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Abstract— This paper presents the new algorithm of the
recursive least-squares (RLS) Wiener fixed-point
smoother and filter based on the randomly delayed
observed values by one sampling time in linear discrete-
time wide-sense stationary stochastic systems. The
observed value y(k) consists of the observed value
y(k —1) with the probability p(k) and of y(k) with the
probability 1— p(k). It is assumed that the delayed
measurements are characterized by Bernoulli random
variables. The observation y(k) is given as the sum of

the signal z(k)=Hx(k) and the white observation
noise V(k) . The RLS Wiener estimators use the

following information: (a) the system matrix for the
state vectorx(k); (b) the observation matrix H; (c) the

variance of the state vector x(k); (d) the delayed
probability p(k); (e) the variance of white observation
noise y(k); (f) the input noise variance of the state
equation for the augmented vector v (k) related with the
observation noise

Index Terms— Discrete-Time Stochastic Systems, RLS
Wiener Filter, RLS Wiener Fixed-Point Smoother,
Randomly Delayed  Observations,  Covariance
Information

I. Introduction

In the detection and the estimation of the stochastic
signal, the estimation problem, given uncertain
observations, has been studied extensively. Nahi [1]
proposes the recursive leastsquares (RLS) estimation
procedure for the state vector with the uncertain
observations. Here, by the uncertain observation, it
means that there is the case where the observed value
consists ofthe observation noise only.

For the observed value with random delays, the
estimators for the state vector are also devised [2]-[5].
Matveev and Savkin [6] propose the recursive minimum
variance state estimator in linear discrete-time partially
observed systems perturbed by white noises for the
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observed values transmitted with independent delays
via communication channels.

The RLS Wiener filter and fixed-point smoother [7]
are proposed in linear discrete-time systems. The
estimators use the following information. (1) The
system matrix. (2) The observation vector. (3) The
variance of the state vector in the dynamic model for
the signal. (4) The variance of white Gaussian
observation noise. By an appropriate choice of the
observation vector and state variables, the state-space
model, related to the autoregressive moving average
(ARMA) model, is introduced. Hence, AR parameters
constitute the elements of the systemmatrix.

In [8], given the uncertain observations, the
estimation technique, with the covariance information,
is studied. The detection and estimation methods, given
the covariance information, are explained [9] in
continuous-time stochastic systems.

In [10], the RLS estimation problem of the signal,
given the randomly delayed observations, is studied for
the additive white noise correlated with the signal. It is
assumed that the actual observed value arrives on time
or delayed by one sampling time. This is modeled by
the delay probability. In the observation equation
Bernoulli randomvariables are used (e.g. see section 2).
Recursive one-stage predictor and filter are proposed,
based on the innovation approach. Here, both the auto-
covariance function of the signal and the cross-
covariance function of the signal with the observation
noise are expressed in the form of the semi-degenerate
kernel. Similarly, in [11], the RLS algorithms for the
filtering, fixed-point smoothing and fixed-interval
smoothing estimates are proposed from delayed
observed values, by one sampling time, characterized
by the delay probability.

In [12], an RLS Wiener fixed-point smoother and
filter are proposed based on randomly delayed observed
values by one sampling time in linear discrete-time
wide-sense stationary stochastic systems. The observed
value y(k) consists of the observed value y(k —1) with
the probability p(k) and of y(k) with the probability
1- p(k). It is assumed that the delayed measurements

are characterized by Bernoulli random variables. The
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observation y(k) is given as the sum of the signal
z(k) = Hx(k) and the white observation noisey(). The

RLS Wiener estimators explicitly require the following
information: (a) the system matrix for the state
vector x(k) ; (b) the observation matrix H: (c) the

variance of the state vector x(k); (d) the delayed
probability p(k); () the variance of white observation

noise v(k).

This paper presents an alternative design for the RLS
Wiener fixed-point smoother and filter from randomly
delayed observed values by one sampling time in linear
discrete-time wide-sense stationary stochastic systems.
The actual observed value y(k) consists of the observed

value y(k —1), at time k —1, with the probability p(k),
and of y(k), at time k, with the probability 1— p(k). It
is assumed that the delay measurements are
characterized by the Bernoulli random variables (see
(1)) y(k) is given as the sum of the signal z(k) = Hx(k)
and the white observation noise y(k). The proposed

RLS Wiener estimators require not only the same
information (a)-(d), described in the above regarding
[12], but also the following information: (f) the input
noise variance concerning the state equation for the
augmented vector v (k) related with the observation

noise. The RLS Wiener estimation algorithms for the
fixed-point smoothing estimate and the filtering
estimate are proposed. Also, the filtering error variance
function of the signal is formulated.

In comparison with the Kalman estimators, the RLS
Wiener estimators are advantageous in the point that the
RLS Wiener estimators do not use the information of
the input noise variance and the input matrix in the state
equation for the signal. The less information in the
estimators might avoid the degradation of the estimation
accuracy caused by the inaccurate information on the
state-space model. In [7], the RLS Wiener filter and
fixed-point smoother are proposed in linear discrete-
time stochastic systems. The estimators need the
information of the system matrix, the observation vector,
the variance of the state vector and the variance of
white observation noise. In addition, in linear discrete-
time stochastic systems, the following RLS Wiener
estimators are studied, i.e. the Chandrasekhar-type RLS
Wiener fixed-point smoother, filter and predictor [13],
the square-root RLS Wiener fixed-point smoother and
filter [14] and the RLS Wiener FIR filter [15], etc.

