept of mobile networking

A mobile ad hoc network (MANET)[3] provides a

communication environment that is characterized by

dynamic changes in the topology and in the availability

of re- sources. In chaining partnerships and

collaborations within this environment, various access

control models have been proposed. The Enterprise

Dynamic Access Control (EDAC) model[4] is based on

basic principles of role based access control (RBAC)

published by National Institute of Standards and

Technology (NIST)[5], and accommodates complex and

scalable access control situations with pre-configured

conditions. The model criterion for resource access is

based on user characteristics and environmentals. As

collaborations among the participants of an ad hoc

network cannot be set up, therefore there is a need for

explicit specification of policies for each activity. This

accounts only for relation- ships set within an access

control model; but it is natural that users, computing

nodes and devices do communicate with other users or

objects in a user space or outside their specified domain

occasionally and continually.

Thus, new concepts in networking and corresponding

access technologies have triggered a great interest in

 Self-organized Detection of Relationships in a Network 81

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 02, 80-87

study of possible new forms of relationships in

networks. Typical applications include network access

detection, frequency of use of each resource, tracking

use of re- sources, user relationships, etc.

In order to model evolving relationships and build

relationship clusters from such databases, neural

networks can be investigated as they have been

reported to be flexible, fault tolerant, robust, and can

solve difficult problems[6]. The learning/training

features of neural net- works in absence of a

supervisory role may be used to model relationship

clusters. Unsupervised learning in the neural network

helps in finding energy minima and is therefore more

efficient with pattern association. Obviously, the

disadvantage is that it is then up to the user to interpret

the output.

The Self-Organizing Map (SOM) with its related ex-

tensions has been the most popular artificial neural

algorithm for use in unsupervised learning and data

visualization. There are quite a few types of self-

organizing networks, like the Instar-Outstar network,

the ART-series, and the Kohonen network[7]. The

Kohonen net- work is probably the best example,

because it is quite simple and introduces the concepts

of self-organization and unsupervised training easily. It

provides an ordered display of data to facilitate

understanding of the structures in the data and

illustrates clustered density in the input space case

temporally and sequentially.

In the next section, the related research works found

in the literature regarding detection of network accesses

are highlighted.

II. Related Work

A lot of research work has recently been reported in

the area of access control in network operations of field

units. The primary target has been detection of

intrusions in the form of events and development of

computer audit data. In[8], the authors present studies

for detecting intrusions into the information system,

using frequency property of multiple audit event types

for a given sequence of events. In another work[9], the

authors present an algorithm for monitoring of frequent

items in a distributed data stream environment, with

advantages claimed as reduced communication cost and

overall quality of output. The human signatures have

also been investigated in[10] for intrusion detection. The

respective authors consider signature based detection

techniques and investigate the ability of various routing

protocols to facilitate intrusion detection when attackers

are completely known. In the research works [8][9] stated

above, the main idea has been to identify the

relationship in the form of intrusion after it has taken

place.

The authors in[11] present a survey on the state of the

art work in intrusion detection in mobile ad hoc

network and conclude that schemes that would be

distributed and collaborative are more likely to succeed

in intrusion detection. In a similar work[12], the authors

investigate the placement of modules for misuse

detection in ad hoc networks and propose a family of

algorithms that approximate the optimal solution, with

resource consumption tradeoffs. The Dempster-Shafer

theory has also been investigated in[13] in the context of

intrusion detection in networks and respective authors

discuss its usefulness in distributed networked

environment. In the research works [11] [12] [13], the main

target has been the distributed environment and the

placement of sniffers in order to monitor the data for

subsequent analysis.

Regarding data classification and self-organization, a

lot of research has been reported in open literature, and

many commercial projects employ the SOM as the tool

for solving hard real-world problems[14][15]. The authors

in[16] suggest a method for clustering time varying data

by using self-organizing maps, by introducing

dissimilarity measures for capturing the temporal

structure of the data in a simple topology preserving

model. In another work[17], a temporal extension of the

Self-Organizing Map (SOM) is presented by authors,

where the network learns local representations of the

temporal con- text associated with a time series, and

extends classical properties of SOM to time. The

authors in[18] discuss self-organizing models that

provide valuable tools for data mining, clustering and

visualization. In that, they extend basic vector-based

models by recursive computation to process sequential

and tree-structured data directly.

