
I.J. Information Technology and Computer Science, 2013, 05, 74-84

Published Online April 2013 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2013.05.10

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 05, 74-84

Semantic Multi-granular Lock Model for Object

Oriented Distributed Systems

V.Geetha

Department of Information Technology, Pondicherry Engineering College, Puducherry, India

E-mail: vgeetha@pec.edu

N.Sreenath

Department of Computer Science & Engineering, Pondicherry Engineering College, Puducherry, India

E-mail: nsreenath@pec.edu

Abstract— In object oriented distributed systems

(OODS), the objects are viewed as resources.

Concurrency control techniques are usually applied on

the database tier. This has the limitations of lack of

support of legacy files and requirement of separate

concurrency control mechanis ms for each database

model. Hence concurrency control on the objects at

server tier is explored. To implement concurrency

control on the objects participating in a system, the

impact of method types, properties and class

relationships namely inheritance, association and

aggregation are to be analyzed. In this paper, the types

and properties of classes and attributes are analysed.

The semantics of the class relationships are analysed to

ascertain their lock modes, granule sizes for defining

concurrency control in OODS. It is also intended to

propose compatibility matrix among all these object

relationships.

Index Terms— Object Oriented Distributed Systems,

Concurrency Control, Multi Granular Lock Model,

Class Relationships, Design Time Transactions, Run

Time Transactions

I. Introduction

Object Oriented Database Management Systems

(OODBMS) provides better complex data modeling

support for the newly emerging distributed applications

than relational databases. OODBMS is used as

persistent data store for distributed systems. It resides in

the database tier. However in distributed systems, the

server tier is implemented as procedures . This requires a

conversion between procedural paradigm to object

oriented paradigm and vice versa for all the

communicat ions between server tier and data base tier.

Further each of the database models in d istributed

systems has its own concurrency control mechanisms

that cannot be adapted to any of the other models. The

concurrency control policies are defined only for the

database tier. The server tier has no control over the

concurrency control. This introduces a restriction of

using only the refined persistent data store for the

domain data like database management systems.

Primitive data stores like files are not supported in

distributed systems and hence they cannot be reused.

The above limitat ions can be overcome in OODS. In

OODS, the server tier is also implemented as objects.

So the conversion of data format between server tier

and data base tier is not necessary, if OODBMS

provides persistent data storage. However conversion of

data format is required, if other database models are

used. Hence the possibility of providing a common

concurrency control mechanism that is independent of

the persistent data store type is exp lored in [1] by

shifting the concurrency control from database tier to

server tier.

In OODS, objects are the reusable data sources. The

clients can access the data from the data store in

database tier only through the objects in the server tier.

Hence a common concurrency control mechanis m can

be defined for the objects in the server tier. The other

advantage of this shift in the concurrency control to the

server tier allows usage of legacy data stores.

Already semantic concurrency control mechanisms

have been proposed for object oriented data bases by

exploit ing the object oriented paradigm features. They

out-perform the conventional concurrency control

mechanis ms for OODBMS. Hence the feasibility of

extending the same mechanisms to OODS may be

analyzed.

OODS support continuously evolving domains in

which the services are frequently enhanced to provide

better client support. Hence transactions providing run

time services (run time) and design updates (design

time) are to be supported.

Though concurrency control mechanis ms in

OODBMS can be considered, they cannot be extended

as they are in OODS. This is because query languages

are used to access databases. But in OODS, object

oriented programming languages like C++, Java are

used to make client requests. Then lock types and

 Semantic Mult i-granular Lock model for Object Oriented Distributed Systems 75

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 05, 74-84

granularit ies of resources are to be ascertained from the

client code. The doc tools like docC++, Javadoc can be

used for identify ing the method type and properties.

Following this, the compatibility matrix used in

OODBMS can be considered for adoption in OODS.

In OODBMS, lock modes are defined only for

concrete classes. The lock modes for abstract classes are

not ascertained. The compatib ility matrices for

inheritance and aggregation have been defined for

OODBMS. To use those matrices, lock types and

granule sizes are to be determined for inheritance and

aggregation (composition) using the classificat ion of

class method types and properties proposed in [2, 3].