The organization of this paper is as follows. In
section 2, the least-squares fixed-point smoothing
problem, from the randomly delayed observations, is
formulated. Theorem 1, in Section 3, presents the RLS
Wiener fixed-point smoothing and filtering algorith ms.
A numerical simulation example, in section 4, shows
the estimation characteristics of the current filter and
the fixed-point smoother with the randomly delayed
observed values by one sampling time.
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Il. Least-Squares Fixed-Point Smoothing Problem

Let an m-dimensional observation equation be given
by

y(k) ==y (kNy)+rMOyk-1,
y(k) = z(k) +Vv(K), z(k) = Hx(k)

in linear discrete-time stochastic systems. It is assumed
that the observation at each time k >1 can either be
delayed by one sampling period, with a known
probability p(k), or updated, with a probability
1-pk). {y(k); k>1} denotes a sequence of

independent Bernoulli random variables (a binary
switching sequence taking the values 0 or 1 with

Ply(k) =1] = p(k) - In applications of communication
networks, {y(k); k>1} is usually taken to represent

the random delay from sensor to controller, and the
assumption of a one-step sensor delay is based on the
reasonable supposition that the induced data latency
from the sensor to the controller is restricted so that it
may not exceed the sampling period [4]. Here, z(k) is a

signal vector, H is an mxn observation matrix, x(k) is
a zero-mean state vector and y(k) is a zero-mean white

observation noise. It is assumed that the signal, the
Bernoulli variables sequence and the observation noise
are mutually independent.

Let the auto-covariance function of y(k) be given by

E[v(k)v' (s)]=R(k)J, (k -s),

2
R(k) >0 @

Here, 5, () denotes the Kronecker § function. By
denoting

7K =[r(K) e A=y (KD ],

oy [2(k=D)]
Z(k)—{ o) | ®
V(k) =7 (k)V (k),
k-1
V(k)_{ V() _,
from (1), we obtain
y(k) =7 (K)z(k) +V(k) . @

By denoting
— [H 0] _ = [xk-1)
: {o H} X(k){ x(k) } ®

from (1) and (3), the observation equation (4) is also
written as
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y(k) = 7(K)HX(K) +(K). ®

since

20) - {z(k -1)} B {Hx(k 1)

z(k) | | HxK)

Let K (k,s) =K, (k—s) represent the auto-covariance
function of the state vector x(k) in wide-sense
stationary stochastic systems [16], and let K (k,s) be

} = Hx(k). @

expressed in the form of

K (k.5) = AK)BT (s), 0<s<Kk,
U B(s)AT (K), 0<k<s, ®

AKK) =@, BT(s)=D°K,(s,3).

Here, © is the transition matrix of x(k).

Let the state-space model for x(k) bedescribed as

X(k +1) = dx(k) + Gw(k),

EWk)W ()] = QK)S (k ), ©

where B is an nNx| input matrix and w(k) is white

input noise with the auto-covariance function of (9). Let
@ represent the systemmatrix for x(k). From

xk) 7 [0 1, x(k-1)
{x(k+1)}_{0 @ }[ x(k) }

10
0 (10)
+ )
Gw(k)
@ is given by
6_ 0 In><n (11)
0 @ |

Let K,(k,s) represent the auto-covariance function
of x(k). K,(k,s) is expressed in the form of

Kx(t,s):{é(k)z(s), 0<s<k,
B(s)A (t), 0<k<s, (12)
A(k) = ®*, BT(s)=D K (s,9).

Here, K,(s,s)=K,(0) is expressed as
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KY(S1S):
X(s-1) |r ; T
EH ) }[x (s-1) x (s)ﬂ (13)
_| K(0) K, ()T
CLoK,(0) K, ]

In (11), @ is a singular matrix. However, in the
estimation algorithm of Theorem 1, the inverse matrix
of @ is notincluded.

Let K, () denote the auto-covariance function of

V(k)- From (2) and (3), K, (k,k) and K, (k +1k) are
given by

Ky (k,k) = E[V (k)VT (k) |

_[Tvk-7r .
_EH o0 }[v (k-1 v (k)]}

[Rk-2) 0
{ 0 R(k)]

K, (k+Lk)=E[V(k+DVT (k) ]

_ v(k) |- T
_EHV(kHJ[V (k-1 v (k)ﬂ
[0 RK)

1o )

From (14) and K, (k+i,k)=0, i>2, the auto-

(14)

covariance K, (k,s) is given by

Kv(k,s):{A,(k)BvT(s), 0<s<k,
B, (S)Al (t), 0<k<s,
A (K)=df, BT (s)=d,°K,(s,S), (15)

cD_Olmxm
' lo o |

Let the state equation for v (k) be given by

V(k +1) = d,V (k) +U k),

] (16)
EU KU " ()] =R, (k)d (k —s),

in terms of white input noise U (k) with the variance
R, It is found that for the expressions

K, (k+Lk+1)=ENK+1VT(k+1)],
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K, (k,k)=E[V(k)V" (k)]. in the wide-sense stationary
stochastic systems, the following relationships hold.

