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Abstract— Almost estimators are designed for the
white observation noise. In the estimation problems,
rather than the white observation noise, there might be
actual cases where the observation noise is colored.
This paper, from the viewpoint of the innovation theory,
based on the recursive least-squares (RLS) Wiener
fixed-point smoother and filter for the colored
observation noise, newly proposes the RLS Wiener
fixed-interval smoothing algorithm in linear discrete-
time wide-sense stationary stochastic systems. The
observation y(k) is given as the sum of the signal

z(k) = Hx(k) and the colored observation noise v_(k)

The RLS Wiener fixed-interval smoother uses the
following information: (a) the system matrix for the
state vector x(k); (b) the observation matrix H ; (c) the

variance of the state vector; (d) the system matrix for
the colored observation noise v_(k); (e) the variance of

the colored observation noise; (f) the input noise
variance in the state equation for the colored
observation noise.

Index Terms— Discrete-Time Stochastic System, RLS
Wiener Fixed-Interval Smoother, Colored Observation
Noise, Covariance Information, Innovation Theory

I. Introduction

In comparison with the Kalman estimators, the RLS
Wiener estimators are advantageous in the point that the
RLS Wiener estimators do not use the information of
the input noise variance and the input matrix in the state
equation for the signal. The less information in the
estimators might avoid the degradation of the estimation
accuracy caused by the inaccurate information on the
state-space model. In [1], the RLS Wiener filter and
fixed-point smoother are proposed in linear discrete-
time stochastic systems. The estimators need the
information of the system matrix, the observation vector,
the variance of the state vector and the variance of
white observation noise. In addition, in linear discrete-
time stochastic systems, the following RLS Wiener
estimators are studied, i.e. the Chandrasekhar-type RLS
Wiener fixed-point smoother, filter and predictor [2],
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the square-root RLS Wiener fixed-point smoother and
filter [3] and the RLS Wiener FIR filter [4], etc.

Almost estimators are designed for the white
observation noise. In the estimation problems, there
might be actual cases where the observation noise is
colored. The estimation problem for the observation
equation, with additive colored observation noise, has
received much attention in the detection and estimation
problems for communication systems. For example, in
[5]-[10], the estimation problem is considered in linear
discrete-time stochastic systems. In [8], an alternative
method is proposed on the traditional handling of the
autoregressive colored observation noise in the speech
enhancement algorithm based on the Kalman filter. In
[10], based on the autoregressive moving average
(ARMA) innovation model, the reduced-order Wiener
estimators for descriptor system with MA colored
observation noise and multi-observation lags are
presented.

In [11], for the white observation noise, the signal
estimation problem is considered in linear continuous-
time stochastic systems. Also, the spectral factorization
method is discussed on the system matrix, the input
matrix and the observation matrix. That is, the
innovation statespace model for the colored
observation model is developed.

In [12], based on the improved least-squares (ILS)
method, the parameter estimation technique for a noisy
autoregressive (AR) signal, observed with additive
colored noise, is presented.

In [13], starting with the Wiener-Hopf equation, the
RLS Wiener fixed-point smoother and filter are
presented for the colored observation noise. By the way,
the innovation theory is an interesting method, which
has been investigated in the area of the estimation
techniques for the white observation noise. It might be
worthwhile to consider the RLS Wiener smoothing
problem also for the colored observation noise. This
paper, with the relation of the work in [13] to the
innovation theory [14], [15], newly proposes the
discrete-time smoother for the colored observation
noise in linear wide-sense stationary stochastic systems.
It is assumed that the smoothing estimate is given as a
linear transformation of the innovation process. The
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approach, adopted in this paper, to the design of the
RLS Wiener smoother has not be examined hitherto in
the case of the colored observation noise. Based on the
RLS W iener smoother, the fixed-interval smoothing
algorithm for the colored observation noise is shown in
the flowchart of Fig.1. The observation y(k) is given as

a sum of the signal z(k)=Hx(k) and the colored
observation noise v, (K) - The RLS Wiener estimators
use the following information: (a) the system matrix for
the state vector x(k) ; (b) the observation matrix H ; (c)

the variance of the state vector; (d) the system matrix
for the colored observation noise v, (k) (e) the variance

of the colored observation noise; (f) the input noise
variance in the state equation for the colored
observation noise. Also, the filtering error variance

function |5F(|_, L) and the prediction error variance
function |5P(|_,|__1), for the signal z(L) , are
formulated with regard to the current RLS Wiener
estimators.

In section 2, the smoothing problem, based on the
innovation theory, is introduced. In section 3, Theorem
1 proposes the RLS Wiener smoothing and filtering
algorithms. In section 4, Fig. 1 depicts the flowchart for
the fixed-interval smoothing estimate 7(k,L) .

A numerical simu lation example, in section 4, shows
the estimation characteristics of the proposed RLS
Wiener fixed-interval smoother and filter for the
colored observation noise.

