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Abstract— Almost estimators are designed for the 

white observation noise. In the estimation problems, 

rather than the white observation noise, there might be 

actual cases where the observation noise is colored. 

This paper, from the viewpoint of the innovation theory, 

based on the recursive least-squares (RLS) Wiener 

fixed-point smoother and filter for the colored 

observation noise, newly proposes the RLS Wiener 

fixed-interval s moothing algorithm in linear d iscrete-

time wide-sense stationary stochastic systems. The 

observation )(ky  is given as the sum of the signal 

)()( kHxkz   and the colored observation noise )(kvc
. 

The RLS Wiener fixed-interval s moother uses the 

following information: (a) the system matrix for the 

state vector )(kx ; (b) the observation matrix H ; (c) the 

variance of the state vector; (d) the system matrix for 

the colored observation noise )(kvc
; (e) the variance of 

the colored observation noise; (f) the input noise 

variance in  the state equation for the colored 

observation noise. 

 

Index Terms— Discrete-Time Stochastic System, RLS 

Wiener Fixed-Interval Smoother, Colored Observation 

Noise, Covariance Information, Innovation Theory   

 

I. Introduction 

In comparison with the Kalman  estimators, the RLS 

Wiener estimators are advantageous in the point that the 

RLS Wiener estimators do not use the information of 

the input noise variance and the input matrix in the state 

equation for the signal. The less information in the 

estimators might avoid the degradation of the estimation 

accuracy caused by the inaccurate informat ion on the 

state-space model. In [1], the RLS W iener filter and 

fixed-point s moother are proposed in linear d iscrete-

time stochastic systems. The estimators need the 

informat ion of the system matrix, the observation vector, 

the variance of the state vector and the variance of 

white observation noise. In addit ion, in linear d iscrete-

time stochastic systems, the following RLS Wiener 

estimators are studied, i.e. the Chandrasekhar-type RLS 

Wiener fixed-point s moother, filter and predictor [2], 

the square-root RLS Wiener fixed-point s moother and 

filter [3] and the RLS Wiener FIR filter [4], etc. 

Almost estimators are designed for the white 

observation noise. In the estimation problems, there 

might be actual cases where the observation noise is 

colored. The estimat ion problem for the observation 

equation, with addit ive colored  observation noise, has 

received much attention in the detection and estimation 

problems for communication systems. For example, in 

[5]-[10], the estimation problem is considered in linear 

discrete-time stochastic systems. In [8], an alternative 

method is proposed on the traditional handling of the 

autoregressive colored observation noise in the speech 

enhancement algorithm based on the Kalman filter. In 

[10], based on the autoregressive moving average 

(ARMA) innovation model, the reduced-order Wiener 

estimators for descriptor system with MA colored 

observation noise and multi-observation lags are 

presented.  

In [11], for the white observation noise, the signal 

estimation problem is considered in linear continuous-

time stochastic systems. Also, the spectral factorization 

method is discussed on the system matrix, the input 

matrix and the observation matrix. That is, the 

innovation state-space model for the colored 

observation model is developed. 

In [12], based on the improved least-squares (ILS) 

method, the parameter estimation technique for a noisy 

autoregressive (AR) signal, observed with additive 

colored noise, is presented.  

 In [13], starting with the Wiener-Hopf equation, the 

RLS Wiener fixed-point smoother and filter are 

presented for the colored observation noise. By the way, 

the innovation theory is an interesting method, which 

has been investigated in the area of the estimation 

techniques for the white observation noise. It might be 

worthwhile to consider the RLS Wiener s moothing 

problem also for the colored observation noise. This 

paper, with the relation of the work in [13] to the 

innovation theory [14], [15], newly proposes the 

discrete-time s moother for the colored observation 

noise in linear wide-sense stationary stochastic systems. 

It is assumed that the smoothing estimate is given as a 

linear transformation of the innovation process . The 
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approach, adopted in this paper, to the design of the 

RLS Wiener s moother has not be examined hitherto in 

the case of the colored observation noise. Based on the 

RLS W iener smoother, the fixed-interval s moothing 

algorithm for the colored observation noise is shown in 

the flowchart of Fig.1. The observation )(ky  is given as 

a sum of the signal )()( kHxkz   and the colored 

observation noise )(kvc
. The RLS Wiener estimators 

use the following information: (a) the system matrix for 

the state vector )(kx ; (b) the observation matrix H ; (c) 

the variance of the state vector; (d) the system matrix 

for the colored observation noise )(kvc
; (e) the variance 

of the colored  observation noise; (f) the input noise 

variance in  the state equation for the colored 

observation noise. Also, the filtering error variance 

function ),(
~

LLPF
 and the prediction error variance 

function )1,(
~

LLPP
, for the signal )(Lz , are  

formulated with regard to the current RLS Wiener 

estimators. 