Association is one the important relat ionships

frequently used to relate objects participating in a

domain. In [4], they have proposed directed graph based

association algebra for query processing and

optimization of objects in object oriented databases. But

so far, the types, properties and attributes of association

have not been exp lored for their probable impact on

concurrency or concurrency control. The lock modes,

granule sizes and lock compatibility for association

have not been explored so far.

In the following section, a semantic concurrency

control technique is proposed for object oriented

distributed systems. It is done in two steps namely (1)

defining lock types and granularity for all types of

classes and their relationships (2) extending the

compatibility matrix defined for OODBMS to OODS.

Section 3 concludes the chapter.

II. Defining Lock Types and Granularity for

Classes and Their Relationships

2.1 Object Oriented Concepts

This section revisits the object oriented concepts

related to the research work. The types and properties of

object methods are explained first. Then the semantics

of class types, attribute types and class relationships

with respect to locking is discussed.

The client requests are satisfied by executing the

methods defined in the object. These methods need to

operate on the data to satisfy the request. The methods

not only have types but also properties. Depending on

the type of methods, the read or write operations can be

ascertained. Then concurrency control mechanisms can

be defined whenever there are R-W and W-W conflicts.

In [2] the object methods are classified into three types:

1. Query method: returns some informat ion about the

object being queried. It does not change the object‟s

state. There are four main query method types:- Get

method, Boolean query method, Comparison method

and Conversion method.

2. Mutation method: changes the object‟s state

(mutates it). Typically, it does not return a value to

the client. There are three main mutation method

types:- Set method, Initialization method and

Command method.

3. Helper methods: performs some support task for

the calling object. There are two types of helper

methods: - Factory method and Assertion method.

Apart from types, a method also has properties [3].

Example of method properties are whether the method

is primitive or composed, whether it is available for

overriding through subclasses (hook method) , or

whether it is a mere wrapper around a more

complicated method (Template method) . A method has

exactly one method type, but it can have several

properties. Method types and properties are orthogonal

and can be composed arbitrarily.

Two types of classes are defined in object oriented

systems namely Abstract and Concrete classes. Abstract

classes are usually used to define the class template.

Instances are not created from this type of classes.

Usually they act as base classes from which one or

more concrete classes are derived. Concrete classes are

classes defined main ly to create instances. They support

all types of methods to create, query, mutate and delete

objects. The locks on concrete classes depend on the

type of member method which is invoked. Both read (S)

and write (X) locks must be availab le for them at both

design time as well as runtime. So lock types for both

abstract and concrete classes are to be ascertained.

In OODBMS, only instance level attributes are

referred. The scope of values of these attributes is

restricted to the state of the object in which they are

present. They are mutually independent and directly

inaccessible by other objects of the same class. In

OODS, instance level attributes as well as class level

attributes are present. The class level attributes are

shared by all instances of a class. They are also called

as static attributes of a class. For e.g., nextregno can be

defined as a static member in the student class to

generate the next register number for a new student

object. Hence the s mallest granule size for instance

level attributes could be object or indiv idual attributes,

whereas the granule size o f class level attribute can be

as small as a class.

As mentioned earlier, the classes are related by

inheritance, aggregation and association relationships.

The inheritance relat ionship also called as “IS A”

relationship is sub divided into single inheritance, multi

level inheritance, multip le inheritance, h ierarchical

inheritance and hybrid inheritance. The inheritance

relationship except multip le inheritance can be

represented using tree structure and is called class

hierarchy. The inclusion of multiple inheritance will

lead to network structure and is called class lattice.

The aggregation also called as “HAS A” relationship

defines the containment of component objects in a

composite object. The composite object uses the

services of component objects to provide its service.

76 Semantic Mult i-granular Lock model for Object Oriented Distributed Systems

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 05, 74-84

There are two types of aggregation namely strong and

weak aggregation. The weak aggregation is a subtype of

association and hence the rules used for association can

also be extended to this. The strong aggregation is also

called as composition and defines “PART OF”

relationship. The composition [5] can be classified into

dependent or independent based on the dependence of

creation and deletion of component objects on

composite objects. The composition is also classified

into shared or exclusive based on the possibility of

sharing component objects by more than one composite

object.