R, (k) =K, (k+1,k+1)
-, K, (k,K)®y,
K, (k+Lk+1) =K, (k,k)
=K, (0).

(17)

Let the fixed-point smoothing estimate x(k,L) of
x(k) at the fixed point k be expressed by

(kL) = ZL:h(k,i, L)y(i) (18)

in terms of the observed values {y(i), 1<i< |_}. In (16),
h(k,i,L) is atime-varying impulse response function.

Let us consider the estimation problem, which
minimizes the mean-square value (MSV)

J = E[l| x(k) - X(k, L) |I’] (19)

of the fixed-point smoothing error. From an orthogonal
projection lemma [16],

x(k) —Zh(k, LL)y(@) L y(s),

1<s<L,

(20)

the impulse response function satisfies the Wiener-Hopf
equation

E[X(K)y' (5)]=
2 h(k.i, ELY()Y" ()]

(1)

Here “ | ° denotes the notation of the orthogonality.

By setting p(k) =[p(k)l e (1= Pk ], frOM (4)
and (6), the left hand side of (21) is rewritten as

E[x(K)y' (s)]
= E[X(K)(7 (5)Z(s) +7(5))']
=E[X(K)Z' (s)7" (5)]
= E[X(K)X" (s)]H'

[P @ P ]
=K, (k,s)HT " (s).

(22)

Also, from (3) and (6), E[y(i)y"(s)] is rewritten as

Copyright © 2013 MECS

E[y(i)y' (s)]
= E[(7()HX (i)
+V (D)7 (s)HX(s)
+V(s))']
=E,[7()(HK, (i,9)H"
+Ky (,8)7" (9)].

(23)

Here, E [] denotes the notation of expectation with
respect to y(.) . Substituting (22) and (23) into (21), we
obtain

K. (k,s)HT " (s)
- Y h( i DE FOEK,GIAT @

+Ky (i,8)7" (5)].

In terms of the introduced quantities,
Ky () = EV (DU ()], Ky (1,8) = EUQVT ()], Tt is
shown that

K, (i,5)=EV(i)V' ()]

= E[(®,V(i-1)

+U I —D)(D@,V (i -D)+U (i -1)7]
=, K, (i,s)D, (25)
+®,K,, (i,9)
+ Koy (1,5) )
+R, ()9 (1-5).

Substitution of (25) into (24) yields
Ky (k,)H' D' ()

= ZL: h(k,i, L)Ey[?(i)(H_Ky(i, s)HT

+7q>v K, (i,s)®, (26)
+O, K, (1,9)

+ Ky (1, S)d)\T,

+R, (1)6 (i=9))7" (3)].

Namely,

1.J. Information Technology and Computer Science, 2013, 09, 1-20



Design of RLS W iener Smoother and Filter from 5
Randomly Delayed Observations in Linear Discrete-Time Stochastic Systems

hek,s, L)E,[7(s)R, (8)7" (s)]
=K (k,s)HTP" (s)

—ZL:h(k,i, L)E, [7 (i) (HK, (i,s)H’

i1 @7)
+@, K, (i,5)D,
+O, K, (1,9)
+Kyy (i,9)07)7" (5)]-
and since
E[y (K)]= p(k),
Ky (5,8) =E[U(s)V' ()] =0, (28)
Ky (5,5) = EIV (s)U7 (s)]=0,
(27) is written as
h(k,s, L)(E,[7(s)R, (s)7" (5)]
+E [7(s)(HK, (s,s)H"
+ O, K, (5,5)D])7" (s)]
~P(s)(HK, (s, s)H'
+®@, K, (s,5)0;)P' (5))
(29)

=K, (k,s)HTPp" (s)
L
=Y h(k,i, L) P()(HK, (i, s)HT
i=1
+ @, K, (i,5)®]
+ 0K, (i,9)
+ Ky (i,9)®5) P’ (5).
Consequently, the optimal impulse response function
h(k,s, L) satisfies
h(k,s, L)R(s)
=K, (k,s)H"p' ()

=3 h(k,i, LY PO, (.5

+@, K, (i,s)D,
+®, K, (i,s)
+Kyy (i,9)07) P (),

(30)

where
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R(s)
=E[¥(5)R, (8)7" (3)]
+E,[7(s)(HK (s,8)H"
+@, K, (5,5)®})7" (s)]
~ PS)(HK, (5, )"
+®, K, (s,5)Dy) P’ (s).

(31)

I11. RLS Wiener Estimation Algorithms

Under the linear least-squares estimation problem of
the signal z(k) in section 2, Theorem 1 shows the RLS

Wiener fixed-point smoothing and filtering algorith ms,
which use the covariance information of the signal and
observation noise.

Theorem 1

Let the auto-covariance function K (k,s) of the state
vector x(k) be expressed by (8), let the variance of
white observation noise y(k) be R(k) and let the
variance of U (k) in the state equation (16) for v (k +1)
be R, (k). Then, the RLS Wiener algorithms for the

fixed-point smoothing at the fixed point k and the
filtering estimate of the signal z(k) consist of (32)-(54)

in linear discrete-time stochastic systems with randomly
delayed observed values by one sampling time.