In[19], the authors present an approach to build an

associative classifier composing consistent rules, and

have shown the effectiveness of such classifiers over

traditional classifiers in several datasets. The clustering

within an application other than network has also been

investigated in[20], where the authors discuss knowledge

discovery (in melanomas domain) using combination of

clustering and generalization to identify groups and

build general descriptions of respective clusters.

In summary, many approaches were found in

literature for detection of network access (either online

or offline), but objectives set for such works were either

intrusion detection or subsequent analysis for audit

purposes. In this work, the study and analysis of

evolving relation- ships formed during multi-state

operations within a net- work is the main focus.

The Section III discusses modeling of relationships

and the proposed scheme. In Section IV, experimental

setup is discussed to implement the proposed algorithm.

For purposes of simplicity and training, the Kohonen

network is embedded in the model for developing

classification and identifying evolving relationships in a

network. The Section V presents comparative

discussions followed by conclusions in Section VI.

82 Self-organized Detection of Relationships in a Network

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 02, 80-87

III. Proposed Approach

In order to understand relation between participating

devices or nodes, it is desirable that a mathematical

relation among features or attributes of participating

nodes or devices be defined. Let X be a set of features,

and R be a relation. Then x R y iff x and y satisfy

following conditions[21]:

Reflectivity:

( x  X) (x R x) (1)

Symmetry:

( x, y  X) (if x R y, then y R x) (2)

Transitivity:

( x, y X) (if x R y y R z, then x R z) (3)

Therefore, R is called an equivalence on X iff R

obeys reflectivity, symmetry, and transitivity. In other

words, the features of nodes and devices stored in

databases may have relation if they satisfy reflectivity,

symmetry, and transitivity. Further, equivalence clause

of an element may be defined as follows[13]:

a  X , a {x  X | x R a} (4)

Properties of Relation R:

Let R be an equivalence relation on X, such that:

1)  a, b  X (if a Rb, then a b ) (5)

2)  a, b  X (if a R b, iff a  b) (6)

3) X  U a , i  2 I (7)

where [ai] and [aj] are pair wise disjoint subsets of X.

We can narrate here an example of relation R on

modular arithmetic as follows:

Consider X = Z, where x, y Є Z; n Є N (and is fixed),

n > 1. If

x R y iff n | (x  y) i.e., n divides (x  y) (8)

then R is reflective, symmetric, and transitive. This

relationship is examined further in the next section,

once sample user activities in the form of attributes of

each node are considered for relationship detection.

3.1 Relationship Network

Relationship network analysis concerns itself with

measuring of relationships and flows among different

measurements of attributes[22]. Once a database

containing attributes or features of participating devices

is developed, relations among attributes can be

developed. Thus, it is possible to model such an

analysis as a relationship network, as each individual

activity measurement of the device is an entity and their

interactions or interactions between users and data

objects imply relationships and flows. Such relationship

networks can provide a mathematical analysis of

relationships in an expert system, yet visual

representations are often easier to comprehend.

The relationship network can be modelled as a graph,

consisting of a set of nodes and edges, where each node

represents a device or a data object and an edge

represents a relationship between a pair of such entities,

as shown in Fig. 1. The Fig. 1 represents network

relationship among six entities (p1, p2,., p6) within a

net- work. Some of them are derived from others, in

that some relationships are prerequisite to others which

may further be termed as consequence. The connection

between any two entities is weighted, and the weighted

link may be termed as an edge of the relationship. The

edge can be strong or weak depending on the value of

corresponding weight. Once this strength is correlated

with a threshold, it may be defined as: the higher the

value of this weight, the stronger the link and hence

stronger the relationship.