In section 2, the smoothing problem, based on the 

innovation theory, is introduced. In section 3, Theorem 

1 proposes the RLS Wiener smoothing and filtering 

algorithms. In section 4, Fig. 1 depicts the flowchart  for 

the fixed-interval smoothing estimate ),(ˆ Lkz .    

A numerical simulation example, in section 4, shows 

the estimation characteristics of the proposed RLS 

Wiener fixed -interval smoother and filter for the 

colored observation noise.  

 

II. Least-Squares S moothing Problem Based on 

Innovation Theory  

Let m-d imensional observation equation be described 

by 

)()()( kvkzky c , )()( kHxkz          (1) 

in linear discrete-time stochastic systems. Here, H  is  

an nm  observation matrix, )(kz  is the zero-mean 

signal vector. The process }0),({ kkvc
 represents the 

zero-mean colored observation noise sequence. It is 

assumed that the signal is uncorrelated with the colored 

observation noise as  

0)]()([ svkzE T

c ,  sk,0 .       (2) 

Let )(),( skKskK xx   represent the auto-covariance 

function of the state vector )(kx  in wide-sense 

stationary stochastic systems [16], and let ),( skKx
 be 

expressed in the form of  

).,()(,)(
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Here,   is the transition matrix of )(kx . 

Let the state-space model for )(kx  be described as 

),()()]()([
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skkQswkwE

kGwkxkx

K
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        (4) 

where G  is an ln  input matrix and )(kw  is the 

white input noise vector with the auto-covariance 

function of (4).  

Let  ),( cK  denote the auto-covariance function of 

)(kvc
. The auto-covariance function ),( skKc

 is given 

by 
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Let the state equation for )(kvc
 be given by 

),()()]()([
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skkRsukuE

kukvkv
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      (6) 

in terms of the white input noise vector )(ku  with the 

variance 
uR . It is found that for the expressions 

)],1()1([)1,1(  kvkvEkkK
T

ccc

)],()([),( kvkvEkkK
T

ccc   in the wide-sense stationary 

stochastic systems, the following relationships hold. 
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It is shown that the fixed-interval s moothing estimate 

),(ˆ Lkx  of )(kx  is given by 
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in terms  of the impulse response function ),( ikg  and 

the innovation process  Lii 1),(  [14], [15]. Also, 

),(ˆ kkx  represents the filtering estimate of )(kx , 

which is given as a linear transform of the innovation 

process  kii 1),( . 

Let us consider the estimation problem, which  

minimizes the mean-square value (MSV) 

]||),(ˆ)([|| 2LkxkxEJ                        (9) 

of the fixed-point smoothing error ),(ˆ)( Lkxkx  . 

From an orthogonal projection lemma [16], 
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Lssiikgkx
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    (10) 

the impulse response function satisfies the equation 

.)]()([),()]()([
1





L

i

TT siEikgskxE      (11) 

Here ‘  ’ denotes the notation of the orthogonality. 

From [13], the filtering estimate ),(ˆ kkx  of )(kx  is 

calculated sequentially by 

.0)0,0(ˆ))),1,1(ˆ

)1,1(ˆ)()1,1(ˆ(

)()(()1,1(ˆ),(ˆ
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It is clear that the innovation process )(k  is 

expressed as 

)).1,1(ˆ)1,1(ˆ

)1,1(ˆ()()(

32
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     (13) 

Also, from (8) and (12), the filter gain )(1 kG  is 

equivalent to ),( kkg . For the innovation process 

satisfying 

)()()]()([ skkskE K

T   ,  (14) 

from (11), the impulse response function ),( skg  

and the filter gain )(1 kG  are given by 

),()]()([),( 1 sskxEskg T    ).,()(1 kkgkG    (15) 

From [13], it is seen that the variance )(L  of the 

innovation process }0),({ LL  is formulated as (29) in  

Theorem 1. 