Il. Least-Squares Smoothing Problem Based on
Innovation Theory

Let m-dimensional observation equation be described
by
y(k)=2(k)+V,(K), z(k) = Hx(k) @

in linear discrete-time stochastic systems. Here, H is
an mxn observation matrix, z(k) is the zero-mean
signal vector. The process {v,(k),k >0} represents the

zero-mean colored observation noise sequence. It is
assumed that the signal is uncorrelated with the colored
observation noise as

E[z(k)V! (5)]=0, 0<k,s <. @
Let K, (k,s) = K, (k—s) represent the auto-covariance
function of the state vector x(k) in wide-sense

stationary stochastic systems [16], and let K (k,s) be
expressed in the form of

K. (k)= AKIB(8). 0<s<k,
U BEA K, 0skss, @

AKK) =@, BT(s)=D°K_(s,9).
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Here, @ is the transition matrix of x(k) -

Let the state-space model for x(k) bedescribed as
X(k +1) = &x(k) + Gw(k),
E[w(k)w' (s)]=Q(k)S (k —s),

where G is an nx| input matrix and w(k) is the

white input noise vector with the auto-covariance
function of (4).

@

Let K_(-) denote the auto-covariance function of
v, (K) - The auto-covariance function K. (k,s) is given
by

K (k5= AKIB: (), 0<s<k,
T BA @), 0<k<s,

AK)=®f, Bl(5)=07K(ss). O

Let the state equation for v_(k) be given by
V. (k+1) =D v (k) +u(k),

E[u(k)u’ ()] = R, (k)5 (k ),

in terms of the white input noise vector y(k) with the
It is found that for the expressions

©)

variance R, .

K (K +1k +1) = E[v,(k + v, (k +1)],

K. (k,k) = E[v_(k)v," (k)], in the wide-sense stationary

stochastic systems, the following relationships hold.
R,(K) =K, (k+1Lk+1)—® K, (k k)DT,

-
K.(k+1Lk+1) =K, (k,k) =K,(0) "

It is shown that the fixed-interval smoothing estimate
R(k,L) of x(k) is given by

X(k,L) = Zi: g(k,i)o(i) = k(k, k) + ig(k, Ho(i),

x(k, k) =ig(k,i)u(i) ®

in terms of the impulse response function g(k,i) and
the innovation process {v(i), 1<i<L} [14], [15]. Also,
X(k,Kk) represents the filtering estimate of x(k) ,
which is given as a linear transform of the innovation
process {v(i), 1<i<kj-

Let us consider the estimation problem, which
minimizes the mean-square value (MSV)

J = Elll x(k) = x(k, L) [I°] ©

of the fixed-point smoothing error x(k)—&(k,L) -
From an orthogonal projection lemma [16],
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x(k)—ZL:g(k,i)u(i)Lu(s), 1<s<L, (10

i=1

the impulse response function satisfies the equation

E[x(k)o" (s)]= ZL: g(k,i)E[o(i)o" (s)] (12)

Here © 1’ denotes the notation of the orthogonality.
From [13], the filtering estimate g(k,k) of x(k) is
calculated sequentially by

X(k, k) = DX(k -1, k -1) + G, (K)(y(k)

— (HDR(k -1k —1) + (D,)?V,(k —Lk —-1) (12

+®V,(k-1,k—1), %(0,0)=0.

It is clear that the innovation process (k) is
expressed as

v(k) = y(k) — (HOR(k -1,k —1)
+®N,(k -1k -1) + D9, (k -1k —1)).

(13)

Also, from (8) and (12), the filter gain G (k) is
equivalent to g(k,k) . For the innovation process
satisfying

E[o(k)o" (5)] = AK)S, (k—5) (14)

from (11), the impulse response function g(k,S)
and the filter gain G, (k) are given by

g(k,s) = E[x(k)o" (s))a7(s), G, (k) = g(k,k). (15)

From [13], it is seen that the variance A(L) of the
innovation process {v(L), L > 0} is formulated as (29) in
Theorem 1.

I11. RLS Wiener Smoothing Equations

Under the linear least-squares estimation problem of
the signal z(k) in section 2, Theorem 1 presents the

RLS Wiener smoothing and filtering equations, which
use the covariance information of the signal and the
observation noise.

Theorem 1
Let the auto-covariance function K (k,s) of thestate

vector x(k) be expressed by (3), let the variance of the
colored observation noise v_(k) be K_(k,k) and let the
variance of y(k) in the state equation (6) for v_(k +1)
be R, (k). Then, thediscrete-time RLS Wiener

algorithms for the smoothing estimate and the filtering
estimate of the signal z(k) consist of (16)-(45) in linear

wide-sense stationary stochastic systems.

Smoothing estimate of the signal z(k): 2(k,L)

2(k,L) = H&(k, L)
Smoothing estimate of x(k): x(k, L)

R(k, L) = %(k,K) + f,(k +1, L) - f,(k +1, L)
—f,(k+1L) - f,(k+1, L))

fo(k +1,L) = f,(k +1,L—1)