Fig. 1: A simple relationship network

Based on correlation, the relationships can be

exploited to develop clusters of similar and close

attributes. The correlations may further be used to

generate triggers or alerts once new instances of

relationships are sensed and correlated with these

clusters. The question that needs to be addressed is how

such a relation is to be inferred and how many such

instances are needed for ensuring confidence that a

stronger relationship has occurred between users or

between a user and a data object. In the following

section, this is further investigated

3.2 Modeling Relationship in a Network

Modeling or discovering a new relationship has been

an open problem. Generally, a threshold is deemed

necessary to trigger an alert before new relationship

amongst users or between a user and a data object

affects the sys- tem. In order to understand this,

consider the example of an intrusion detection system

where port scan, buffer overflow are considered as

attacks and corresponding messages from intrusion

detection system are called as alerts. An alert

correlation system with a known model database, which

uses the correlation technique based on a-priori

knowledge, clusters the alerts that act as a pattern

defined in the model database. The matching threshold

is used to generate an alert. Let us classify this alert

 Self-organized Detection of Relationships in a Network 83

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 02, 80-87

typically as Orange_alert (O_alert). This type of modeling may be illustrated as shown in Fig. 2.

Fig. 2: Alert correlation based on known patterns

Since the models in the database are limited to

known patterns, hence the new pattern of relationship is

different from a-priori knowledge based alert

correlation. The alerts based on discovery of new

relationships can help to solve this problem. For this,

the strength and rising process of the new relationship

may be used to define the threshold for triggering the

tolerance mechanism of the Relationship Detection

System (RDS). This seems rationale as the rising

process of achieving new strengths in relationships on

the network increases the vulnerability of the targeted

system.

In order to model this rising process of achieving

new strength in relationship, consider a node/device

which is trying to access an object in a network. The

capability of the developing relationship may be

described as a six-tuple, as follows:

Capability ={src, trgt, actn, srvc, prprty, crdntls} (9)

where capability describes the initiator (source ~src)

of the relationship to perform an action (~actn) on the

property (~prprty) of the service (~srvc) with given

credentials (~crdntls) on the target (~trgt) destination.

In order to illustrate this, a state transition diagram can

be used where edges are new relationships and nodes

are new capabilities. This is shown in Fig. 3, where Co

is the initial capability state. After a relationship Ri is

formed, a new strength Si is achieved. Looking at Fig.3

as an example, the union of C1, C2 and C3 is the pre-

requisite to new relationship R4. After R4 is formed, a

new strength is achieved and reaches capability state

C4. Thus, a capability state has a prerequisite before a

new relationship can be formed. This gives rise to new

relationships and capability states. Thus, this may form

a chain of relationships, one derived from the preceding

one and so on, in a temporal fashion.

Fig. 3: State transition based on new relationships and strengths

To understand this further, an example of an

unauthorized file access may be phrased as: getting

knowledge of the service  port of the address 

getting the root access  installing the components to

access the file  get the file. There is a logical

relationship between two capability states. For example,

if C0 = {src, trgt, sniff, address, content, Anne} and C1

= {src, trgt, sniff, all addresses, content, [Anne, Bill]},

this means C0 can be logically inferred from C1.

It can be inferred that every relationship is related to

two capability states: one is prerequisite state providing

the necessary strength for a new relationship, and the

other the consequence state, which includes the new

achieved strengths. This, in turn, raises a new concept

of an alert which embeds existing alert level,

prerequisite state and the consequence state. This new

alert may be classified as Yellow alert (Y_Alert), and

defined as a three-tuple

Y_Alert (YA) =(Alert,Prerequisite,Consequence) (10)

Where Alert is a four-tuple message from RDS and it

carries four information components: name, time,

84 Self-organized Detection of Relationships in a Network

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 02, 80-87

source, target. The name is name of the relationship

that triggers this alert, time = (begin, end) of the

relationship, source and target are net addresses of the

relationship entities; Prerequisite includes prerequisite

capability of the alert, and Consequence is the current

capability state after alert is finished. To find new

relationship patterns, alerts are transformed into

Y_Alerts, then correlated into a new relationship

incident to uncover logic relations. The Y_Alerts can

be listed along with their capabilities states and

corresponding timing ranges. This helps in correlating

Y_Alerts with Meta-Relationship (R), and thus new

relationships can be discovered and ultimately stored in

the database. This Meta-relationship triggers another

level alert, say Red_Alert (RA), and is defined as a

three- tuple:

R_Alert ‗RA‘ = {set_R, set_C, Time} (11)

Where set_R is the set of correlated Y_Alert, set_C is

the set of the capabilities of all consequences of the

Y_alert, Time is begin_time and end_time of these

Y_Alerts. Meta relationship R resulting in R_Alert can

be easily proved that it is a partial relationship. For this,

it can be easily seen that they do not follow (1) and (2).