The association relationship defines the USING

relationship, where one or more objects use the service

of an object. Since it is an object relat ionship, a binary

association can be treated as shared composition with

single component and N-ary association can be treated

as shared composition with mult iple component objects.

The rules defined for composition may be extended to

association.

In [5] and [6], they have explored the types and

properties of inheritance and aggregation. However it is

worth noting certain points regarding these relationships:

1. Transactions can request a single object or all the

objects of a class based on the member function

present in it. The property of the member function

may be instance level or class level [3]. In [6], it

states that when class level methods are called,

instead of setting individual locks on all objects, a

single lock on its class may be set to minimize the

lock escalation.

Fig. 1: Locking the sub class object with its base class object to
maintain consistency

2. When a transaction requests a sub class object (fig 1),

the sub class object and its corresponding base class

object mapping to the same record in a database table

must also be locked to maintain consistency. Hence

base class object is an implicit resource needed for a

transaction, when a transaction makes exp licit

resource request to sub class object. However when

base class objects are requested, sub class objects

need not be locked.

Fig. 2: Locking the composite object with its component object to
maintain consistency

3. When a transaction requests a composite object, its

component objects also need to be locked. In

aggregation, component objects constitute composite

object. Hence component objects are implicit

resources to composite object (exp licit resource). The

composite object gets the request and forwards it to

component object, if the service is implemented in

component object. The component object provides

the service to the transaction as in figure 2.

4. In association, when a transaction calls an associative

object, it may access associated object to provide the

service. Then associated object needs to be locked

along with the requested object to maintain

consistency as in figure 3.

Fig. 3: Locking the associative object with its associated object to
maintain consistency

Association differs from Inheritance and Aggregation

relationships in the following ways:

 Association requires several qualifying attributes to

completely define itself, unlike “IS-A” and “HAS-A”

relationships that are complete and semantically

strong.

 In Inheritance and Aggregation, the cardinality of the

relationship is usually 1.But in association; the

cardinality can range from 0 to many. Hence a policy

must be decided to fix the granule size.

 Reflexive association is present only in association,

in which one object may associate with 0 or more

objects of the same class. This leads to self looping.

 Semantic Mult i-granular Lock model for Object Oriented Distributed Systems 77

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 05, 74-84

 Usually inheritance and aggregation are static. These

relationships are decided at design time. But

association can be static or dynamic.

Association is classified in to the following

categories[7,8]:

1. Direct vs. Indirect Association:

In direct association, the two classes are directly

linked. This will be usually binary association.

Fig. 4: example for indirect association

In fig 4, the association between A, B and B, C are

direct. But the association between A and C is indirect.

This implies that if class A is requested, then B is also

to be requested. This is because B is directly associated

with A and A might need the services of B. But B is

associated with C. This implies that B might use the

services of C to serve A. Hence A is indirect ly

associated with C. When B is locked along with A, C

also needs to be locked. This association type decides

the extent of locking.

2. Binary Vs N-ary Association:

Binary association is association between two classes.

If more than two classes are associated, then it is called

N-ary association. N-ary association is difficult to

implement as it is. Hence it is implemented as a

collection of binary associations. In fig 5a

Fig. 5a: N-ary Association

Fig. 5b: equivalent binary association

3. Referential Vs Dependent Association:

In referential or independent association, the

association is logical. The associated classes are called

as target and source classes. Target class is connected to

source class which provides service. This typically

defines “USING” relat ionship. When source classes are

removed, the target classes are not removed. They are

independent of each other.

Alternately, dependent association is physical. Here

the classes are called producer and client. If producer is

removed, the client also ceases to exist. In other words,

client depends on server for its existence. This imposes

constraints on creation and deletion of client on

producer.

4. Shared vs. Exclusive Association:

In this type, the association is either dedicated to one

class or shared with many classes.

