
I.J. Information Technology and Computer Science, 2013, 05, 67-73

Published Online April 2013 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2013.05.09

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 05, 67-73

The Extensive Bit-level Encryption System

(EBES)

Satyaki Roy

Department of Computer Science, St. Xavier’s College, Kolkata, India

E-mail: unrivaledsatyaki@gmail.com

Abstract— In the present work, the Extensive Bit-level

Encryption System (EBES), a b it-level encryption

mechanis m has been introduced. It is a symmetric key

cryptographic technique that combines advanced

randomizat ion of b its and serial b itwise feedback

generation modules. After repeated testing with a

variety of test inputs, frequency analys is, it would be

safe to conclude that the algorithm is free from standard

cryptographic attacks. It can effectively encrypt short

messages and passwords.

Index Terms— Randomizat ion, Feedback, Byte-

Extraction

I. Introduction

Due to the g rowing need to protect the

confidentiality of information, there is a rising demand

for an encryption algorithm that can protect data of

every format, size and type. Protecting passwords from

interception and unauthorized intrusion is of utmost

importance. Some messages have repeated occurrences

of the same characters and encryption of such texts may

be rather difficult. Crypto analysis is fast becoming an

integral part of cryptographic algorithms because

measures must be taken to ensure that any file may be

suitably encrypted.

Cryptography algorithms are largely of two types (i)

Symmetric key cryptography where we use single key

for encryption and decryption purpose (ii) Public key

cryptography where we use one key for encryption

purpose and one key for decryption purpose.

The present algorithm EBES is a symmetric key

algorithm that performs encryption by advanced bitwise

randomizat ion and serial feedback generation. The

prime object ive is to ensure that even the rarest of text

inputs like characters of ASCII 0, 1 and 2 may be

encrypted to ciphers that are difficu lt to intercept and

decode by standard cryptographic attack mechanisms.

II. The Extensive Bit-level Encryption System

(EBES) Algorithm

The EBES algorithm includes a number of modules

that may be largely classified under two algorithms (i)

Bit-wise Randomization (ii) Serial bitwise feedback

generation module. The first algorithm uses employs

permutation of the plain text bits and the second applies

new serial b it feedback generation to encrypt the

randomized bytes. The two modules are managed with

the help of integration modules for encryption and

decryption respectively.

2.1 Integration Module

The features of the module are described below:

1. The integration module converts the plain bytes into

bits.

2. It extracts bits of plain text depending on the size of

the file. According to the algorithm 2, 8, 32 and 128

bytes may be ext racted and encrypted at a time

(described later).

3. The randomizat ion module and the serial feedback

generation modules are also invoked.

4. The plain bits are encrypted mult iple t imes according

to the user password.

Encryption

1. Enter the name of the Plain file , Cipher file and

key=password (maximum size=64 bytes).

2. Define ma=n=Size of (Plain file).

3. Define cod=Ʃ key[i]* (i+1) where 0<=i<=64

and 1-d array arr [] = {2, 8, 32, 128} where arr[i]

{0<=i<4} decides the number of bytes extracted

at a time for encryption.

4. Perform cod=number of t imes encryption is

repeated=modulus (cod, 30). If cod<10 then

perform cod=10.

5. Split the plain file into bits. Define ii=0.

6. If ii>cod Goto 16

68 The Extensive Bit-level Encryption System (EBES)

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 05, 67-73

7. Perform n=ma, ll=1, i=3

8. If n < arr[i] Goto 13

9. Extract (arr[i]*8) bits of plain text. Define

m=square root (arr[i]*8)

10. Invoke function ran_en (m, ll) to perform bit-

level randomization on the plain bits

11. Invoke module feed_en () to generate serial

feedback to encrypt the randomized bits.

12. Perform n=n-arr[i] where n=unprocessed bytes.

Perform ll=ll+1. Goto 14

13. Perform i = i – 1.

14. If n<=1 then copy the file to the cipher file else

Goto 8.

15. Write the cipher bits back to the plain bit file,

perform ii=ii+1 Goto 6 for another round of

encryption.

16. Convert the encrypted bits back to bytes to

obtain the final cipher file.

17. End

Decryption

The decryption process is almost the same as the

encryption module. However the only point of

difference is that the modules ran_en () and feed ()

modules are invoked in the opposite order during

decryption.

Illustration of byte-extraction from the plain file:

1. If the size of the plain file is 43 bytes (ASSUME)

then extraction of 128 bytes is not possible.

2. The algorithm ext racts 32 bytes and encrypts it and

writes it in the cipher file.