 

III. RLS Wiener Smoothing Equations  

Under the linear least-squares estimat ion problem of 

the signal )(kz  in section 2, Theorem 1 presents the 

RLS Wiener s moothing and filtering equations, which 

use the covariance informat ion of the signal and the 

observation noise. 

 

Theorem 1  

Let the auto-covariance function ),( skKx
 of the state 

vector )(kx  be expressed by (3), let the variance of the 

colored observation noise )(kvc
 be ),( kkKc

 and let the 

variance of )(ku  in the state equation (6) for )1( kvc
 

be )(kRu
. Then, the discrete-time RLS Wiener 

algorithms for the smoothing estimate and the filtering 

estimate of the signal )(kz  consist of (16)-(45) in linear 

wide-sense stationary stochastic systems. 

Smoothing estimate of the signal )(kz : ),(ˆ Lkz  

),(ˆ),(ˆ LkxHLkz        (16) 
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Innovation process: )(L   
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Variance of the innovation process )(L : )(L  
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Filtering estimate of the signal )(Lz : ),(ˆ LLz  
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Filtering estimate of )(Lvc
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Filtering variance function of ),(ˆ LLx : )(11 LS  
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Cross-variance function of ),(ˆ LLx  with ),(ˆ
2 LLv : 
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Cross-variance function of ),(ˆ LLx  with ),(ˆ
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Cross-variance function of ),(ˆ
2 LLv  with ),(ˆ

3 LLv : 
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Filtering variance function of ),(ˆ
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Filter gain for ),(ˆ LLx : )(1 LG  
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Filter gain for ),(ˆ
2 LLv : )(2 LG  
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Filter gain for ),(ˆ
3 LLv : )(3 LG  
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Proof of Theorem 1 is deferred to the Appendix. 

From Theorem 1, the filtering error variance 

function ),(
~

LLPF
 and the prediction error variance 

function )1,(
~

LLPP
, for the signal )(Lz , are given by 
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where ),( LLKz
 represents the variance function of 

the signal )(Lz . 

According to the smoothing and filtering algorithms 

in Theorem 1, the calcu lation steps for the fixed-

interval smoothing estimate ),(ˆ Lkz  of the signal )(kz  

can be shown in the flowchart of Fig. 1. 

 

IV. A Numerical Simulation Example 

In this section, to show the efficiency of the 

estimation characteristics of the proposed RLS Wiener 

fixed-interval s moothing algorithm, a numerical 

example is demonstrated. The fixed-interval s moothing 

estimate is calculated according to the flowchart in Fig. 

1. 

Let a scalar observation equation be described by 

)()()( kvkzky c
, )()( kHxkz  .        (47) 

Here, 
)(kvc  is the zero-mean colored observation 

noise. Let the signal )(kz  be generated by the second-

order AR model. 
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The corresponding state-space model for )(kz  can be 

written as 
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The auto-covariance function of the signal ( )z k  is 

described as follows [13]: 
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From (49) and (50), it can be found that 
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Let the state equation for 
)(kvc  be given by 
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where )(ku  is the white input noise in the state 

equation (52) for the colored observation noise process. 

The autovariance function of the colored observation 

noise 
)(cv

 satisfies the relationships 

)0(),()1,1( ccc KkkKkkK 
 and hence, this lead  to 

21
)0(

a

R
K u

c



 in wide-sense stationary stochastic 

systems. 
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Compute filter gains　G1(k), G2(k), G3(k) by (43)-(45).

Update filtering estimate xhat(k,k) of x(k) by (31).

Update Sij(k), i=1,...,3, j=1,...,3  by (34)-(42).

Calculate initial values: f0(k+1,k+1), f1(k+1,k+1), f2(k+1,k+1), 

f3(k+1,k+1) 

Update xhat(k,k+1) by (16).

Compute filter gains　G1(k+1), G2(k+1), G3(k+1) by (43)-(45).

Update Sij(k+1), i=1,...,3, j=1,...,3  by (34)-(42).

Update filtering estimate xhat(k+1,k+1) of x(k+1) by (31).

Calculate initial values: d1(k,k), d3(k,k), d5(k,k)

Caluculate d1(k,k+1) by (22), d2(k+1,k+1) by (23), d3(k,k+1) 

by (24),

d4(k+1,k+1) by (25), d5(k,k+1) by (26), d6(k+1,k+1) by (27).

Compute filter gains　G1(k+1+m), G2(k+1+m), G3(k+1+m) by (43)-(45).