5. Static vs. Dynamic Association:

In [9], it is stated that association can have static or

permanent links (long term association) or dynamic

links (short term association). Static links are defined at

design time. But Dynamic links are transient, contextual

and initiated only on request. Hence request for

dynamically associated classes are deferred till runtime.

6. Reflexive Association:

This is a rarity in association itself. An object can be

a client of other objects in the class. In fig 6,

Fig. 6: example for reflexive association

A supervisor, who is also an instance of employee,

manages other employees. This is called as self looping.

7. Inherited Association:

In fig 7, the association between subject and student

is inherited to the derived class PG Student also. This

lets redefin ition of the association between student and

subject.

Fig. 7: example for inherited association

Any association is expected to define the following

attributes to be semantically complete [10].

1. Role name: Two classes may have more than one

association. This helps to select a specific association at

Subject Student

PG

Student
Subject

Studied by

Studied by

Employee Manages

78 Semantic Mult i-granular Lock model for Object Oriented Distributed Systems

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 05, 74-84

a time between the two associated classes. This helps to

deduce what attributes are going to be accessed for a

particular association. Then concurrency may be

increased.

2. Interface specifier: Along with role name, this

also helps to identify attributes required, the services

(methods) provided in a specific association.

3. Visibility: Specifies the access rights to other

attributes and methods in the class. A transaction in

OODS is typically constituted of interfaces. An

interface may contain one or more methods or member

functions of the implementing class. Then it is required

that these methods are declared as „public‟. Otherwise

they are hidden from the client and their request will not

be satisfied.

4. Cardinality/ Multiplicity: Cardinality specifies the

correspondence between the associated classes. This

can be used to deduce granule size.

The above mentioned factors can be utilized while

defining lock model for objects related by association.

So far, the association relationship is not considered

because of its inability to completely define the

relationship semantically.

2.2 Defining Lock Types and Granularity for

Attributes and Classes

In OODBMS, only instance level attributes are

referred. The scope of the values of these attributes is

restricted to the state of the object in which they are

present. They are mutually independent and directly

inaccessible by other objects of the same class. In

OODS, instance level attributes as well as class level

attributes are present. The class level attributes are

shared by all the instances of a class. They are also

called as static attributes of a class. For e.g., nextregno

can be defined as a static member in „student‟ class to

generate the next register number for new student object.

Hence the smallest granule size for instance level

attributes could be object or indiv idual attributes,

whereas the granule size o f class level attribute can be

as small as only a class. Table 2a gives their granularity.

Abstract classes are usually used to define the class

template. Instances are not created from this type of

classes. Usually they act as base classes from which one

or more concrete classes are derived. So at runtime,

they should be locked only in S (read) mode. Th is is

because the concrete classes that are inherited from this

abstract class would be reading them. As they do not

create instances (objects) and thereby do not affect the

state of the system. However at design time,

modifications may be done to the abstract class by

inserting new methods or attributes, modifying the

signature of the existing methods or modifying the data

types of the attributes or deleting one or more attributes

and/or methods. Hence the design time clients must be

allowed to lock the abstract class by both S (read) and X

(write) locks. It is also worth noting that the smallest

accessible granule of abstract class is a class.

Table 1: Lock types for types of classes

Class type
Lock type

 (Design time)
Lock type
(Runtime)

Abstract class S/X S

Concrete class S/X S/X

Concrete classes are classes defined main ly to create

instances. They have all types of methods to create,

query, mutate and delete objects. So the locks on

concrete classes depend on the type of method which is

invoked. So both S and X locks must be available for

them at both design time as well as runtime. [5, 6,

11,12,13] address only concrete classes. Their

granularity can be as small as attribute [12]. Table 1

summarizes the lock types allowed for the types of

classes at design time and run time and table 2b

summarizes their granularity.

Table 2a: Granularity of attributes

Type of class Granularity

Abstract class Class hierarchy/Class

Concrete class Class/ Instance/Attribute

Table 2b: Granularity of classes

Type of Attributes Granularity

Instance level Instance/Attribute

Class level Class

2.3 Types and Granularity of Locks Based on

Method Types for Inheritance

Based on the definit ions of the method types and its

properties in section 2.2, the locks can be determined

for inheritance relationship as given below. In [14], they

have defined the following types of lock modes for

coarse and fine granules for relational databases. It is

extended to object oriented databases as follows.