+K, (kK@) HT A (L)o(L),

f,(k +1k+1) = K, (k,K)D"HTA (K +Do(k +1)

f,(k+1L)= f,(k+LL-1)+(d] (k,L-1)
+d] (k+1,L-1)HT A (L)o(L),
f,(k+1k+1) =ST(K)D"HT A (K +Do(k +1)

f,(k+1,L) = f,(k +1 L—1)+(d] (k,L~1)
+d] (k+1, L-1))A(L)o(L),
f,(k+Lk +1) = ST (K)(@7)? A (k + Dok +1)

fu(k+1LL) = f(k+1L,L-1)+(dJ (k,L-1)
+dg (k+1,L-1))A*(L)o(L),

fo(k+Lk +2) =S5, (K)D! A (k +Do(k +1)

d, (k,L) = @d, (k,L -1) - ®G, (L)(Hd, (k,L-1)
+d,(k,L—1)+d, (k,L-1)),

d, (k,k) = ®S,, (k)

d,(k +1, L) = dd,(k +1 L 1)
+ @G, (L)(HO" K, (k,k)— Hd, (k +1, L -1)
—d, (k+1L—-1)—dg(k+1 L 1)),

d,(k +1k +1) = DG, (k + ) HOK , (k. k)

d,(k,L) = ®_d,(k,L-1)
—®2G,(L)(Hd,(k,L-1)+d,(k,L-1)
+ds(k,L-1)),

d, (k,k) = ®2S,, (k)

d,(k+1,L)=®,d, (k+1L-1)
+®2G, (L)(HO " K, (k,k)
~Hd,(k+1,L-1)—d,(k+1L-1)
—dg(k+1,L-1)),

d, (K +1k +1) = DG, (k + ) HDK , (K, k)

dg (K, L) = d,dg (k, L —1)
~®,G,(L)(Hd, (k, L ~1) + d,(k, L-1)
+dg (k, L—1)),

ds (k, k) = @ S;,(k)

de(k+1,L) =@ dg(k+1, L 1)
+® G, (L)(HD“ K, (k.k)
~Hd,(k+1,L-1)—d,(k+1L-1)
—dg(k+1,L-1)),

de(k+LK+1) = G,k +)HOK  (k,K)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)
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Innovation process: (L)
o(L) = y(L) — (HOR(L —1,L—1)
+®N,(L-1L-1)+® 0, (L-1,L-1)).

Variance of the innovation process p(L): A(L)

A(L)=R, (L) +(HK (L,L) - (H®S,,(L-1)®"
+(D,)?S,,(L-D)" +D S, (L-D)D"))HT

+(@ K, (L,L) - (H®S,,(L-1)®]
+(D,)?S,,(L-D)P! +D_S,,(L-1)D))D!
+(R, (L) — (H®S,,(L-1)®!
+(D,)?S,,(L-1)D! +D_S,,(L-1)D])).

Filtering estimate of thesignal z(L): 2(L,L)
2(L,L) = HR(L, L)

Filtering estimate of x(L): R(L,L)
R(L,L) =PR(L-1, L-1)+ G, (L)(y(L)

—(HPR(L -1, L -1+ (®,)*V,(L-1,L-1)
+®0,(L-1,L-1)), %(0,0)=0

Filtering estimate of v_(L):

@V, (L, L) +V,(L, L))
V(L L) = DoV, (L -1 L -1 + G, (L)(y(L)
—(HPR(L -1, L-1) + (P,)?V,(L-1,L-1)
+®V,(L-1,L-1)), V¥,(0,0)=0
V3 (L L) = @V, (L =1 L =1) + G, (L)(y(L)
—(HOR(L-1,L-1) + (P )*V0,(L -1, L 1)
+® V,(L-1,L-1))),
¥v;(0,0)=0

Filtering variance function of (L,L): S,,(L)

S.,(L) = E[X(L, L)X (L, L)]

S, (L) =®S,,(L-D)d’

+G,(L)(HK, (L,L) — (H®S,, (L -1)®" (34)
+(@)* S (L-DO" + @Sy, (L-2)@T)),

511(0) =0

(28)

(29)

(30)

(31)

(32)

(33)

Cross-variance function of %(L,L) with ¢,(L,L) :

S,,(L) = E[X(L, L)V; (L, )]

SlZ(L) = q)su(l- _1)(1)1

+G,(L)(® K, (L, L) = (HDS,,(L-1) D]
+(D,)*Sp(L-D) @ + @Sy, (L-1) D)),
S12(0) =0

(35)

Cross-variance function of g(L,L) with ,(L,L) :

S15(L) = E[R(L, L)V; (L, L)]

Copyright © 2013 MECS

S;5(L) = @S, (L-)@¢ +G, (L)(R, (L)
~(HOS 5 (L-D)D¢ +(P,)* S5 (L -D)D¢
+® Sy (L-1)d()), S,4(0)=0
S, (L) = @S,y (L-)@" +G, (L)(HK, (L, L)
—(H®S,,(L-)®T +(d,)*S,,(L-1)DT
+ (Dcs?,l(l-_l)CDT ))1 821(0) = 01
su('—) = Ssz(L)

Filtering variance function of y,(L,L): S,,(L)
Szz(l-)=‘1>c522(|-—1)®1
+G, (LY@ K, (L, L)~ (HOS,, (L -D)d]
+(@.)*S,, (L-DP; + D Sy, (L-1)D; ),
522(0) =0

(36)

(37)

(38)

Cross-variance function of ¢,(L,L) with g (L,L) :

S,5(L) = E[V, (L, L)7; (L, )]