Update filtering estimate xhat(k+1+m,k+1+m) of x(k+1+m) by (31).

Update Sij(k+1+m), i=1,...,3, j=1,...,3  by (34)-(42).

Caluculate d1(k,k+1+m) by (22), d2(k+1,k+1+m) by (23), d3(k,k+1+m) by (24), 

d4(k+1,k+1+m) by (25), d5(k,k+1+m) by (26), d6(k+1,k+1+m) by (27).

Calculate f0(k+1,k+2+m) by (18), f1(k+1,k+2+m) by (19), 

f2(k+1,k+2+m) by (20), f3(k+1,k+2+m) by (21), xhat(k,k+2+m) by (17).

Calculate smoothing estimate zhat(k,k+2+m) of z(k) by (16).

Initial conditions:

filtering estimate of x(k) at k=0 is xhat(0)=0.

     vhat2(0,0)=0, vhat3(0,0)=0, Sij=0, i=1,...,3, j=1,...,3. 

LAST=L, LAST1=LAST-4

LL=LAST1+2-k

k=1

                  k

k < LAST1+1

m

m < LL+1

STOP

START

Output FIS estimate 

zhat(k.L)

 

Fig. 1: Flowchart for the fixed-interval smoothing estimate ),(ˆ Lkz . 
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Substituting H ,  , 
)0(),( xx KLLK 

, c
, 

)0(),( cc KLLK 
 and uR

 into the RLS Wiener 

estimation algorithms of Theorem 1, the fixed-interval 

smoothing and filtering estimates are calculated. 

Fig. 2 illustrates the colored observation noise 

process 
)(kvc  vs. k , 5001  k , for the variance 

01.0uR
 in  (52). Fig. 3 illustrates the fixed-interval 

smoothing estimate ),(ˆ Lkz , 500L , vs. k , 5001  k , 

for the variance 
01.0uR

. Fig. 4 illustrates the MSVs 

of the filtering errors ),(ˆ)( LLzLz   of the signal )(Lz  

and the fixed-interval smoothing errors ),(ˆ)( Lkzkz   of 

)(kz  vs. vs. L  for 
001.0uR )0582.0)0(( cK

. In Fig. 

4, as the fixed interval L  increases, 600100  L , the 

MSV of the fixed -interval s moothing errors gradually 

decreases. Also, for 700100  L , the MSV of the 

fixed-interval s moothing errors ),(ˆ)( Lkzkz   is less 

than the MSV of the filtering errors ),(ˆ)( kkzkz  , 

Lk 1 . Hence, the estimation  accuracy of the fixed-

interval s moother is better than that of the filter for 
.700100  L  From this fact, the fixed-interval 

smoothing algorithm, calcu lated based on the flowchart 

of Fig. 1, is correct. 

 

 

Fig. 2: Colored observation noise process )(kvc
 vs. k , 5001  k , for the variance 01.0uR  in (52). 

 

 

Fig. 3: Fixed-interval smoothing estimate ),(ˆ Lkz , 500L , vs. k  for the variance 01.0uR . 
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Fig. 4: MSVs of the filtering errors ),(ˆ)( kkzkz  , Lk 1  and the fixed-interval smoothing errors ),(ˆ)( Lkzkz   vs. ,L  1000100  L . 

 

V. Conclusions 

In this paper, the RLS W iener smoothing problems, 

with relation to the innovation theory, have been 

considered for the colored observation noise. 

A numerical simulation example has shown that the 

proposed estimat ion algorithms for the RLS Wiener 

fixed-interval smoothing and filtering estimates, in the 

case of the colored observation noise, are feasible. In 

Fig. 4, as the fixed interval L  increases, 600100  L , 

the MSV of the fixed-interval smoothing errors 

gradually decreases. Similar tendency, on the estimation 

accuracy, also fit to the RLS Wiener filter. A lso, for 

700100  L , the MSV of the fixed-interval smoothing 

errors ),(ˆ)( Lkzkz   is less than the MSV of the filtering 

errors ),(ˆ)( kkzkz  , Lk 1 . Hence, fo r 700100  L , 

the estimation accuracy of the RLS Wiener fixed-

interval smoother is superior to that of the RLS Wiener 

filter for the colored observation noise.    