3. Therefore number of bytes remaining = 45-32=11.

4. Therefore extraction of 32 bytes is no longer possible.

The algorithm extracts 8 bytes and encrypts it.

5. Number of bytes remaining=11-8=3.

6. Now, the algorithm extracts 2 bytes and encrypts it.

7. Number of bytes remain ing=3-2=1. It copies the

remaining byte into the cipher file.

2.2 Advanced Bit-wise Randomization Module

The features of this module are described below:

1. This module generates the key matrix for

randomizat ion of plain b its based on the value

of‘ll’ which counts the number of times the key

matrix is randomized before the actual bit

exchange.

2. The plain b its are randomized according to the

key matrix.

3. The algorithm also performs selective compliment

of the plain b its based on the key matrix entries so

that the rare text inputs containing characters like

ASCII 0 or 1 only may be randomized. So some

plain bits of 0 become 1 and vice-versa.

Encryption rand_en (p, ll)

Step 1: Start

Step 2: Create a key matrix which is used to

randomize the bits of plain text where m=number of

rows / columns in the square matrix of plain bits,

ll=number of times the key matrix is randomized.

Step 3: Define 2-d arrays arr=the randomizat ion key.

Define 2-d b its arrays chararr [] [] =plains bits and

chararr2 [] [] =randomized bits.

Step 4: In itialize all the elements in the bits arrays

chararr [][] and chararr2[][] to 'null'.

Step 5: 'm'=number of rows and columns in the square

matrix of chararr [] [], chararr2 [] [], arr [] [].

Step 6: Input the numbers 1, 2, 3..., (m*8) to the array

arr [] [] by incrementing the value of n.

Step 7: Copy the input file bits to 2-d array chararr [] [].

Step 8: The program invokes function ‘leftshift ()'

which shifts every column in the array to one place left

thus the leftmost column goes to the extreme right.

Step 9: Invoke function top shift () which shifts very

row to the row above. Therefore the elements in first

row are displaced to the corresponding position of the

last row.

Step 10: Subsequently perform cycling operation on the

array arr [] []. Initialize i to 1.

Step 11: If i > m/2 Goto 15.

Step 12: If i is odd, perform clockwise cycling of the ith

cycle of the key matrix array. Invoke functions :

rights(),downs(), lefts(),tops() to implement the

clockwise displacement of the elements in arr[][].

Step 13: If i is even, perform anti-clockwise cycling of

the i-th cycle of the bits array. Invoke functions

ac_rights (), ac_downs (), ac_lefts (), ac_tops () to

implement the anti-clockwise displacement of the

elements in arr [] []. Therefore the array arr [] [] is

alternately randomized in clockwise and anti-clockwise

cycles.

Step 14: Increment i. Goto 11.

 The Extensive Bit-level Encryption System (EBES) 69

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 05, 67-73

Step 15: Repeat steps 11-14‘ll’ number of t imes. The

program invokes function 'rightshift () ' which shifts

every column in the array to one place right thus the

last column is displaced to the position of the first

column.

Step 16: Invoke function ‘downshift () which shifts very

row to the row below. Therefore the elements in the last

row are displaced in the corresponding position of the

first row.

Step 17: Invoke the function 'leftdiagonal () ' that

performs downshift on the elements in the left d iagonal

such that the lowermost element is displaced to the

position of the topmost element in the left diagonal.

Step 18: Invoke the function 'rightdiagonal () ' that

performs downshift on the elements in the right

diagonal such that the lowermost element is displaced

to the position of the topmost element in the right

diagonal.

Step 19: To arrange the elements in the bits array

chararr [] [] according to the randomized array arr [] [].

Initialize i to 1.

Step 19: Initialize j to 1

Step 20: Store element arr[i] [j] in z.

Step 21: Compute the k=row position=z/m and

l=co lumn position=modulus (z, m) pointed by the

element z

Step 22: Place chararr[k][l] in auxiliary bits array

chararr2 [][] in positions chararr2[i][j]. If modulus (j,2)

is not equal to 0 then compliment the bit stored in

chararr2[k][l].

Step 23: Increment j.

Step 24: If j<=m Goto 20

Step 25: Increment i

Step 26: If j<=m Goto 20

Step 27: Write the randomized elements in b its array

chararr2 [i] [j] to the output file.

Step 28: End.

Decryptio rand_de (m, ll)

Step 1: Start

Step 2: Create a key matrix which is used to randomize

the bits of plain text where m=number of rows /

columns in the square matrix o f plain b its, ll=number of

times the key matrix is randomized.

Step 3: Define 2-d array 'arr' = randomized key. Define

2-d bits arrays 'chararr [][]' = bits in encrypted file and

chararr2[][] = decrypted bits.