Fixed-point smoothing estimate of the signal z(k):
2(k, L) = HR(k, L)
R(k,L)=[0 1]x(k,L), (32)
R(k,L)=[0 1]x(k,L)
Fixed-point smoothing estimate of x(k): x(k, L)
X(k, L) =X(k, L=1)+h(k, L, L)(y(L)
— p(L)Y(HDX(L-1,L-1)
+ OV, (L-1,L-1)
+@,V,(L-1,L-1)), (33)

3
SHMESH
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h(k, L, L) =[K, (k, k)(@")““HTp" (L)

—q,(k, L-)®"H"p" (L)

—Gy (k, L=1)(@})*P' (L)

—0; (k, L-)®] p" (L)]x[R(L)
+P(L)(HK, (L, L)
~(H®S, (L-1)®"
+(d,)*S,, (L-D)®"
+@, S, (L-D)D")H"p" (L)
+p(L)(@yK, (L, L)
~(HDS,,(L-1)®]
+(D,)?S,, (L-1)D]
+®, S, (L-1)@y))@; p' (L)
+P(L)(R, (L)
—(HDS,(L-1)d]
+(D,)* S5 (L 1)@y
+ @, Sy (L-D®y))p" (LI,

o~ DK, (0) K, (0) |

K, (L, L) :{E 2}

q,(k,L) =q,(k,L-1)®"
+h(k, L, L)p(L)(HK (L, L)
—(H®S, (L-1)®"
+(d,)?S,,(L-1)®"
+®, S, (L-1)®")),

0, (k, k) =S,,(k)

0y (k, L) =g, (k, L)@y
+h(k, L, L) p(L)(D K, (L, L)
—(H®S, (L-1)@]
+(D, )2322(|— _1)CD\T/
+®,S,(L-1)D")),

g, (k,k) =Sy, (k)

Copyright © 2013 MECS

Ay (k, L) = gy (k, L-1) @y,
+h(k, L, L) p(L)(Ry (L)
—(H®S,(L-1)®]
+(D, )* S, (L-1) @y
+®, S5 (L-1)®y)),

0y (k, k) = S;5(k)

(37)

Filtering estimate of the signal z(L)

2(L, L) =H(L,L)

R(L,L)=[0 I]x(L,L),

A X(L-1,L-1) (38)

X(L,L)= .
X(L,L)

Filtering estimate of x(L): x(L,L)

(34) X(L,L)=®dx(L-1,L-1)
+G, (L)(y(L)
—p(L)(HDX(L-1,L-1)
+(D,)2V, (L-1,L—1)
+ @V, (L1 L-1))
x(0,0)=0

(39)

Filtering estimate of v (L):
@V, (L-1,L-1)+V,(L-1 L—1))

) V(L L) = 0V, (L -1, L-1)

+G,(L)(y(L)
—p(L)(HDX(L-1,L-1)
- (40)

+(®,)?V,(L-1,L-1)

+O,V,(L-1,L-1)),

V,(0,0)=0
(36)

Vy(L L) = 0, Vy(L -1, L-1)
+G,(L)(y(L) - p(L)(HDX(L-1,L-1)
(@), (L -1 L-1) ()
+ OV, (L-1 L-D)),

V,(0,0)=0
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Filtering variance function of (L L):
S,,(L) = E[X(L, L)X" (L, L)]
S, (L)=®S, (L-1)d"
+G, (L) P(L)(HK, (L, L)
—(H®S,(L-1)®"
+(®@,)2S,,(L-)@
+@, S, (L-1)D")),
S,,(0)=0

(42)

Cross-variance function of x(L,L) with \?Z(L, L):
SlZ(L) = E[)A((Ll L)\TZT (L, L)]

Sp(L)= CT)SIZ (L _1)CD\T/
+G, (L) p(L)(Dy K, (L, L)
—(H®S,(L-1)®;
+(®y )’ S, (L-1) D
+®@,S,,(L-1)Dy)),

SlZ (0)=0

(43)

Cross-variance function of x(L,L) with Vi(L, L):

Sy(L) = EIR(L, L)V, (L,L)]

S13('—) = q_)Sls(L _1)q)\T/
+G, (L) p(L)(Ry (L)
—(H®S,(L-1)D]

2 T (44)
+(D, ) S,,(L-1)D,
+®, Sy (L-1)D})),

S13(0) =0
Sm('—) = (Dvszl(l-_l)q_)T
+G, (L) p(L)(HK, (L, L)
~(HDS, (L-1)®"
(45)

+ ((Dv )2821(L _1)cT)T
+(DV S’31('-_1)(T)T ))’
$,,(0)=0, S,(L)=S,(L)

Filtering variance function of \i(L, L): S,,(L)

S,,(L)=®d,S,,(L-1)d,
+G, (L) p(L)(D, K, (L, L)
—(H®S, (L-1)@]
+(®y)*S, (L-1) @y
+ q)V S3Z(L _1)(D\T/ ));

822 (0) =0

Cross-variance function of v/ (L, L) with v (L, L)