Sza(L):(I)cst(L_l)(DI
+G, (L)(R, (L)~ (HDS o(L -1)d¢
+(D)*Sy(L-1)D¢ + @ Sy(L-D@; ),
323(0):0
S, (L) =@ S, (L-)P" +G,(L)(HK (L,L)
—(HDS,,(L-1)®" +(P,)*S,,(L-D)d"
+@.S,,(L-1)@")), S,,(00=0,
SSI(L) = 81T3(|—)
Si(L) =@.S,,(L-1)d]
+G, (L)(@ K, (L, L) - (H®S,,(L-1)d]
+(@.)*S,(L-DDF + @Sy, (L-DO;)),
S3(0) =0,
Ssz('—) = SzTa(L)

Filtering variance function of g, (L,L):

Sza(L) = E[V, (L, L3 (L, L)]

Sza(l) =D Sy(L _1)(DI

+ Ga(L)(Ru (L) - (Hq)sm(l- _1)®I

+ ((Dc)zsza(l- _1)(1)1 + qDcS33(|- _1)(DI )),
533(0) =0

Filter gain for x(L,L): G,(L)

(39)

(40)

(41)

(42)
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G,(L)=[K, (LLL)H" —®S, (L-DD"HT
—®S,,(L-1)(@;)* ~ PS5 (L-1)D; ]

x[R, (L) +(HK, (L,L) - (H®S,,(L-1)®"
+(D,)?S,,(L-1)DT +D_ S, (L-)D"))HT
+(® K, (L,L) - (HDS,,(L-1)®]
+(D,)*S,, (L-1)@; + DSy, (L-1)D;))D;
+(R, (L) = (H®S,,(L -1 D!

+(@,)* S5 (L-1) @ + @ Sy (L -1 )]

(43)

Filter gain for v,(L,L): G,(L)

G,(L) =[K (L, L)®] —® S, (L-DD'HT
- q)cszz(l- _l)((DI)Z - (Dcszs(l- —1)(1)1]
x[R, (L) + (HK (L, L) = (H®S,,(L - )@’
+(D,)?S,,(L-)D" + D S,,(L-D)D")HT
+(® K, (L, L) - (H®S,,(L -1)D!
+(D,)?S,, (L -DDF + DSy, (L -)@7))D;
+ (R, (L) = (HDS (L —-)®!

(D) Sy5(L —DDL + D Sy(L 1))

(44)

Filter gain for 9,(L,L): G,(L)

G,(L)=[R,(L)-® S, (L-1)®"HT
—CDchz(L—l)(CDI)Z —q)chs(L—l)CDI]
x[R, (L) +(HK, (L,L) = (H®S,,(L-1)®"
+(D,)?S,,(L-D)®" +® S, (L-D)D"))H"
+(@ K (L, L) - (HOS,,(L-1)®!
+(D,)?S,,(L-)D! +D_S,,(L-1)D!))D!
+(R, (L) = (H®S,(L-)®D]
+(@.)* S5 (L -1 +@ Sy (L-D)D )]

(45)

Proof of Theorem 1 is deferred to the Appendix.

From Theorem 1, the filtering error variance
function P_(L,L) and the prediction error variance

function P, (L, L—1), for the signal z(L), are given by
P-(L,L) = K,(L,L) - HS,,(L)HT, (46)
P(LL-1)=K,(LL)—H®S,(L-1)®'H".
where K (L,L) represents the variance function of
the signal z(L).

According to the smoothing and filtering algorithms
in Theorem 1, the calculation steps for the fixed-
interval smoothing estimate 7(k,L) of the signal z(k)

can be shown in the flowchart of Fig. 1.

IV. A Numerical Simulation Example

In this section, to show the efficiency of the
estimation characteristics of the proposed RLS Wiener

Copyright © 2013 MECS

fixed-interval smoothing algorithm, a numerical
example is demonstrated. The fixed-interval smoothing
estimate is calculated according to the flowchart in Fig.
1.

Let a scalar observation equation be described by

y(K) =20 +v,(K) 2(K) = Hx(K) @7

Here, Ve (k) is the zero-mean colored observation

noise. Let the signal 2(k) pe generated by the second-
order AR model.

z(k+1) =—-a,z(k) —a,z(k —1) + w(k),
E[w(K)W(s)] = %5, (k —S),
a=-01 a,=-08 o=05. 48)

The corresponding state-space model for 2(K) can be
written as

z2(k)=Hx(k)=x (k), H=[L 0] x(k)= {Xl(k)}

X, (k)

{xﬁkﬂ)}{ 0 1 :||:X1(k):|+|:0:|w(k).
Xz(k"'l) —-a, —q Xz(k) 1 (49)
The auto-covariance function of the signal 2(k) js
described as follows [13]:
K(0)=c?,
K(m) = 0-2{0‘1 (0‘22 —Dey" [(a, — ;) (e, +1)]
—a, (o =D (e, — )0 + 1)1}
0<m, a,,a,=(-a t/a’—4a,)/2. (50)
From (49) and (50), it can be found that
Kx(k,k):{K(O) K(l)} q):{ 0 1 }
K@) K(0) -8, -a
K(0)=0.25 K(1)=0.125. (51)

Let the state equation for Ve (k) be given by
Ve (k +1) = Dy, (k) +uk),
E[u(k)u’ (s)]= R, (k —s),
®, =091, R,=0.0% (52)
where UK) is the white input noise in the state

equation (52) for the colored observation noise process.
The autovariance function of the colored observation

noise Ve () satisfies the relationships
Ke(k+Lk+1) =K. (k,k)=K:0) anq hence, this lead to
K=" | _

1-a" in wide-sense stationary stochastic
systems.
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START

Initial conditions:
filtering estimate of x(k) at k=0 is xhat(0)=0.
vhat2(0,0)=0, vhat3(0,0)=0, Sij=0, i=1,...,3, j=1,...,3.
LAST=L, LAST1=LAST-4
LL=LAST1+2-k

v

k=1

Compute filter gains G1(k), G2(k), G3(k) by (43)-(45).
Update filtering estimate xhat(k,k) of x(k) by (31).