Step 4: In itialize all the elements in the bits arrays

chararr [][] and chararr2 [][] to 'null'.

Step 5: 'm' = number of rows and columns in the square

matrix of chararr [] [], chararr2 [] [], arr [] [].

Step 6: Input the numbers 1, 2, 3..., (m*8) to the array

arr [] [] by incrementing the value of n. The bits in the

input file are copied to the bits array ‘chararr [][]'.

Step 7: Use the numbers in the randomized array

created with the help of the functions subsequently

defined in the program to obtain key matrix.

Step 8: The program invokes function 'leftshift () '

which shifts every column in the array to one place left.

Step 9: Invoke function 'topshift () which shifts every

row to the row above.

Step 10: Perform cycling operation on the array 'arr

[][]' . Initialize i to 1.

Step 11: If i > m/2 goto 15.

Step 12: If i is odd, perform clockwise cycling of the i-

th cycle of the bits array. Invoke functions rights (),

downs (), lefts (), tops () to implement the clockwise

displacement of the elements in arr [] [].

Step 13: If i is even, perform anti-clockwise cycling of

the ith cycle of the bits array. Invoke functions :

ac_rights (), ac_downs (), ac_lefts (), ac_tops () to

implement the anti-clockwise displacement of the

elements in arr[][]. Therefore the array arr [] [] is

alternately randomized in clockwise and anti-clockwise

cycles.

Step 14: Increment i. Goto 11.

Step 15: Repeat steps 11-14 ‘ll’ t imes. Invoke function

'rightshift ()' which shifts every column in the array to

one place right.

Step 16: Invoke function 'downshift () which shifts very

row to the row below.

Step 17: Invoke the function 'leftdiagonal ()' that

performs downshift on the elements in the left diagonal.

Step 18: Invoke the function 'rightdiagonal ()' that

performs downshift on the elements in the right

diagonal.

Step 19: Store the cipher bits in the 2d array chararr [][].

Define i=1

Step 20: Define j=1

Step 21: Define z=arr[i][j]

Step 22: Define k=z/m, l=modulus (z, m)

Step 23: If l is not equal to 0, k=k+1 else l=m.

Step 24: Compliment the bit stored in chararr[k][l].

Step 25: Perform j=j+2. If j<=m, Goto 21.

Step 26: Increment i. If i<=m, Goto 20

70 The Extensive Bit-level Encryption System (EBES)

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 05, 67-73

Step 27: .Define n=1. Initialize i to 1.

Step 28: Initialize j to 1

Step 29: In itialize variab les flag to 0, k to 0 and l to 0

where k=row index and l=co lumn index fo r array

chararr [] [].

Step 30: if arr[k] [l] is not equal to n Goto 32

Step 31: chararr2 [i][j] assumes the value in

chararr[k][l], flag=1 and BREAK.

Step 32: If 'flag' is equal to 1 break

Step 33: Increment l.

Step 34: If l is less than or equal to m goto 30.

Step 35: Increment k

Step 36: If k is less than or equal to m goto 30.

Step 37: Increment n.

Step 38. Increment j.

Step 39. If j is less than or equal to m goto 29.

Step 40. Increment i

Step 41: If i is less than or equal to m goto 29.

Step 42: Write the decrypted elements in the bits array

chararr2 [] [] in the output file.

Step 43: End

2.3 Serial Feedback Generation Module

The features of this module are described below:

A. This algorithm stores a starting feedback of 0.

B. It extracts plain bits and generates simple

serial feedback (shown in the table -I below) by

performing simple OR operation between the

current feedback and plain bit.

C. The current cipher bit becomes the feedback

for the next bit.

Encryption feed_en ()

1. Enter the name of the file containing the plain

bits.

2. Define character ch1 = Starting value of

feedback=ASCII 48 (ASCII for character 0)

3. Define character ch2=1 extracted bit of plain

text.

4. Perform ch1=ch1+ch2-96 to generate the serial

bit feedback. Character ch1can have values 0

or 1 i.e. ASCII 48 or 49.

5. Write the encrypted bit ch1 into the cipher file.

6. Goto 3 until the entire plain text bits is

processed.

7. End

Table 1: Serial feedback generation

Initial feedback=0

Plain bits: 1010

Cipher bits: 1100

Plain text 1 0 1 0

Feedback 0 1 1 0

Cipher Text 1 1 0 0

Decryption feed_de ()

1. Enter the name of the file containing the cipher

bits.

2. Define character ch1=1 extracted bit of cipher

file.

3. Define character ch2=another extracted bit of

cipher file.