For reflectivity, it can be easily verified that end_time

of YA1> begin_time of YA1 and the reverse is not true,

if YA1 ε R. For symmetry, it is also easy to see that

YA2 is derived from the other YA1 and the converse is

not true.

Fig. 4: Relationship measurement & description model

Based on these Y_Alerts and Meta-relationship ―R‖,

an experimental model for alert correlation and

generating Red Alert ‗RA‘ is depicted as shown in

Fig.4. The Fig. 4 shows a self-evolving model for

relationship correlation and detection. The alerts are

correlated and the ones which exist in the database are

reported as existing relationship incidence. This step

reduces a greater number of alerts for modeling of

relationships in the network. In the second step, the

isolated alerts are correlated with Meta-relationship ‗R‘.

If correlated, the Meta- relationship is reported as

R_Alert and termed as a new relationship. After that, it

is described in the database. The setup illustrated in Fig.

4 may be summarized in an algorithm as follows:

3.3 Relationship Detection Algorithm:

After an alert is sensed, the following sequence of

events takes place:

1) If there is an existing Red_Alert ‗RA‘, whose

set_C contains consequence of new YA, go to

step ―g‖, else go to step ―b‖.

2) If prerequisite of ‗YA‘ is empty go to step ―e‖,

else go to step ―c‖.

3) If there is a Red_Alert ‗RA‘ and union of

capability of RA‘s set_C implies prerequisite of

‗YA‘, go to step ―e‖, else go to step ―d‖.

4) If there are some meta-relationships existing

and the union of the set_C of these meta-attacks

implies the prerequisite of YA, then combine

these meta_relationship to a new Red_Alert RA,

go to step ―e‖, else go to step ―f‖.

5) If the union of set_C of the newly combined

meta-relationship ‗R‘ implies consequence of

YA, go to step ―g‖, else go to step ―f ‖.

6) Let YA join the red_alert ‗RA‘, put YA into

RA‘s set_R and let consequence of RA join

set_C, determine RA‘s time stamp. Break.

7) Discard false alert YA; go to ‗a‘ to deal with

next yellow alert ‗YA‘.

In the next section, an experimental setup is

described to simulate the discovery and clustering of

relationships developed in a local area network.

IV. Experimental Setup

A typical local area network was selected with about

five hundred and fifty user accounts. The accounts were

grouped into five categories of access (i.e. credentials)

on the network. These categories were ‗administration‘,

‗faculty‘, ‗student‘, ‗staff‘, and ‗public‘. The actions

supposed to be carried through these accounts during

 Self-organized Detection of Relationships in a Network 85

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 02, 80-87

network access involved five different types of actions

on twelve different target hosts or servers. The actions

involved were ‗create‘, ‗modify‘, ‗read‘, ‗delete‘, and

‗not available/ unauthorized‘. The target hosts were

centrally placed in a room. The service available on

different target hosts contained files and programs. The

objective was to examine the network setup vis-à-vis

Fig. 4, using the procedure outlined in the algorithm

described in the previous section.

Based on this information, six-tuple data was

generated using (9) for any user access. A data map-

ping followed that coverts these tuples to numerical

values to train the network. The time stamp was added

to make it to seven-tuple data to show evolution of the

relationships during run time. These data values enable

self-organizing feature of Kohonen network to allow

data values to be mapped onto a two-dimensional plane

with similar data residing in closer proximity.

The architecture of such a network can be reduced to

two key issues: input layer and output layer[14]. The

number of input nodes (say 7 based on source address,

time stamp, target, service, property, action, credentials)

equals the dimension of the input vector. The output

layer processes the input data and gives an output. The

number of output nodes determines the maximum

number of clusters to be found. Each neuron (node) in

the output sheet has a location in the configuration and

represents a cluster, or alternatively a set of common

features.