The RLS W iener estimators do not use the 

informat ion of the variance )(kQ , for the input noise 

)(kw , and the input matrix G  in the state equation (4), 

in comparison with the Kalman estimat ion technique 

[13]. In the RLS Wiener estimators, it is not necessary 

to take account of the degraded estimat ion accuracy 

caused by the modeling errors for )(kQ  and G . 
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Appendix Proof of Theorem 1 

From the equation for the filter gain (36) in  [13], 

)]()([ kkxE T  is given by 

.)1(

))(1()1(),()]()([

13

2

1211

T

c

T

c

T

x

T

kS

kSkSHkkKkkxE



  

From (15) together with (13), it is seen that 

.1],))1,1(ˆ

)1,1(ˆ)1,1(ˆ)()(([

)]()([)(),(

3

2

2

skss

ssssxHsykxE

skxEsskg

T

c

c

T












  (A-1) 

Substituting (A-1) into (8), (8) can be reduced to 

).,1(),1(),1(),1(),(ˆ

)()(})]1,1(ˆ)([))](1,1(ˆ)([

)]1,1(ˆ)([),({),(ˆ),(ˆ

3210

1

3

2

2

1

LkfLkfLkfLkfkkx

iiiikxEiikxE

HiixkxEHikKkkxLkx

T

c

TT

c

T

L

ki

TTTT

x














 

Here, ),1(0 Lkf  , ),1(1 Lkf  , ),1(2 Lkf   and 

),1(3 Lkf   are given by 

,)()(),(),1(
1

1

0 



L

ki

T

x iiHikKLkf   

,)()()]1,1(ˆ)([),1(
1

1

1 



L

ki

TTT iiHiixkxELkf   

,)()())](1,1(ˆ)([),1(
1

12

22 



L

ki

T

c

T iiiikxELkf   

.)()()]1,1(ˆ)([),1(
1

1

32 



L

ki

T

c

T iiiikxELkf   

Using (3) and introducing a function )(LM  given by  

),()()()( 1

1

iiHiALM T
L

ki

T 



   

),1(0 Lkf   is written as 

).())(,(

)()()()(),1(
1

1

0

LMkkK

iiHiAkBLkf

kT

x

L

ki

TT









    

From the equation for updating )(LM  

),()()()1()( 1 LLHLALMLM TT   

(18) is obtained. Initial value for ),1(0 Lkf  , at 

1 kL , is )1,1(0  kkf , which is derived as follows: 

).1()1(),(

)1()1()1,()1,1(

1

1

0









kkHkkK

kkHkkKkkf

TT

x

T

x




 

Subtracting )1,1(1  Lkf  from ),1(1 Lkf  , it can be 

shown that 

).()(

)]1,1(ˆ)([)1,1(),1(

1

11

LLH

LLxkxELkfLkf

TT

T




  (A-2) 

Upon substituting (A-57) and (A-58), presented in 

[13], (A-2) can be reduced to 
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),()())(1,1()(

)()())(1,()(

)()())(1,()()(

)()())(1,()()(

)()())(1,()]()([

)()(

))](1()([)1,1(),1(

1

2

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

111

LLHLklkB

LLHLklkA

LLHLjJHjAkB

LLHLjJHjBkA

LLHLjJjykxE

LLH

LOkxELkfLkf

TLTT

TLTT

L

kj

TLTTTT

k

j

TLTTTT

L

j

TLTTT

TT

LTT






















































  (A-3) 

where 





k

i

iHBLiJLkl
1

11 ),()1,()1,(  





L

ki

iHALiJLkl
1

12 ).(),(),1(  

Introducing functions 

),()1,1()1,1(

),()1,()1,(

22

11

kBLklLkd

kALklLkd

TL

TL




 

(19), for updating ),1(1 Lkf  , is obtained. Initial 

value in (19) for ),1(1 Lkf  , at 1 kL , is 

)1,1(1  kkf , which is derived, from (A-14), (A-37),  

(A-57) and (A-58) presented in [13], as follows: 

).1()1()(

)1()1())(()(

)1()1())(,()()(

)1()1())](()([

)1()1()],(ˆ)([)1,1(

1

11

1

11

1

11

1

1

1

1

1

























kkHkS

kkHkrkA

kkHkiJHiBkA

kkHkOkxE

kkHkkxkxEkkf

TTT

TTkTT

k

i

TkTTTT

TTkTT

TTT











 