S,5(L) = EV, (L, LV, (L, )]
S, (L) =D, S, (L-1)@;
+G, (L) p(L)(R, (L)
—(H®S,(L-1)d]
+(D, )2823(L _1)CD\T/
+CDV SSS(L_]-)(I)\-; ))n
S23(0) =0

S, (L) =®, S, (L-1)d’
+G, (L) P(L)(HK, (L, L)
—(H®S,,(L-)®"
+(d,)*S,, (L-1)®"
+®, S, (L-1)@")),
S, (0)=0, S;(L)=S5(L)
S, (L)y=d,S,,(L-1)d;
+G,(L) p(L)(Dy K, (L, L)
—(HDS,(L-1)®]
+((I)V)2822(|__1)CI)\T/
+(I)VS32(L_1)(D\T/))|
S32 (0) =0, Ssz(l—) = Ssz(L)

Filtering variance function of \i(L, L): S,,(L)

S(L) =@, Sy(L _1)CD\T/
+G;(L)P(L)(Ry (L)
—(H®S,(L-1)®]
+(Dy)* S (L -1y
+®, Sy (L-DDy)),

533(0) =0

(46)

(47)

(48)

(49)

(50)
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Filter gain for x(L,L): G,(L)

G (L) =[K;(L,L)HTP"(L)
~®S, (L-)D"H"p" (L)
— @S, (L-1)(®y)*p' (L)
— @S, (L-1)®yp' (L)]

x[R(L)+ P(L)(HK, (L, L)
—(H®S,(L-)D"
+(D,)*S,,(L-1)®"
+®, S, (L-)®")Hp' (L)
+p(L)(®, K, (L, L)
—(H®S,(L-1)@]
+(®,)*S,, (L-1)®;
+®, S, (L-)®y)) Dy p' (L)
+P(L)(R, (L)
—(H®S,(L-1)D;
+((I)V)2823(L_1)(D\T/
+®, Sy (L-1)@7)p' (L)

Filter gain for \fZ(L, L): G,(L)

G,(L) =[K, (L, L)@y p" (L)
~®,S, (L-)®"H"p" (L)
—®,S,,(L=1)(Dy)*p' (L)
—®, S, (L-2)d;p' (L)]

x[R(L)+ P(L)(HK, (L, L)
~(H®S,(L-1)®"
+(D,)?S,,(L-1)®"
+®, S, (L-1)®"))Hp' (L)
+p(L)(@y K, (L, L)
~(HDS,,(L-1)®]
+(®y)*S,, (L-1)®;
+®, Sy, (L-1) Dy )Py p' (L)
+P(L)(Ry (L)
—(H®S,(L-)d,
+(D, )" Sy (L-D D]
+®, S (L-1)@;)p" ()]

Copyright © 2013 MECS

Filter gain for v/, (L, L) G,(L)

G,(L) =[R, (L)P" (L)
~®, S, (L-)D'H'p' (L)
_q)vssz(l—_l)(q)\T/)2 ET(I—)
_ch S33('—_1)CD\T/ ﬁT (L)]

x[R(L) + P(L)(HK, (L, L)
—(H®S,(L-1)®T
+(d,)°S, (L-1)®"
+®, S, (L-D)®")Hp' (L)
+p(L)(@yK, (L, L)
—(H®S,(L-1)®]
+(®y)*S, (L-1)@,
+®, Sy, (L-2) D] )Py P (L)
+p(L)(Ry (L)
—(H®S,(L-1)d,

(51) +(D,)?S,,(L-D) D] (53)
+@,, Sy (L-1)@; ) p" (L]

R(L) = E,[7 (LR, (L)7" (L]
+E, [7(L)(AK, (L, AT
+@, K, (L, L)®])7" (L)]
~ B(L)(AK, (L L)AT
+@,K, (L, L)O]) P (L),
p(L) = E[7(L)]
=[PVl @~ P,y
PO =[r Wl A=) ]

(54)

Proof of Theorem 1 is deferred to the Appendix.

From [Theorem 1], it is found that the filtering error
variance function p,(L) of the signal z(L) is given by

P,(L)=K,(L,L)

—HH,S,, (L)H/HT, (55)
Hvl = [Onxn In><n ]’
(52) where K, (L,L) represents the covariance function of
z(L)-

1.J. Information Technology and Computer Science, 2013, 09, 1-20
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IV. A Numerical Simulation Example

Let a scalar observation equation be given by

y(k) =1-r(k))y(k)
+7(K)y(k-1),

E, [y (K)]= p(k),

y(k) = z(k) +v(k),

z(k) = Hx(k),

E[v(k)v(s)]=Ro, (k—s).

(56)

Let the observation noise y(k) be zero-mean white
Gaussian process with the variance R, N(0,R). (56) is
also written as

y(k) =7 (k)z (k) +v(k),
y(k)=[rk) @A-rk)],

v(k)=7(K)[v(k-1) v(K)], (57)
o [2k-1)
z(k)_{ 2(K) }
- {Hx(k _1)} — AR (K).
Hx (k)

Let the signal z(k) be generated by the second-order
AR model.
z(k+1) =—az(k)
—a,z(k —1) +w(k),
E[w(k)w(s)] = o5 (k —s),
a=-01 a,=-08 o=0.5.