The proposed system uses Kohonen Self Organizing

Maps (SOM) to plot a matrix of the available data. This

is a two dimensional plane containing 1024 cells

(32x32 plot). The size of 32x32 clusters is arbitrary

(although above than required number of clusters

adequate for possible relationship clusters in a typical

local area network) and has been selected only for

experimental purposes.

Activity on the network was monitored for users on a

full working day. The period of network activity for a

typical user ranged from few minutes to less than

seventy minutes. Out of five hundred and fifty user

accounts, one hundred and eighty–five users accessed

the network at different times. The mapped values for

these users accumulated in a database were processed

to train the SOM network to generate capability clusters.

Once built, the SOM takes the data from the database

and decides the position of a user entity or the source of

activity in the network based on the attributes attached

to it. It contains 32×32 output nodes along with input

network were updated each time an input pattern (i.e.,

seven-tuple data) was presented for training. This

process continued till convergence of its training

algorithm. The algorithm used for training of the

network typically undergoes the following steps [14]:

 Define input value range.

 Present an input pattern (i.e., twenty data values).

 Compute distance between input and weight, and

sum them.

 Select the output node with minimum distance –

this is the node that is closest to the input vector.

 Alter weights for the closest node (and its

neighbours) so that it is even nearer to the input

vector.

 Go to step 2 until convergence is achieved.

Effectively, this training algorithm is very simple,

following a familiar equation:

wij  k (xi  wij) (12)

Where k is the learning coefficient, x is input pattern,

wij is weight in two dimensions, and ∆ wij is the change

in the weight. So all neurons in neighbourhood (say N)

to neuron xd0 (i.e., the one with minimum distance)

have their weights adjusted. The adjustment of k and N

is an area of much research, but Kohonen suggested

splitting the training up into two phases. Phase 1

reduces down the learning coefficient from 0.9 to 0.1

(or similar values), and the neighbourhood reduces

from half the diameter of the network down to the

immediately surrounding cells (N = 1). Following that,

phase 2 reduces the learning coefficient from perhaps

0.1 to 0.0 but over double or more the number of

iterations in phase 1. The neighbourhood value is fixed

at 1. It was seen that the two phases allow firstly the

network to quickly ‗fill out the space‘ with the second

phase fine-tuning the network to a more accurate

representation of the space. The resulting output

diagram may be visualized showing clusters, evolving

as time progresses. The examples of typical clusters

include each user accessing the network, each object to

be accessed on the network, each targeted host, each

action, each service, and each credential of the user, etc.

This part of the experiment did not involve any

correlation as there were previously, in fact no

capability clusters present in the database. Rather, this

activity filled up the database with relationship

description, to the extent of entering second part of the

activity where correlation is to be examined and

database is to be enriched with new relationships. This

part of the experiment is also considered equivalently

as setting threshold for correlation.

For the second part of the experiment, the network

was monitored for second and third day of the

experiment. This enabled to see most of the users

accessing the similar objects on the network, thus

generating an alert. In this part of the experiment, a

total of seventy (70) new users were identified, and thus

relationships were described in the database, and

clusters created onto the map.

A visualization application was added to the network

(with the database) to enable analysis of emerging in-

formation from these activities, as access to the

network evolves. The double click, for example on an

object cluster shows data from the database, about how

86 Self-organized Detection of Relationships in a Network

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 02, 80-87

many users accessed it with respective credentials and

actions with respect to time. Though, it was visualized

in real time through alerts. In another example, a user

access along with its credential was monitored in real

time with a range of objects accessed on a particular

host with respective actions. In each instance,

respective alert generated was observed.

V. Comparative Discussion

The clustering approach proposed in this work is

simple and addresses the objectives for real time

notification of (registered) alerts and enriches the

database with evolving relationships.

An important component of network policy in many

commercial environments is separation of duty and

monitoring of network traffic for network management

purposes. Nowadays, many networks deploy policy

based access to the network to implement separation of

duty. The role based access control (RBAC) model [5]

provides a conceptual framework for implementing a

role based activity in a policy. However, it does not

detect an evolving capability of the user growing

beyond its legitimate strength or access limits. This

weakness is generally found in networks, when the

status of a (private & secured) object on the network

that is being accessed, modified or deleted by a user

exceeding one‘s role. The approach in this work

identifies the relation- ships while they are evolving or

in other words the object contents are to be accessed.