Subtracting )1,1(2  Lkf  from ),1(2 Lkf  , it  can be 

shown that 

).()()(

)]1,1(ˆ)([)1,1(),1(

12

222

LL

LLkxELkfLkf

T

c

T






   (A-4) 

Substituting (A-60) and (A-61), derived in [13], into 

(A-4), it can be reduced to 

),()())(1,1()(

)()())(1,()(

)()())(1,()()(

)()())(1,()()(

)()())(1,()]()([

)()()()(

)]1()([)1,1(),1(

11

4

11

3

1
1

1

1

2

1

1

1

2

1

1

11

2

121

222

LLLklkB

LLLklkA

LLLjJHjAkB

LLLjJHjBkA

LLLjJjykxE

LL

LOkxELkfLkf

LT

c

T

LT

c

T

L

kj

LT

c

TTT

k

j

LT

c

TTT

L

j

LT

c

TT

T

c

LT

c

T

























































  (A-5) 

where 





k

i

iHBLiJLkl
1

23 ),()1,()1,(  







1

1

24 ).()1,()1,1(
L

ki

iHALiJLkl  

Introducing functions 

),(),1(),1(

),(),(),(

4

2

4

3

2

3

kBLklLkd

kALklLkd

TL

c

TL

c









 

(20), for updating ),1(2 Lkf  , is obtained. In itial 

value in  (20) for ),1(2 Lkf  , at  1 kL , is 

)1,1(2  kkf , which is derived, from (A-19), (A-37), 

(A-60) and (A-61) presented in [13], as follows: 

).1()1())((

)1()1())(()(

)1()1())(,()()(

)1()1()())](()([

)12()1())](,(ˆ)([)1,1(

12

21

12

21

1

12

2

12

2

12

22

























kkkS

kkkrkA

kkkiJHiBkA

kkkOkxE

kkkkkxEkkf

T

c

T

kT

c

T

k

i

kT

c

TTT

T

c

kT

c

T

T

c

T











 

Subtracting )1,1(3  Lkf  from ),1(3 Lkf  , it can be 

shown that 

).()()]1,1(ˆ)([

)1,1(),1(

1

3

33

LLLLkxE

LkfLkf

T

c

T  


          (A-6) 

Substituting (A-60) and (A-61), presented in [13], 

into (A-6), it can be reduced to 

),()())(1,1()(

)()())(1,()(

)()())(1,()()(

)()())(1,()()(

)()())(1,()]()([

)()()()(

)]1()([)1,1(),1(

1

6

1

5

1
1

1

3

1

1

3

1

1

1

3

11

333

LLLklkB

LLLklkA

LLLjJHjAkB

LLLjJHjBkA

LLLjJjykxE

LL

LOkxELkfLkf

LT

c

T

LT

c

T

L

kj

LT

c

TTT

k

j

LT

c

TTT

L

j

LT

c

TT

T

c

LT

c

T




















































    (A-7) 

where 














1

1

36

1

35

).()1,()1,1(

),()1,()1,(

L

ki

k

i

iHALiJLkl

iHBLiJLkl
 

Introducing functions 

),(),(),( 55 kALklLkd TL

c  

),()1,1()1,1( 66 kBLklLkd TL

c   
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We obtain (21) for updating ),1(3 Lkf  . Init ial value 

in (21) for ),1(3 Lkf  , at 1 kL , is )1,1(3  kkf , 

which is derived, from (A-24), (A-37), (A -60) and (A-

61) presented in [13], as follows: 

).1()1()(

)1()1())(()(

)1()1())(,()()(

)1()1())](()([

)12()1()],(ˆ)([)1,1(

1

31

11

31

1

11

3

1

3

1

33

























kkkS

kkkrkA

kkkiJHiBkA

kkkOkxE

kkkkkxEkkf

T

c

T

kT

c

T

k

i

kT

c

TTT

T

c

kT

c

T

T

c

T











 

Subtracting )1,(1 Lkl  from ),(1 Lkl , it can be shown 

that 

)).1,(

)1,()1,()(,(

)())1,(

),(()1,(),(

5

3

1

11

1

1

111















Lkl

LklLklHLLJ

iHBLiJ

LiJLklLkl

L

c

L

c

L

k

i
      (A-8) 

Substituting (A-8) into the equation for ),(1 Lkd , it 

can be reduced to 

)),1,()1,(

)1,()(()1,(

)())}1,()1,(

)1,()(,()1,({),(

53

111

53

1

111

1

1













LkdLkd

LkHdLGLkd

kALklLkl

LklHLLJLklLkd

c

TL

c

L

c

LL

 

where we used the expression for the filter gain  

),()( 11 LLJLG L  in [13]. The init ial value for ),(1 Lkd , 

at kL  , is ),(1 kkd , which is derived as follows: 

).(
))((

)()(),(

)(),(),(

11

11
1

1

1
1

1
1

1

kS
kr

kAiHBkiJ

kAkklkkd

kTk

k

i

Tk

Tk















  

Here, (A-14) and (A-37), presented in [13], are used. 