(58)

The state-space model for z(k) is given by

2(k) = Hx(k) = x (k)

K
H=[1 0],x(k):{:1((k))]

x(k+1) | | 0 1 fIx(k) (59)
{xz(kﬂ)H—az —alxz(k)}

+ m w(k).

Copyright © 2013 MECS

9
Hence, H and x(k) are given by
S_[H 0] [roo0o0
“lo H| |0 010
x (k=17 [x(k-1) )
X, (k) X, (k)
X, (k) X (k+1)
From x(k), the signal z(k) is calculated by
z(k)=[0 0 1 O0O|x(k
(k) =[ ]X(k) 6

—[0 1 0 0]x(k)=x(K).

The auto-covariance function of the signal z(k) is
given by [8]

K(0)=o?,

o (a; D)o
[(a, — (e, +1)]
O (alz Doy

[(a, — ) (a0, +1)]

K(m)=c*{

32 (62)
0<m,

a,a, = (—ali,\faf —4a,)/ 2.

From

K. (K.K) = K©0) K@)
UKD K@) |

By
q): ’
-, —&a

@ and K, (0) are given by

(63)

(64)

o O O O

1.J. Information Technology and Computer Science, 2013, 09, 1-20
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< =] @ K, (0)®'
* _(DKX(O) K, (0)
[ K (0) K@) KO -a,-K(0)-a-KQ)
K@ K (0) K@©) -a,-K®)-a-K(0) (65)
B K@) K (0) K(0) K@) ’
-a,-K(0)-a,-KQ) -a,-K®)-3,-K(©0) KQ) K (0)

K(0)=0.25, K(1)=0.125.

From (54), (65), H in
p(L) =E,[r(L) 1-7]=[p(L) 1-pL)}
calculated as

R(L) =E,[7(L)R, (L)7" (L)]

+E,[7 (L)(HK (L, L)HT
+®, K, (L, L)Dy)7" (L)]
— P(L)(HK (L, L)HT
+®, K, (L, L)dy)p' (L)

=R, (L) + p(L)(R+2(K(0) - K (D)

- p*(L)(R+2(K(0)-K (),

R,(L)=K,(L+1L+1)

0 0
—cDVKV(L,L)q)J{O R},

(D_01
Vlo of

K, (L L) =K, (L+1 L+1) {E

(60),
R(L) s

(66)

by taking into account E, [7(|_)]: Ey[yZ(L)] = p(L).

Substituting H, @, K. (L,L)=K,(0),
p(L)=[p(L) 1-p(L)} R,(L) and R(L) into the RLS
Wiener estimation algorithms in Theorem 1, the
filtering and fixed-point smoothing estimates are
calculated recursively.

Fig.1 illustrates the fixed-point smoothing estimate
2(k,k +5) vs. k for the probability p(k)=0.1 and the
white Gaussian observation noise N(0,0.3%). The
probability p(k)that the observed value y(k —1) arrives,
with one sampling time delay, at time k is 0.1. The
probability 1— p(k) that the observed value y(k) arrives
at time K is 0.9 . Fig. 2 illustrates the mean-square
values (MSVs) of the filtering errors z(k)—2(k, k) and
the fixed-point smoothing errors z(k) - 2(k,k + Lag),
Lag =2, vs. the probability p(k) for the white
Gaussian observation noise N(0,0.3%) . The probability
p(k)=0 corresponds to the case where only the
observed value y(k) is used in calculating the filtering
estimate 2(k,k) and the fixed-point smoothing estimate
2(k,k +1).

Signal and fixed-point smoothing estimate
o

—2

T T
— Signal
Fixed—point smoothing estimate

-3 L

o] 50 100

250

time k

Fig. 1: ixed-point smoothing estimate 3(k,k +5) Vs. k for the probability p(k) = 0.1 and the white Gaussian observation noise N(0,0.3?).

Copyright © 2013 MECS
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In Fig. 2, both for the filter and the fixed-point
smoother, the MSVs tend to increase as the probability
p(k), 0< p(k)<0.5, increases. Moreover, the rate of
decrease of the MSV of the fixed-point smoothing
errors, in comparison with that of the filter, is
significant for 0.5< p(k)<1.0. From Fig. 2, in the

fixed-point smoother, the estimation accuracy is
considerably  improved for 05<p(k)<1.0 in

comparison with the filter.

0.45

04

0.35

03

0.25

0.2

0.15

— Filter: Lag=0

MSVs of fittering and smoothing errors for N(0,0.09).

01 - s

> —¥%— Smoother: Lag=2

0.05 | | | |

Fig. 2: Vs of the filteringerrors z(k) — 2(k, k) and the fixed-point smoothing errors z(k)— 2(k, k + Lag), Lag =2 Vs-the probability p(k) for the
white Gaussian observation noise N(0,0.3%).