Update Sij(k), i=1,...,3, j=1,...,3 by (34)-(42).

Calculate initial values: fO(k+1,k+1), f1(k+1,k+1), f2(k+1,k+1),
f3(k+1,k+1)

Update xhat(k,k+1) by (16).

Compute filter gains G1(k+1), G2(k+1), G3(k+1) by (43)-(45).
Update Sij(k+1), i=1,...,3, j=1,...,3 by (34)-(42).

Update filtering estimate xhat(k+1,k+1) of x(k+1) by (31).
Calculate initial values: d1(k,k), d3(k,k), d5(k,k)

Caluculate d1(k,k+1) by (22), d2(k+1,k+1) by (23), d3(k,k+1)
by (24),

d4(k+1,k+1) by (25), d5(k,k+1) by (26), d6(k+1,k+1) by (27).

Compute filter gains G1(k+1+m), G2(k+1+m), G3(k+1+m) by (43)-(45).
Update filtering estimate xhat(k+1+m,k+1+m) of x(k+1+m) by (31).

Update Sij(k+1+m), i=1,...,3, j=1,...,3 by (34)-(42).

Caluculate d1(k,k+1+m) by (22), d2(k+1,k+1+m) by (23), d3(k,k+1+m) by (24),
d4(k+1,k+1+m) by (25), d5(k,k+1+m) by (26), d6(k+1,k+1+m) by (27).
Calculate fO(k+1,k+2+m) by (18), f1(k+1,k+2+m) by (19),

f2(k+1,k+2+m) by (20), f3(k+1,k+2+m) by (21), xhat(k,k+2+m) by (17).
Calculate smoothing estimate zhat(k,k+2+m) of z(k) by (16).

N
m<LL+1

Output FIS estimate
zhat(k.L)

v
k < LAST1+1

Fig. 1: Flonchart for the fixed-interval smoothing estimate 2(k,L) -
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c
1

substituting H , @ , KdLL=KJ(©Q) @

KLL)=K©) a0 R into the RLS Wiener
estimation algorithms of Theorem 1, the fixed-interval
smoothing and filtering estimates are calculated.

Fig. 2 illustrates the colored observation noise

2(K) vs. vs. L for Ru=0.001(K.(0)=0.0582) ', gig.

4, as the fixed interval L increases, 100 <L <600 the
MSYV of the fixed-interval smoothing errors gradually
decreases. Also, for 100<L <700  the MSV of the

fixed-interval smoothing errors 2(k)=2(k,L) s less

than the MSV of the filtering errors z(k)—2(k,k)
1<K<L. Hence, the estimation accuracy of the fixed-
interval smoother is better than that of the filter for
100<L<700. From this fact, the fixed-interval

smoothing algorithm, calculated based on the flowchart
of Fig. 1, is correct.

process Ve(K) vs. k| 1<k<500

R, =001, (52). Fig. 3 illustrates the fixed-interval
smoothing estimate 2(k,L), L =500, ys, k, 1<k <500,
R

for the variance

for the variance Ru =001, Fig. 4 illustrates the MSVs
of the filtering errors Z(1) = 2(L,L) of the signal Z(L)
and the fixed-interval smoothing errors 2(K) —2(k,L) o¢

0.8 T T T T T T T T T

06 [~ 1

Colored observation noise

L L L L L L L L L
100 150 200 250 300 350 400 450
Time k

500

Fig. 2: Colored observation noise process v, (k) vs. k, 1<k <500, for the variance R, =0.01 in (52).

q T T
Signal
Fixed—interval smoothing estimate

-

Signal and fixed-interval smoothing estimate
°

250
time k

500
Fig. 3: Fixed-interval smoothing estimate 2(k,L), L =500, vs. k for the variance R, =0.01.
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0.135 T T
—— MBSV of filtering errors
— — MBSV of fixed—interval smoothing errors
0.13 ‘
0.125
0.12

o
-
-
(<]

0.11

0.105

o
=

0.095

MSVs of filtering and fixed—interval smoothing errors

0.09

0.085

100 200 300 400 500

600 700 800 900 1000

Fixed interval L

Fig. 4: MSVs of the filtering errors z(k) — 2(k, k), 1<k <L and the fixed-interval smoothing errors z(k)—2(k,L) vs. L, 100<L <1000.

V. Conclusions

In this paper, the RLS Wiener smoothing problems,
with relation to the innovation theory, have been
considered for the colored observation noise.