Subtracting )1,1(2  Lkl  from ),1(2 Lkl  , it  can be 

shown that 

)).1,1()1,1(

)1,1()(,()(),(

)())1,(),((

)(),()1,1(),1(

64

1

211

1

1

11

122

















LklLkl

LklHLLJLHALLJ

iHALiJLiJ

LHALLJLklLkl

L

c

L

c

L

L

ki

           (A-9) 

Substituting (A-9) into the equation for ),1(2 Lkd  , it 

can be reduced to 

)).1,1()1,1()1,1(

),()(()1,1(

)())}1,1(

)1,1()1,1(

)()(,()1,1({),1(

642

12

6

4

1

2

12

1

2

















LkdLkdLkHd

kkKHLGLkd

kBLkl

LklLklH

LHALLJLklLkd

x

kL

TL

c

L

c

L

L

 

The initial value for ),1(1 Lkd  , at 1 kL , is 

)1,1(1  kkd , which is derived as follows: 

).,()1(

)()1()1,1(

)()1,1()1,1(

1

1

2

2

2

2

kkKHkG

kBkHAkkJ

kBkklkkd

x

Tk

Tk











 

Subtracting )1,(3 Lkl  from ),(3 Lkl , it can be shown 

that 

)).1,(

)1,()1,()(,(

)())1,(

),(()1,(),(

5

3

1

12

2

1

233















Lkl

LklLklHLLJ

iHBLiJ

LiJLklLkl

L

c

L

c

L

k

i
     (A-10) 

Substituting (A-10) into the equation for ),(3 Lkd , it 

can be reduced to 

)),1,()1,(

)1,()(()1,(

)())}1,()1,(

)1,()(,()1,({),(

53

12

2

3

53

1

123

2

3













LkdLkd

LkHdLGLkd

kALklLkl

LklHLLJLklLkd

cc

TL

c

L

c

LL

c

 

where we used the expression for the filter gain  

),()( 22 LLJLG L

c  in [13]. The in itial value for 

),(3 Lkd , at kL  , is ),(3 kkd , which is derived as 

follows: 

).(

))((

)()(),(

)(),(),(

21

2

21

2

1

2

2

3

2

3

kS

kr

kAiHBkiJ

kAkklkkd

c

kTk

c

k

i

Tk

c

Tk

c

















  

Here, (A-19) and (A-37), presented in [13], are used. 

Subtracting )1,1(4  Lkl  from ),1(4 Lkl  , it can be 

shown that 

)).1,1()1,1(

)1,1()(,()(),(

)())1,(),((

)(),()1,1(),1(

64

1
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1

1
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LklHLLJLHALLJ

iHALiJLiJ
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L

c

L

c

L

L
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   (A-11) 

Substituting (A-11) into the equation for ),1(4 Lkd  , 

it can be reduced to 
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The initial value for ),1(4 Lkd  , at 1 kL , is 

)1,1(4  kkd , which is derived as follows: 
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Subtracting )1,(5 Lkl  from ),(5 Lkl , it can be shown 

that 
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Substituting (A-12) into the equation for ),(5 Lkd , it 

can be reduced to 
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where we used the expression for the filter gain  

),()( 33 LLJLG L

c  in [13]. The init ial value for 

),(5 Lkd , at kL  , is ),(5 kkd , which is derived as 

follows: 
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Here, (A-24) and (A-37), presented in [13], are used. 

Subtracting )1,1(6  Lkl  from ),1(6 Lkl  , it can be 

shown that 
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   (A-13) 

Substituting (A-13) into the equation for ),1(6 Lkd  , 

it can be reduced to 
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The initial value for ),1(6 Lkd  , at 1 kL , is 

)1,1(6  kkd , which is derived as follows: 
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(Q.E.D.) 
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