0.5

0.2 oo

MSVs of fittering and smoothing errors for p(k)=0.1

I
.| — N(0,0.01)
‘| — — N(0,0.09)
: N(©,0.25) |
N(0,0.49)

N 2

BN |
~N
. ~
N .
015 [ i 'f*’*"—'f“-'=~\j;';' 777777777 ST L e e e —
0.1 - ,
008 | | | | | | | | |
0 1 2 3 4 5 6 7 8 9 10
Lag

Fig. 3: SVs of thefilteringerrors z(k)— 2(k, k) andthe fixed-point smoothing errors z(k)—2(k,k + Lag) VS- Lag, 0< Lag <10, for the white
Gaussian observation noises N(0,0.1%), N(0,0.3%), N(0,0.5%) and N(0,0.72) under the probability p(k)=0.1-

Copyright © 2013 MECS
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Fig. 3 illustrates the MSVs of the filtering errors
z(k)—2(k,k) and the fixed-point smoothing errors

z(k)—2(k, k + Lag) VS- Lag, 0< Lag <10, for the white
Gaussian observation noises N(0,0.1%) , N(0,0.3%) ,
N(0,0.5%) and N(0,0.7%)- For Lag =0, the MSV of the
filtering errors  z(k)—2(k,k) is shown. As |ag
increases, the MSVs gradually decrease. Hence, the
estimation accuracy of the fixed-point smoother is
superior to that of the filter. For the white Gaussian
observation noise with larger variance, the MSVs of the
filtering errors and the fixed-point smoothing errors
increase and the estimation accuracy is degraded. Here,
the MSVs of the fixed-point smoothing and filtering

errors are evaluated by
2000Lag

>3 (2(K) - 2(k k+ ))* (2000 Lag)  and
2io(z(k) — 2(k,k))?/2000..

k=1

V. Conclusions

In this paper, the alternative RLS W iener fixed-point
smoother and filter are designed from observations
randomly delayed by one sampling time in linear
discrete-time stochastic systems. The probability of the
arrival of the observed value y(k) at time k is 1— p(k)
and the probability of the arrival of the observed value
y(k-1) at time k is p(k). In comparison with the
estimators in [12], the information of the input noise
variance of the state equation for the augmented vector
V (k), related with the observation noise, is used

additionally.

A numerical simulation example shows that the
proposed estimation technique with the randomly

delayed observed values is feasible. From Fig. 2 and Fig.

3, in the fixed-point smoother, the estimation accuracy
is considerably improved for 05<p(k)<1.0 in

comparison with the filter. As | ag increases, the MSV

of the fixed-point smoothing errors gradually decreases.
Hence, the estimation accuracy of the fixed-point
smoother is superior to that of the filter.

The RLS Wiener estimators do not use the
information from the variance Q(k) of the input noise

w(k) and the input matrix G in the state equation (9),
in comparison with the estimation technique [2]-[5].
Hence, in the RLS Wiener estimation technique, it is

not necessary to take account of the degraded
estimation accuracy caused by the modeling errors for

Q(k) and G.

Copyright © 2013 MECS
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Appendix Proof of Theorem 1

If we subtract the equation obtained by putting
L—L-1in (30) from (30), we have

(h(k,s,L)-h(k,s,L=D)R(s) =
—h(k, L, L) p(L)(HK, (L,s)HT
+@ K, (L,s)D,
+®,K,, (L,s)
+Kyy (L,S)Dy) P’ (s)

—Li(h(k,i,L)
—h(k,i,L-1)) p(i)(HK, (i,s)H"
+ @K, (i,s)D] + D, K, (i,s)

+Kyy (i,8)@;) P’ (3),
Ky, (L,S)=0.

(A-1)

From (16), it is shown that K, (L,s) satisfies, from
Kw (s,8) =0,

Kvu (L’ S) = (D\&is Kvu (S’ S)
+®; R, (5) (A-2)
=0} 7R, (9)

Let us introduce the following auxiliary functions
J,(s,L-1), J,(s,L-1) and J,(s,L—1) as follows.

J,(s,L=DR(s) = DK, (s,5)H" p' (s)
-5 3,0, L-DPO)AK, G,

+@, K, (i,8)D] + D, K, (i,s)
+Kyy @, S)q)\T/)ﬁT (s),

(A-3)

Copyright © 2013 MECS

3,(s, L-DR(s) = °K, (5, 5)] p" (5)

-5 3,0, L-DBOAK, (A"

(A-4)
+@, K, (i,s)D,
+@, K,y (1,8) + Ky, (i, S)(D\T/)ET (s),
J,(s, L=DR(s) = D,°R, (s)P' (5)
—;Js(i, L-D)p(@i)(HK, (i,s)H "s)

+ @, K, (i,5)D,

+ @, K, (i,8) + Ky, (1,8)D]) P (s).
From (A-1), (A-3), (A-4) and (A-5), we obtain
hk,s,L)-h(k,s,L-1) =

—h(k,L,L)p(L)x (HD"J,(s,L-1)  (A-6)
+ DS, (s, L-1) + Dy, (s,L-1).

If we subtract J (s,L—-1)R(s) from J,(s,L)R(s), we
have

(3.(s, L) = J,(s, L~1)R(s) =
=J,(L, L) P(L)(HK, (L, s)H"
+@, K, (L,s)D,
+®, Ky (L,5) + Ky (L)) P (5)
-2 (.60
=3,(i, L=1)) p()(HK, (i, s)HT
+@,K, (i,s)D] + D, K, (i,s)
+ Koy (1,8)D) P’ (5).