Instance objects can have only S and X locks. The

class objects can be locked in S, X, IS, IX and SIX

modes. The semantics of these modes are defined below:

 An IS (Intention Share) lock on a class means that

instances of the class are to be explicitly locked in S

or X mode as necessary.

 An IX (Intention Exclusive) lock on a class means

instances of the class will be exp licit ly locked in S or

X mode as necessary.

 An S (Shared) lock on a class means that the class

definit ion is locked in S mode, and all instances of

the class are implicit ly locked in S mode and thus are

protected from any attempt to update them.

 Semantic Mult i-granular Lock model for Object Oriented Distributed Systems 79

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 05, 74-84

 An SIX (Shared Intention Exclusive) lock on a class

implies that the class definition is locked in S mode,

and all instances of the class are implicit ly locked in

S mode and instances to be updated (by the

transaction holding the SIX lock)will be exp licitly

locked in X mode.

 An X (Exclusive) lock on a class means that the class

definit ion and all instances of the class may be read

or updated.

Table 3 defines the locks based on the types of object

methods. The types of locks are also based on the class

level / instance level/ attribute level of access. For class

level methods, the class hierarchy is locked by intension

locks and classes are locked by S or X locks. If it is

instance method, then class is set by intension locks and

its instances are locked by S or X locks. The objects are

accessible only after their creat ion. Their accessibility

ceases after destruction.

Table 3: Lock type based on method types of Inheritance

Table 4 defines the lockable g ranules for various

methods based on their properties as below. By

combin ing the types and properties of the methods, the

lock type and lockable granule size can be deduced.

Table 4: Lock granularity based on method properties in Inheritance

2.4 Types and Granulari ty of Lock Based on

Method Types for Aggregation

Aggregation is an object relationship. In order to

maintain consistency, when a client requests a

composite object, intension lock must be set on its class.

Along with that, the component objects that constitute

the composed object must also be set on intention object

lock. These intention locks, while locking the particular

object that constitute the composite objects, let other

objects of the same class to be used by other clients.

This improves concurrency. Aggregation may have

exclusive or shared reference. Exclusive reference does

not allow the component objects to be shared by other

composite objects whereas shared reference allows it.

Further aggregation may be dependent or independent

on component objects for creation and delet ion i.e . in

the case of dependent aggregation, the composite object

can be created only after creating the component objects

and it is destroyed when all its composite objects are

destroyed.

Table 5: Lock type based on method types for Aggregation

METHOD TYPES
Aggregation Root

Object/ Attribute

Aggregation Root

Class/ Object

Exclusive Component

Class/Object

Shared Component

Class/Object

Query method S IS/ISO ISO/ISA ISOS/ISAS

Mutation

method

Set method/ Initialization method X IX/IXO IXO/IXA IXOS/SIXAS

Command method S/X SIX/SIXO SIXO/SIXA SIXOS/SIXAS

Helper
Method

Factory method As per creation and deletion rule based on dependent / independent aggregation

Assertion method S IS/ISO ISO/ISA ISOS/ISAS

80 Semantic Mult i-granular Lock model for Object Oriented Distributed Systems

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 05, 74-84

In the case of independent aggregation, the life cycle

of composite object is independent of its composite

objects. Table 5 gives the types of locks based on

method types for aggregation. It is followed by

granularity of locks as in Table 6.

Table 6: Lock granularity for Aggregation or Composition

Class Type
Granularity of locks

Primitive method Composed method

Primitive class Component attribute Component object

Non Primitive class Composite object hierarchy

Table 7: Type of locks based on method types for Association

METHOD TYPES
Association Root

Object/ Attribute

Association Root

Class/ Object

Exclusive Associated

Class/Object

Shared Associated

Class/Object

Query method S IS/ISO ISO/ISA ISOS/ISAS

Mutation

method

Set method / Initialization method X IX/IXO IXO/IXA IXOS/IXAS

Command method S/X SIX/SIXO SIXO/SIXA SIXOS/SIXAS

Helper
method

Factory method As per creation and deletion rule basd on dependent / independent association

Assertion method S IS/ISO ISO/ISA ISOS/ISAS

Association is also an object relationship. In order to

maintain consistency, when a client requests an

associative object, intension lock must be set on its

class. Further, the associated objects that constitute the

associative object must also be set on intention object

lock. These intention objects, while locking the

particular object that constitute the associative objects,

lets other objects of the same class to be used by other

clients. This improves concurrency.