A numerical simulation example has shown that the
proposed estimation algorithms for the RLS Wiener
fixed-interval smoothing and filtering estimates, in the
case of the colored observation noise, are feasible. In
Fig. 4, as the fixed interval L increases, 100 <L <600,
the MSV of the fixed-interval smoothing errors
gradually decreases. Similar tendency, on the estimation
accuracy, also fit to the RLS Wiener filter. Also, for
100< L <700, the MSV of the fixed-interval smoothing
errors z(k) —2(k, L) is less than the MSV of the filtering

errors z(k)—2(k,k), 1<k <L. Hence, for 100< L <700,

the estimation accuracy of the RLS Wiener fixed-
interval smoother is superior to that of the RLS Wiener
filter for the colored observation noise.

The RLS Wiener estimators do not use the
information of the variance Q(k), for the input noise
w(k) , and the input matrix G in the state equation (4),

in comparison with the Kalman estimation technique
[13]. In the RLS Wiener estimators, it is not necessary

Copyright © 2013 MECS

to take account of the degraded estimation accuracy
caused by the modeling errors for Q(k) and G .
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Appendix Proof of Theorem 1

From the equation for the filter gain (36) in [13],
E[x(k)o" (k)] is given by

Elx(k)o" (K)] =K, (k,K)H" —®S,,(k=1) ~ @S, (k ~1)(®;)*
@S, (k-1)D!.

Copyright © 2013 MECS

From (15) togetherwith (13), it is seen that
g(k,s)A(s) = E[x(k)o" (s)]
= E[x(K)(y(s) - HDR(s ~1,5 —1) - DD, (s ~1,5 1)
- 0,(s-1Ls-1)"], 1<k<s.

(A-1)

Substituting (A-1) into (8), (8) can be reducedto

R(k, L) = &(k, k) + ZL:{KX(k,i)HT —E[x(K)R (i ~Li-DJd HT

E[x(k)0; (i-1i —1_)](<1>I)2 —E[x(k)0; (i —1i-1)J0; A" (i)o(i)
= R(k,K) + fo (k+1 L) — f,(k+1, L) — f,(k+1 L) — f,(k +1,L).

Here, f,(k+4L) , f(k+1L) ., f,(k+1L) and
f,(k +1,L) are given by

fo(k+1L) = ZL:KX(k,i)HTA’l(i)U(i),

i=k+1

f(k+1L)= zL: E[x(K)R" (i —1,i —1)]0" H™ A (o),

i=k+1

kL) = S EIXSL (i -Li~DI@D)2A™ Mo,

i=k+1
f,(k+1L) = ZL: E[x(K)O] (i —1,i — 1] A ()o(i).
i=k+1
Using (3) and introducing a function M (L) given by
M(L)= ZL:AT HHTA™(DHo(),
i=k+1
fy(k +1,L) is written as

f,(k+1L) = ZL:B(k)AT (HTA(i)o()

i=k+1

=K, (KK)(@T)*M(L).
From the equation for updating M (L)
M(L)=M(L-1)+A" (L)HTA™(L)o(L),

(18) is obtained. Initial value for f (k+1,L), at
L=k+1,is f,(k+1k+1), which is derived as follows:

fo(k+Lk+1) =K, (k,k+DHTA" (k +D)o(k +1)

=K, (k,K)@"H A (k + Dok +1).

Subtracting f (k +1,L-1) from f (k+1L), it can be
shown that
f.(k+LL)— fi(k+1L-1)=E[x(K)X" (L-1L-1)] (A-2)
x®"THTA(L)o(L).

Upon substituting (A-57) and (A-58), presented in
[13], (A-2) can be reducedto

1.J. Information Technology and Computer Science, 2013, 03, 1-12
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f(k+1,L) - f,(k+1L-1) = E[x(K)O] (L-D](@")**
x® HTAY(L)o(L)

S EDCR)Y (DI (5 L-DO@D H'A Vo) (a5

-

™M

]

N

AK)B' (DHTI] (J, L=D(@")"HTA*(L)o(L)

M-

-
|

+ 1B(k)AT(J')"'TJf(LL—l)(q)T)LHTA’l(l-)t)(L)

= AGKIT (k, L—1)(@")"HT A (L)o(L)
+ B (k +1, L-1)(@") HTAY(L)o(L),

where

lL(Kk,L-1)= Zk:\]l(i, L —D)HB(i),

L(k+1L)= ZL:Jl(i,L)HA(i).

i=k+1

Introducing functions

d, (k,L-1) = ®"I,(k,L-1) A" (k),

d,(k+L,L-1)=d"L,(k+1L-1)B" k),

(19), for updating f (k+1L) , is obtained. Initial
value in (19) for f(k+1L) , at L=k+1, is
f,(k +1k+1), which is derived, from (A-14), (A-37),
(A-57) and (A-58) presented in [13], as follows:
f(k+Lk +1) = E[x(K)X" (K, K)]OTHTA™(k + Do(k +1)
= E[x(K)O; (K)(@")*®"HTA™ (k + Do(k +1)

k
= ZA(k)BT OHTI] (1, K@) HTAM (K +Do(k +1)

= AK)L (K@) OTHTAM (K + Dok +1)
=S, (K)DPTHTA™ (K +Dov(k +1).

Subtracting f,(k +1,L—1) from f, (k+1,L), it can be
shown that

f(k+14,L) - f(k+1,L-1) = E[x(k)0; (L—1, L-1)] (A-4)

X (@¢)* A (L)o(L).