4. Perform ch1=ch1+ch2-96 where

ch1=decrypted bit. The variable ch1 may have

values 0 or 1 i.e. ASCII 48 or 49.

5. Write the character ch1 into the cipher file.

6. Perform ch2=ch1. Goto 3 until the entire

cipher file is processed.

7. End

III. The Working of EBES

The EBES algorithm computes n which is the size of

the plain text. It defines an array arr [] = {2, 8, 32, 128}

and variable i=3. If the value of n is greater than equal

to arr [i] extract arr [i] bytes and perform the b it-wise

randomizat ion and serial feedback generation

encryption on the arr [i] bytes. Perform n = n – arr [i].

Write the encrypted bytes in the cipher file. Repeat till

entire file is encrypted or 1 byte is remaining.

Repeat the process ‘enc’ times where enc is the

multiple encryption number.

 The Extensive Bit-level Encryption System (EBES) 71

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 05, 67-73

Fig. 1: The working of the EBES algorithm for every iteration

IV. Test Results and Cryptanalysis

In the present paper, two modules of advanced bit

randomizat ion and serial feedback generation method

have been combined. The test results confirm that the

algorithm not only works for every file format but also

yields satisfactory test results for all possible file sizes.

The EBES algorithm has been tested with mult iple

files. The files have been altered subtly and the results

have been recorded and analysed. Some of the results

that have been included below are

A. Some general text inputs.

B. The variations of cipher file for different

passwords.

C. Performance Analysis

D. Byte analysis of similar text inputs.

E. Frequency Analysis

4.1 Some general text inputs

The following table shows some miscellaneous text

inputs as plain files and their corresponding ciphers.

The text inputs have been made similar in terms of the

constituting characters.

Table 2: Miscellaneous text inputs

Plain Text Cipher Text

he is great 3Õr_±ñ‘[Si,

Aaaaaaaaaa ãŢ/Öö_[FqR

bbbbbbbbbb m_�iD¿(Ÿš@

Ccccccccccc –3¹Š̄ /ß¾Cb

Aabbbbaa _Ðjª_»iù_

72 The Extensive Bit-level Encryption System (EBES)

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 05, 67-73

4.2 The variation of cipher files for different

password.

The idea behind this analysis is to study the

effectiveness of the user password.

Table 3: The Variation Of Cipher File For Same Plain Text But
Different Passwords

Plain Text Password Cipher Text

the Extensive
Bit-level

encryption
mode

10
>ÿÄ£_ •Àgá_>Ûú

DJØÜ\h•×Š-
["ô¨‚__†!_€

the Extensive
Bit-level

encryption
mode

11
«Ð·?C_õÝ~_òÇ€À

jŠ_ªø¶ţ–

¨ÛêŸŒ„]}•»

the Extensive

Bit-level
encryption

mode

12

>°_D__nõuhRK•

B~è•Èßdé‚_êwS
•bWtM®

the Extensive
Bit-level

encryption
mode

13
¿lŒUhþ?_d• ï̈̄r
Œp¸³_n;_w.`¾ÌÓº

ÁêrC¿

4.3 Performance Analysis

The objective of this table is to study the encryption

and decryption time for plain file for different sizes.

Table 4: Performance Analysis- the EBES algorithm has been tested
with suitable time functions. The computation times for files of

different sizes have been recorded for encryption and decryption for
the same user password.

Plain Text
Time to
Encrypt

(in seconds)

Time to
Decrypt

 (in seconds)

64 characters of ‘A’ 1 1

128 characters of ‘A’ 1 1

256 characters of ‘A’ 2 2

512 characters of ‘A’ 2 2

4.4 Byte Analysis of similar text inputs

The EBES algorithm has been tested with similar but

rare text inputs like 10 characters of ASCII 0, 1 and 2.

This byte wise encryption confirms that for every byte

of cipher file no repetitive patterns have been noticed.

Table 5: The following table performs byte wise comparison of 10

characters of ASCII 1, 2 and 3

Byte
Number

Cipher byte
for

characters

of ASCII 1

Cipher
byte for

characters

of ASCII 2

Cipher byte
for

characters

of ASCII 3

1 _ Œ w

2 , _

3 ~ Ü è

4 • " Á

5 D Ö =

6 † ; «

7 Í ¾ I

8 Þ &

9 ³ X •

10 ` r P

4.5 Frequency Analysis

This is the most crucial aspect of cryptanalysis as it

explores the frequency spread of the characters in the

cipher files. We check the occurrence of every

character in the cipher file. It indicates the distribution

of characters in the cipher file . In the graphs below x-

axis represent the character set (0-255) whereas the y-

axis represents the frequency of every character. For

EBES method, the test results are quite remarkab le for

the text inputs of (i) 1024 characters of ‘a’ (ii) 1024

characters of ASCII 0.