Association may have exclusive or shared reference.

Exclusive reference does not allow the associated

objects to be shared by other associative objects

whereas shared reference allows it; further association

may be dependent or independent on associated objects

for creation and deletion. i.e . in the case of dependent

association, the associative object can be created only

after creating associated objects and it is destroyed

when all its associated objects are destroyed. In the case

of independent association, the life cycle o f associative

object is independent of its associated objects.

Association relationship also possesses association

hierarchy like aggregation hierarchy. Table 7 g ives the

types of lock based on method types for association. It

is followed by granularity of locks as in Table 8.

Table 8: Lock granularity for Association

Class type
Granularity of locks

Primitive method Composed method

Primitive class Associated attribute Associated object

NonPrimitive class Associative object hierarchy

2.5 Compatibility Matrix for Runtime Transactions

Based on Class Relationships

The compatibility matrix specified in [6] for

inheritance is given in table 9. The inheritance can be

classified as exclusive inheritance or shared inheritance.

The inheritance types single inheritance, multilevel

inheritance, mult iple inheritance allow exclusive

inheritance of a parent class to one or more ch ild classes.

But in hierarch ical inheritance, several sub classes are

inherited from the same parent class or the parent is

shared by many siblings.

Table 9: Compatibility matrix for Inheritance [6]

 IS IX S SIX X

IS Y Y Y Y N

IX Y Y N N N

S Y N Y N N

SIX Y N N N N

X N N N N N

If the compatib ility matrix specified in [6] is

extended for this shared inheritance, then concurrency

will be restricted. At any time, only one sub class is

allowed to lock the parent class. Hence separate

intension lock modes must be defined to increase

concurrency. In the compatib ility matrix below,

separate lock modes need to be defined in shared and

exclusive inheritance. Three more lock modes ISCS

(Intension Shared Class Shared), IXCS (Intension

Shared Exclusive Shared) and SIXCS (Shared Intension

Exclusive Class Shared) can be defined to support

shared inheritance. These new lock modes can be

appended to the compatibility matrix in [6] as in table

10. Figures 8a, 8b and 8c show the different types of

shared and exclusive inheritance and the locking policy

in each type of inheritance. Table 10 gives the rev ised

compatibility matrix.

 Semantic Mult i-granular Lock model for Object Oriented Distributed Systems 81

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 05, 74-84

Fig. 8a: Locking in Single Inheritance

Fig. 8b: Locking in Multilevel Inheritance

Fig. 8c: Locking in Multiple Inheritance

Table 10: Revised compatibility matrix for Inheritance

 IS ISCS IX IXCS S SIX SIXCS X

IS Y Y Y Y Y Y Y N

ISCS Y Y Y Y Y Y Y N

IX Y Y Y Y N N N N

IXCS Y Y Y Y N N N N

S Y Y N N Y N N N

SIX Y Y N N N N N N

SIXCS Y Y N N N N N N

X N N N N N N N N

82 Semantic Mult i-granular Lock model for Object Oriented Distributed Systems

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 05, 74-84

Table 11 gives the compatibility matrix for

aggregation extended from [5]. In [5], compatib ility

matrix for aggregation has been defined by extending

the lock modes defined for inheritance to aggregation.

But its granularity size is restricted to object level. It is

further extended to attribute level in the proposed

scheme to improve the concurrency.