Such a weakness in the sys- tem deploying only RBAC

may be addressed using the proposed approach by

setting role of the respective ac- count with objects on

the targeted hosts. The threshold is set accordingly to

generate alert. Thus, the system gets added capability.

In fact, the proposed model provides a self-adaptable

approach to trigger the tolerance level of the system.

The six-tuple capability data is user-defined and may

replace source with an IP address by its role; or

capability may even be increased beyond six-tuple by

adding role of the user entity to existing six-tuple data.

This tends to in- crease the number of clusters and in

turn strengths the correlation process of the system.

The other examples of undetected activities include

access to the object by interaction of (internal or

external) users, etc. This situation may be addressed

using our approach, as described in (10), and outlined

in the algorithm. In other words, the evolving

relationship between the user and the object is alerted

during the correlation stage, earlier than it takes place.

The proposed approach is independent of many

constraints. At a centralized place, it provides a real

time discovery of evolving relationships amongst users

or between users and network object. The proposed

approach can also be easily embedded in distributed

environments to trigger alerts before systems become

vulnerable to attacks. In that case, a modification may

be suggested such that the six-tuple capability data

would be provided by distributed sniffers rather than a

set of closely and fixed-placed sniffers.

There are many correlation algorithms available in

the literature like [19][20], which may be used in

conjunction with our proposed approach.

VI. Conclusions and Future Work

The proposed model for detecting relationships is

highly customizable as it is dependent on capability

model which is user defined. The approach may be

independently deployed or used in conjunction with

existing approaches, for example, intrusion detection.

The database evolves with time as new relationships are

discovered and capabilities are formed as clusters. The

detection of relationships may be done using network

sensors or sniffers by reading the network packets. Two

stages of correlation are performed; first one detects

using cluster knowledge compared with capability of

the entity; the second stage meta-correlation enables

enriching of net- work database by identifying new

relationships. As more and more events are registered,

lesser becomes the probability of finding new patterns

of relationships and easier becomes the job of the

network management.

As a future work, we intend to modify some

parameters of the clustering: first we want to confirm

the relevance of the pattern with role based access and

set the threshold to initiation of possible new

relationship; secondly we want to develop distributed

monitoring of these relationships and observe

frequency of such events to discover new associations

within the data.

References

[1] T. Shinohara, ―Ubiquitous network vision for new

growth‖, ITU Telecom Report, 2003.

[2] L. Srivastava, ―The network of the future: What is

over the horizon‖, Billing Asia 2006, Shanghai,

China, 13, March 2006.

[3] Y. Zhang and W. Lee, ―An integrated

environment for testing mobile ad-hoc networks‖,

Proceedings of 3rd ACM Symposium on Mobile

Ad Hoc Networking and Computing (MobiHoc),

June, 2002.

[4] R. Fernandez, ―Enterprise dynamic access control

(EDA C) case study‖, CS1/06-0078 Project,

United States Navy, March 2006.

[5] National Institute of Standards and Technology-

RBAC. http://csrc.nist.gov/rbac/.

[6] D. Hammerstrom, ―Neural networks at work‖,

IEEE Spectrum, pp. 26–32, June 993.

http://csrc.nist.gov/rbac/

 Self-organized Detection of Relationships in a Network 87

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 02, 80-87

[7] Aleksander, et al., ―An Introduction to neural

computing‖, Chapman and Hall, 1990.

[8] N. Ye, X. Li, Q. Chen, S. Emran, and M. Xu,

―Probabilistic techniques for intrusion detection

based on computer audit data‖, IEEE

Transactions on Systems, Man, and

Cybernetics-Part A: Systems and Humans, Vol. 31,

No. 4, pp. 266–274, 2001.

[9] R. Fuller and M. Kantardzic, ―Distributed

monitoring of frequent items‖, Transactions on

Machine Learning and Data Mining, Vol. 1, No. 2,

pp. 67–82, 2008.