Substituting (A-60) and (A-61), derived in [13], into
(A-4), it can be reduced to

f,(k+1,L)— f,(k+1,L-1) = E[x(k)O; (L-1)]

x(@0) (@) AT (L)u(L)

=§:E[X(k)yT (D137 (J, L=D)(@¢) " A™(L)o(L)
= Zk:A(k)BT (DHTI; (J,L=D(@;) A" (L)o(L)

i

+ ZB(k)AT(J)HTJzT(J', L-D(@) A" (L)o(L)

= AK)l5 (k, L=1)(@; )" A™(L)o(L)
+BK)I; (k+1,L-1) (D) A (L)o(L),

Copyright © 2013 MECS

where

L(k,L-1) :Zk:\lz(i, L —-1)HB(i),

L(k+1L-1)= Lsz(i, L —1)HA().

i=k+1

Introducing functions

dy(k,L) = @1, (k, L) A" (K),

d,(k+1,L) =1, (k+1,L)B" (k),

(20), for updating f,(k+1L) . is obtained. Initial
value in (20) for f,(k+1LL) , at L=k+1 , is
f,(k+1k+1), which is derived, from (A-19), (A-37),
(A-60) and (A-61) presented in [13], as follows:
f,(k+1k+1) = E[x(K)O] (K, K)|(D])* A (k +Dv(k2+1)
= E[x(K)O; (K))(®@{)" (@)* A (k +Do(k +1)

= Zk: AK)BT (YHTI] (i,k) (@) P A (k +Do(k +2)
= AK)r, (K)(@D)? A (k +Do(k +1)
=S5, (K)(@])* A (k+Do(k +1).

Subtracting f,(k+1,L-1) from f,(k +1,L), it can be
shown that

fo(k +1, L) — f,(k +1 L —1)
= E[x(K)O! (L -1, L —1)]dT AL (L)o(L).

(A-6)

Substituting (A-60) and (A-61), presented in [13],
into (A-6), it can be reduced to

fo(k +1,L) — fy(k +1, L —1) = E[x(k)O] (L -1)]
x (@) (@ )A™ (L)o(L)

- zEtx(k)yT(mJ; (L-DEDA ML) 5 o
= 2L AMBT (DHTI] (L -D(@]) A (Lu(L)

+ Li B)AT(DH"J; (J, L -1)(@c) A7 (L)o(L)

= AMKII (K, L~ 1)(@])" A (L)u(L)
+ B(k)lg (k+1L —1)(®I)LA’1(L)U(L),

where
I,(k,L-1)= Zk:J3(i, L-1)HB(i),

L-1

l,(k+1,L-1)= ZJS(i, L-D)HA(I).
i=k+1

Introducing functions

ds(k, L) = @15 (k, L)A" (k),

de(k +1 L—1) = d1, (k +1, L ~1)B" (k),

1.J. Information Technology and Computer Science, 2013, 03, 1-12
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We obtain (21) for updating fy(k+1,L)- Initial value
in (21) for f,(k+1L), at L=k+1, is f,(k+1k+1),
which is derived, from (A-24), (A-37), (A-60) and (A-
61) presented in [13], as follows:
fo(k +1k +1) = E[x(K)D] (K, K)I®I A (k +Do(k2 +1)
= E[x(k)O; (K))(@]) @A™ (k +Do(k +1)

k
= z AK)BT ())HTI] (i, k) (@) A (k + Dok +1)

i=1
= A (K)(@) Ak + Dok +1)
=SL(K)DIA™ (K +Do(k +1).

Subtracting I,(k,L-1) from L (k, L) it can be shown
that

WD -1k L-1 =¥ 3,G.L)

—J,(i, L=2))HB(i) 7

— _3,(L, LY(H®", (K, L —1) + D1, (K, L 1)
+ @, (K, L—1)).

(A-8)

Substituting (A-8) into the equation for d, (k,L), it
can be reduced to

d,(k, L) = @I, (k,L-1) - J, (L, L)(H®"l, (k, L-1)

+ @M, (k, L-1) + DLl (k, L—1)FAT (k)

=®.d,;(k,L-1) -G, (L)(Hd, (k,L-1)

+d,(k,L-1) +d,(k, L -1)),

where we used the expression for the filter gain
G,(L) =®"J,(L,L) in [13]. The initial value for d, (k,L),
at L=k, is d,(k,k), which is derived as follows:

d (k, k) = @, (k, k) AT (k)

:cpk*lzk: J.(i, K)HB(@) A" (k)

— 0, (K@)

=®S,,(k).

Here, (A-14) and (A-37), presented in [13], are used.

Subtracting I, (k +1,L-1) from I, (k +1,L), it can be
shown that

Lk +1,L)—1,(k +1, L 1) = J,(L, L)HA(L)

+ f(Jl(i, L)—J,(i, L—1)HA() (A-9)

i=k+1
= J,(L, L)HA(L) - J, (L, L)(HO L, (k +1, L 1)
+@5, (k+1LL-1)+ DLl (k +1, L -1)).

Substituting (A-9) into the equation for d,(k +1,L), it
can be reduced to

Copyright © 2013 MECS 1.J.

d,(k+1,L) =®"1{, (k +1, L —1)+ J, (L, L)(HA(L)

—HO'L, (k+LL-1) -, (k+1,L-1)

—dl (k+1,L-1)}B" (k)

=®d,(k+1L—-1)+ DG, (L)(HO" K (k,k)

—Hd,(k+L,L-)—-d,(k+L,L-1)—d.(k+1L-1)).