Table 11: Revised compatibility matrix for object relationships

The compatibility matrix for association has to give

separate lock modes for attribute level association and

object level association. Association is also an object

relationship like aggregation. As lock modes for object

level locking and attribute level locking has already

been defined for aggregation, it can also be extended to

association. Hence it is same as the compatibility matrix

for aggregation as given in table 11. The compatib ility

matrix o f table 12 completely defines the semantics of

all the lock modes for run t ime transactions. It combines

the compatibility matrix defined for each relat ionship

separately as given in table 10 and 11.

2.6 Compatibility Matrix for Runtime and Design

Time Transactions

In OODBMS, fine level lock modes are also defined

for design time operations. It is not possible to extend

the same to OODS, because it has no schema and query

language support. When any design time operations are

performed, the code implementing the domain has to be

changed. As it is very difficult to predict which part of

the code is getting modified in OODS, coarse level

locking is offered for design time operations in OODS.

Table 12: Compatibility matrix for runtime transactions

 IS ISCS IX IXCS S SIX SIXCS X ISO IXO SIXO ISOS IXOS SIXOS ISA IXA SIXA ISAS IXAS SIXAS

IS Y Y Y Y Y Y Y N Y N N Y N N Y N N Y N N

ISCS Y Y Y Y Y Y Y N Y N N Y N N Y N N Y N N

IX Y Y Y Y N N N N N N N N N N N N N N N N

ISCS Y Y Y Y N N N N N N N N N N N N N N N N

S Y Y N N Y N N N Y N N Y N N Y N N Y N N

SIX Y Y N N N N N N N N N N N N N N N N N N

SIXCS Y Y N N N N N N N N N N N N N N N N N N

X N

ISO Y Y N N Y N N N Y Y Y Y Y Y Y Y Y Y Y Y

IXO N N N N N N N N Y Y N Y Y N Y Y N Y Y N

SIXO N N N N N N N N Y N N Y N N Y N N Y N N

ISOS Y Y N N Y N N N Y Y Y Y N N Y Y Y Y N N

IXOS N N N N N N N N Y Y N N N N Y Y N N N N

SIXOS N N N N N N N N Y N N N N N Y N N N N N

ISA Y Y N N Y N N N Y Y Y Y Y Y Y Y Y Y Y Y

IXA N N N N N N N N Y Y N Y Y N Y Y N Y Y N

SIXA N N N N N N N N Y N N Y N N Y N N Y N N

ISAS Y Y N N Y N N N Y Y Y Y N N Y Y Y Y N N

IXAS N N N N N N N N Y Y N N N N Y Y N N N N

SIXAS N N N N N N N N Y N N N N N Y N N N N N

 Semantic Mult i-granular Lock model for Object Oriented Distributed Systems 83

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 05, 74-84

Table 13: Revised compatibility matrix for design time transactions

and runtime transactions

 RD WD RA

RD Y N Y

WD N N N

RA Y N Depends on table 12

The schema locking defined in Lee1996 may be

taken into account for design time transactions. Just as

schemas are changed periodically, OODS can also

provide improved services. This requires updating of

behavior defined by object methods. The lock modes

can be called as RD (Read Defin ition), WD (Write

Definition) and RA (Runtime Access). Then analogous

to the schema locks RS and WS, compatib ility matrix

can be defined. The compatib ility matrix for design

time transactions and runtime transactions are defined

in table 13.

III. Conclusion

The compatibility matrix mentioned in this chapter

needs to be implemented. In OODBMS, the

compatibility matrix is implemented as part of the

DBMS. In OODS the domain is implemented using

object oriented languages like java, c++ etc. Then it has

to be implemented as operating system services or

language constructs in programming languages say as

an extended library of the language or as part of the

component itself. Providing concurrency control at

operating system level is too complex. Providing it at

language level is possible. Already Java, Eiffel etc.,

offers such extended libraries for various services.

Among all the solutions, implementing it as part of the

component is much more feasible. A lready, COM has

set a precedence of managing the clients in a p rimit ive

way using reference counts. Active component

approach called JADEX has been proposed in [15], in

which the concurrency module is built as part of the

component. They have provided primitive concurrency

control mechanism to avoid dirty reads and writes. They

have not explo ited the semantics of ob ject oriented

paradigm. If the proposed compatibility matrix can be

incorporated in such components the performance will

improve.