Fig. 2: The frequency analysis for plain file of 1024 characters of ‘a’

Result-I corresponds to Figure-II (shown above).

From the frequency analysis of 1024 ‘a’, we can clearly

understand that there are no clear dominance of any

characters as the distribution of characters in the

spectrum seems largely random.

 The Extensive Bit-level Encryption System (EBES) 73

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 05, 67-73

Fig. 3: The frequency analysis for plain file of 1024 bytes of ASCII 0

Fig-III corresponds to result-II (shown above). It is

quite remarkable that 1024 occurrences of ASCII 0,

that is 1024 X 8=9192 bits of ASCII 0 may have a

frequency distribution as seen above. The reasons are

not hard to fathom. The selective compliment of b its

performed in the bit randomization models has yielded

such a frequency distribution in EBES algorithm.

V. Conclusion and Future Scope

It is ev ident that the quality of encryption obtained at

the bit level is significant as seen in this present

algorithm EBES. The plain text files have been split

into respective bits before we apply the aforementioned

algorithms. The rare text files have been encrypted to

test whether the algorithm can handle small messages

as easily as long ones. Even when the same characters

are provided as input, the cipher files have almost no

occurrence of repetit ive patterns. The use of multiple

encryption and the role of the password provided by the

user have also been demonstrated in the test results.

Clearly, the user generated password is contributing

greatly to the quality of encryption rendered.

Moreover the method of byte extract ion based on the

size of file is unique and efficient. The integration

module follows the technique of extraction based on the

size of the file. It adds to the effectiveness of the

method. The idea of serial feedback is very new though

it needs further attention for improvement.

Acknowledgement

The author is grateful to the Department of Computer

Science of St. Xavier’s College, Kolkata for their

guidance and support.

References

[1] Ultra Encryption Standard(UES) Version-

I :Symmetric Key Cryptosystem using generalized

modified Vernam Cipher method, Permutation

method and Columnar Transposition method,

Satyaki Roy, Navajit Maitra, Shalabh Agarwal and

Asoke Nath, Proceedings of RACCCT 2012, held

at Surat , Mar 29-30, Page-81-88(2012)

[2] Ultra Encryption Standard (UES) Version-II:

Symmetric Key Cryptosystem using generalized

modified Vernam Cipher method, Permutation

method, Columnar Transposition method and

TTJSA Method, Satyaki Roy, Navajit Maitra,

Shalabh Agarwal and Asoke Nath, Proceedings of

the 2012 International Conference on Foundation

of Computer Science, held at Las Vegas, July 14-

19, Page 97-104.

[3] Cryptography and Network, William Stallings,

Prentice Hall of India.

[4] Cryptography & Network Security, B.A.Forouzan,

Tata McGraw Hill Book Company.

[5] SD-AREE-I Cipher: Amalgamation of Bit

Manipulation Modified VERNAM CIPHER &

Modified Caesar Cipher (SD-AREE), International

Journal of Modern Education and Computer

Science (IJMECS), July, 2012.

[6] Ultra Encryption Standard Modified (UES)

Version-I: Symmetric Key Cryptosystem with

Multiple Encryption and Randomized Vernam Key

Using Generalized Modified Vernam Cipher

Method, Permutation Method, and Columnar

Transposition Method, Satyaki Roy, Navajit

Maitra, Shalabh Agarwal, Joyshree Nath, Asoke

Nath, International Journal of Modern Education

and Computer Science (IJMECS), Volume 4

Number 7, July 2012.

[7] Ultra Encryption Standard (UES) Version-III:

Symmetric Key Cryptosystem With Bit-level

Encryption Algorithm, Satyaki Roy, Navajit

Maitra, Shalabh Agarwal, Joyshree Nath, Asoke

Nath, International Journal of Modern Education

and Computer Science (IJMECS), Volume 4

Number 7, July 2012.

Author’s Profile

Satyaki Roy: He has recently graduated in computer

Science from St. Xavier’s College, Kolkata, India. He

is currently starting to pursue his post-graduation. He

has four publications in cryptography and recently

presented his paper at an international conference. At

present he is working on new encryption algorith ms

and improvement of his existent methods.

How to cite this paper: Satyaki Roy,"The Extensive Bit-

level Encryption System (EBES)", International Journal of
Information Technology and Computer Science(IJITCS),

vol.5, no.5, pp.67-73, 2013.DOI: 10.5815/ijitcs.2013.05.09