The initial value for d (k+1,L), at L=k+1, is
d,(k +1,k +1), which is derived as follows:

d,(k+1Lk+1) =®*l,(k +1L,k +1)BT (k)

=®*?J (k+Lk +1)HAKk +1)B" (k)

=0G, (k +)HDK, (k,K).

Subtracting l,(k,L-1) from (kL) it can be shown
that

LD -LkL-D =Y, 6L)

-J,(i, L-D)HB(i)
=-J,(L,L)(HD I, (k,L-1) + DM, (k,L-1)
+®L1(k,L-1)).

(A-10)

Substituting (A-10) into the equation for d,(k, L), it
can be reduced to
dy(k, L) =D, (k,L-1) - J, (L, L)(HD" I, (k,L-1)
+@M, (K, L-1) + DLl (k, L-1)FAT (k)
=@ d,(k,L-1) - DG, (L)(Hd, (k,L-1)
+d,(k,L-1)+d;(k,L-1)),
where we used the expression for the filter gain
G,(L)=®LJ,(L,L) in [13]. The initial value for
dy(k,L), at L=k, is d,(k,k) , which is derived as
follows:
dy (k,k) = ¢ 1, (k, k) AT (k)
k
=0y 3, (i, k)HB()A' (k)
i=1

=0, (K)(@1)"

= @S, (k).
Here, (A-19) and (A-37), presented in [13], are used.
Subtracting I,(k+1,L-1) from I,(k+1L), it can be

shown that
l,(k+L,L)-1,(k+1,L-1)=J,(L,L)HA(L)
L-1
+ Z(Jz(i, L)-J,3, L-1))HA() (A-11)

i=k+1
=J,(L,L)HA(L) - J, (L, L)(H®",(k +1,L-1)
+@ 7, (k+LL-1) + Dl (k +1, L-1)).
Substituting (A-11) into the equation for d,(k +1, L),
it can be reduced to

Information Technology and Computer Science, 2013, 03, 1-12



12 RLS Wiener Smoother for Colored Observation Noise with
Relation to Innovation Theory in Linear Discrete-Time Stochastic Systems

d,(k+1,L)=®-2{, (k+1,L—-1) + J, (L, L)(HA(L)

—H®'L, (k+L,L-1) - DM, (k+1,L-1)

—dl (k+1,L-1)}B" (k)

=®.d,(k+1L-1)+ DG, (L)(HO" K, (k,k)

—Hd,(k+,L-1)—d,(k+LL-1)—d,(k+1L-1)).

The initial value for d,(k+1,L), at L=k+1, is
d, (k +1,k +1), which is derived as follows:

d,(k +LKk+1) = 0", (k +1,k +1)B" (k)
=03, (k +1 k +)HAK +1)B" (k)
= 026, (k +DHOK  (k, k).

Subtracting |, (k,L-1) from |_(k, L), it can be shown
that

LD~k LD = Y (3,1

— 3,(i, L -1))HB(i)
= —3,(L, L)(H®" 1, (k, L —1) + &1, (k, L - 1)
+ @1 (k, L-1)).

(A-12)

Substituting (A-12) into the equation for d, (k,L), it
can be reduced to

dy(k,L) = I (k,L-1) - J (L, L)(HD"I,(k,L-1)
+ O, (k, L= + DL (k,L-1)}AT (k)
=0 d,(k,L-1)-®_G,(L)(Hd,(k,L-1)
+d,(k,L-1)+d;(k,L-1)).
where we used the expression for the filter gain
G,(L)=®:J,(L,L) in [13]. The initial value for
dy(k,L), at L=k, is d.(k,k) , which is derived as
follows:
ds (k, k) = D5 (k, k) AT (k)
k
=®g™ Y J,(i, k)HB() A" (k)
i=1

= L, (K) (@)
=0 S,, (k).
Here, (A-24) and (A-37), presented in [13], are used.
Subtracting | (k +1,L-1) from | (k +1, L), it can be
shown that
I (K+1, L) I, (k+1, L —1) = J, (L, L)HA(L)
+ i(Js(i, L)-J,(i, L-D)HA(>I) (A-13)

i=k+1
=J,(L,L)HA(L) - J, (L, L)(HD"l, (k +1,L-1)
+O, (K+LL-1) + DLl (k+1,L-1)).
Substituting (A-13) into the equation for d,(k +1,L),
it can be reduced to

Copyright © 2013 MECS

de(k+1,L) =d-", (k+1,L-1) + J, (L, L)(HA(L)

—HO'L, (k+LL-1) -, (k+1,L-1)

—dl (k+1,L-1)}B" (k)

=0, d,(k+LL-1)+ D Gy (L)(HP " K, (k,k)

—Hd,(k+L,L-)—-d,(k+L,L-1)—d.(k+1L-1)).

The initial value for d (k+1,L), at L=k+1, is
dg(k +1,k +1) , Which is derived as follows:

dg(k +1k +1) = D 21 (k +1, k +1)BT (k)
=023, (k +1 k + DHA(K +1)B" (k)
= @G, (k +)HDK,, (K, k).

(QED)
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