This paper proposes a semantic based concurrency

control mechanism for ob ject oriented distributed

systems. It is based on mult i granular lock model. The

Compatibility matrix defines lock modes for objects

based on the semantics of object oriented paradigm. It

provides fine granularity for runtime data requests. But

design time requests are still in coarse level. Hence the

future work will be to exp lore the possibility of

providing fine granularity also for design time requests.

References

[1] V.Geetha and N.Sreenath, “Impact of Object

Operations and Relationships in Concurrency

Control in DOOS”, International Conference on

Distributed Computing and Networking, Kolkata,

Proceedings in Springer-Verilag, 2010.

[2] Dirk Riehle, Stephen P. Berczuk, “Types of

Member Functions in C++”, Report, 2000.

[3] Dirk Riehle, Stephen P. Berczuk, “Properties of

Member Functions in C++”, Report, 2000.

[4] Shengli Wu and Nengbin Wang, “Directed Graph

based Association Algebra for Object Oriented

Database”, IEEE, pp 53- 59, 1998.

[5] W.Kim, E.Bert ino and J.F.Garza, ”Composite

Objects revisited,” Object oriented Programming,

systems, Languages and Applications, pp 327-340,

1990.

[6] J.F. Garza and W.Kim,”Transaction management

in an object oriented database system”, Proc. ACM

SIGMOD Int‟l conference, management data, 1987.

[7] Dragan Milicev, “On the Semantics of

Associations and Association Ends in UML”,

IEEE Transactions on Software Engineering,

Vol.33, No.4, pp 238-251, April 2007.

[8] Brian Henderson-Sellers, “Towards the

formalizat ion of Relationships for Object

Modeling”, Centre for Object Technology

Applications and Research.

[9] P.Stevens, “On the Interpretation of Binary

Associations in the Unified Modeling Language “,

vol. 1, No. 1, pp68-79, 2002.

[10] Tom Pender, “UML 2 Bib le”, Wiley Publishing

Inc., First Edition, 2003.

[11] S.Y.Lee and R.L. Liou, “ A Multi- Granularity

Locking model for concurrency control in Object–

Oriented Database Systems”, IEEE Transactions

on Knowledge and Data Engineering, Vol 8, no 1,

feb 1996.

[12] Woochun Jun,” A multi- granularity locking-based

concurrency control in object o riented database

system, Elsevier Journal of Systems and Software,

pp 201-217, 2000.

[13] Woochun Jun and Le Gruenwald, “An effective

class hierarchy concurrency control technique in

object–oriented database systems”, Elsevier

Journal of Information and Software

Technology, pp 45-53, 1998.

[14] J.N.Gray, R.A. Lorie, G.R. Putzolu and L.I.

Traiger, “Granularity of locks and degrees of

consistency in shared database,” Modeling in

Database management system, G.M. Nijssen, ed,

Elsevier, North Holland, pp 393-491, 1978.

84 Semantic Mult i-granular Lock model for Object Oriented Distributed Systems

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 05, 74-84

[15] L. Braubach and A.Pokahr, “Intelligent Distributed

Computing V”, Proceedings of the 5P
thP

International Symposium on Intelligent Distributed

Computing (IDC 2011), Springer, pp141-151,

2011.

Authors’ Profiles

V.Geetha: Assistant Professor (Senior) in Information

Technology department, Pondicherry engineering

college. Currently she is doing her Ph.D in Pondicherry

University. Her research areas of interest includes

client/ server architecture, distributed systems, object

oriented system design and middleware technologies.

N.Sreenath: Professor in Department of Computer

Science and Engineering in Pondicherry Engineering

College. He has more than 30 publications in various

international conference proceedings and journals. His

areas of interest are distributed computing, high speed

networks and WDM optical networks .

How to cite this paper: V.Geetha, N.Sreenath,"Semantic

Multi-granular Lock model for Object Oriented Distributed

Systems", International Journal of Information Technology

and Computer Science(IJITCS), vol.5, no.5, pp.74-84,
2013.DOI: 10.5815/ijitcs.2013.05.10