[10] F. Anjum, D. Subhadrabandhu, and S. Sarkar,

―Signature based intrusion detection for wireless

ad hoc networks: A comparative study of various

routing protocols‖, IEEE Vehicular Technology

Conference, Orlando, FL, Vol. 58, pp. 2152–2156,

6–9 October 2003.

[11] A. Mishra, K. Nadkarni, and A. Patcha, ―Intrusion

detection in wireless ad hoc networks‖, IEEE

Wireless Communications, pp. 48–60, February

2004.

[12] D. Subhadrabandhu, S. Sarkar, and F. Anjum,

―Efficacy of misuse detection in ad hoc networks‖,

Proceedings of the Annual IEEE

Communications Society Conference on Sensor

and Ad Hoc Communications and Networks, pp.

97–107, 2004.

[13] T. Chen and V. Venkataramanan, ―Dempster-

Shafer theory for intrusion detection in ad hoc

networks‖, IEEE Internet Computing, pp.35–41,

December 2005.

[14] T. Otto, A. Meyer-Baese, M. Hurdal, D.

Sumners, D. Auer, and A. Wismuller, ―Model-

free functional MRI analysis using cluster-

based methods‖, Proceedings of SPIE, Vol.

5103, pp. 17–24, August 2003.

[15] S. Przylucki, W. Wojcik, K. Plachecki, and T.

Golec, ―An analysis of self-organization process

for data classification in multisensor systems‖,

Proceedings of SPIE, Vol.5124, pp. 325–332,

September 2003.

[16] P. D‘Urso and L. Giovanni, ―Temporal self-

organizing maps for telecommunications market

segmentation‖, Neurocomputing, Vol. 71, pp.

2880–2892, 2008.

[17] T. Voegtlin and P. Dominey, ―Recursive self-

organizing maps‖, Neural Networks, Vol. 15, No.

8–9, pp. 979–991, 2002.

[18] B. Hammer, A. Micheli, A. Sperduti, and M.

Strickert, ―Recursive self-organizing network

models‖, Neural Networks, Vol.17, No. 8–9, pp.

1061–1085, 2004.

[19] Y. Shidara, M. Mineichi Kudo, and A. Nakamura,

―Classification based on consistent item set rules‖,

Transactions on Machine Learning and Data

Mining, Vol. 1, No. 1, pp.17–30, 2008.

[20] A. Fornells, E. Armengol, E. Golobardes, S. Puig,

and J. Malvehy, ―Experiences using clustering and

generalizations for knowledge discovery in

melanomas domain‖, Transactions on Machine

Learning and Data Mining, Vol. 1, No. 2, pp. 49–

65, 2008.

[21] K. Rosen, ―Discrete mathematics and its

applications‖, 4th Edition, McGraw-Hill Publishers,

2000.

[22] V. Krebs, ―Introduction to social network

analysis‖, 15 January 2007. http://www.orgnet.

com/sna.html.

P. Lokesh Kumar Reddy, received

the BCA and MCA degrees from S.V.

University, Tirupati in 2004 and 2007.

He is working as Assistant Professor in

Rama Raja Institute of Technology and

Science, Tirupati. His research interest

Network Protocol.

Dr. B. Rama Bhupal Reddy

received the M.Sc., and M.Phil.

degree from S.V. University, Tiruapti.

In 2008, he received the Ph.D. degree

from S.V. University, Tirupati. He is

working as Associate Professor in

department of Mathematics, K.S.R.M.

College of Engineering, Kadapa.

His research interest includes Computational Fluid

Dynamics and Mathematical Modelling. He has

supervised 15 M.Phil. Students and one Ph.D student

guided. He is also member of Editorial Board of five

journals in Research India Publications.

Prof. Dr. S. Rama Krishna

received the M.Sc., M.Phil., and

Ph.D Degrees from S.V. University,

Tirupati. He is working in different

positions in the department of

Mathematics S.V. University,

Tirupati. Recently he is working as

Vice-Principal and Professor,

Department of Computer Science, S.V. University,

Tirupati.

His research interest includes Computational Fluid

Dynamics and Computer Networks and Cryptography.

He has supervised a number of M.Phil. Students 10,

Ph.D students 10 guided and has completed supervised

one Research Project.

http://www.orgnet.com/sna.html
http://www.orgnet.com/sna.html