From (A-3)-(A-5) and (A-7), we obtain

(A-7)

J,(s,L)=J,(s,L-1)
-3, (L, L)p(LY(H®"J,(s,L-1)
+DS™I, (s, L-1)
+ @5, (s, L-1)).

(A-8)

If we subtract J,(s,L—1)R(s) from J,(s,L)R(s), we
have

1.J. Information Technology and Computer Science, 2013, 09, 1-20
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(J,(s,L)=J,(s,L=1))R(s) = J,(L-1L,L-D)R(L-1)

~J,(L, L) p(L)(HK, (L,s)H" =0 VK (L-1,L-)H p'(L-1)

+ @, K, (L,8)Dy —le(i, L-1)p(i)(AK, (i, L-1)A"

+®, K, (L,s) = . _

Ky, (LD (9) A9 +@ K, (i, L-)®! +, K, (i,L-1)

L1 +Ky, (i, L=D)®])p" (L-1) (A-13)
‘;(Jz(i’ L) B VK (L-1L,L-DHA P (L-1)
-3, (i, L-1) pi)(FK, (i, 5) A" ~ 33,6, L-D PG HB() A’ (L-DH

+@, K, (i,s)D] + D, K, (i,s)
+ Koy (1,8)D5) P’ (5).

From (A-3)-(A-5) and (A-9), we obtain

+®, B, (i) A (L-1)dy
+ By, (()(@))"* @) P’ (L-D).
Here, from (16), the relationships
J,(s,L)=J,(s,L-1) Ky (i,L-1) =0, 1<i<L-1, .and
_JZ(I—, L)ﬁ(L)(l‘_lCT)LJl(S,L—l) (A-10) Kuv(ixl—_l):Buv(i)(q)\T/)Lizv Buv(i):Ru(i)(cD\T/YI are

taken into accounts.

+ DL (s, L—=1)+ DL, (s, L—1)). By introducing the functions
B B L-1 JRE
If we subtract J,(s, L-1)R(s) from J (s, L)R(s), We r,(L-1)= ZJl(i, L-Dp(HB(), (A-14)
have =

(J5(5,L) = J4(s, L=D)R(s) =
= J5(L, L) P(L)(HK, (L, s)H'
+@, K, (L,s)D,

(LD =3 3,6, L-DPOD, B, (). A1)

L-1
+O, K, (L,s)+ Ky, (L,S)D} )P’ (s) rls(l—_l)zg‘]l(i'L_l)r)(i)Buv (i), (A9
_§(33(i, |_) (A-11) (A-13) canbe written as
i=1 —
~J,(i, L-1)p@i)(HK, (i,s)A” J(L-LL-DR(L-1)
+@,K, (i,5)®! +®,K,, (i,5) =0 K (L-LL-)Hp"(L-1)
+ Ky, (i,5)07) P (s). —(h(L-DA(L-DHT (A-17)

_ +1,(L-D A (L-1)@]

From (A-3)-(A-5) and (A-11), we obtain N "13('— _1)(cp\T/ )(H))ET (L-1).
Jy(s,L)=J,(s,L-1)

—-J,(L,L)p(L)(HD"J, (s, L-1) (A-12)

+ D51 (s, L-1)+ DL, (s, L-1)). J,(L-1LL-)R(L-)
=0, YK, (L-1,L-1)D]p" (L-1)

By putting s=L—-1 in (A-4), we have

By putting S= L —1 in (A-3), we have L1 3 3
=> 3,0, L-DP@)(HK (i,L-DHT (A-18)

i=1
+@ K, (i,L-1)D] + D, K, (i, L-1)
+ Koy (i, L=D@])p" (L -1).
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By introducing the functions

(LD =3 3,(.L-DPORBH). (19
(L= = 3.3, L-DP@®, B, (), (420

(LD =30, (.L-DPOB, (). (A2

(A-18) can be written as
J,(L-1,L-DR(L-1)
=@, K, (L-LL-1)D)p" (L-1)
—(ry(L=)A" (L-DHT (A-22)
+,(L-)A (L-1)D]
+ g (L=1)(@})) P (L-D).

By putting s=L -1 in (A-5), we have

J,(L-1LL-DR(s)
=@ "PR,(L-DH"P" (L-D)
—;Js(l,L—l)p(l)(HKY(l,L—1)HT "z
+@ K, (i,L-1)D]
+®, K, (i,L-1)
+Kyy (i, L=1)@y)p' (L -1).

By introducing the functions

(L= =3 3,6 L-DPOFBG). (a2
a(L-D) = 3 3,6, LD P, B, (), (429

(LD = 3.3,G.L-DP{B (), (29

(A-23) can be written as

J,(L-1, L-1)R(L-1)
=0, "R, (L-1)p"(L-)
—(ry(L=-)A (L-DHT (A-27)
+ r32(L—l)/-\I (L-D)d,
+ I (L=D(Dg)" )P (L-D).

If we subtract r,(L-2) from ¢ (L-1) and use (A-8),
(A-14), (A-19) and (A-24), we obtain

n(L-1)-r,(L-2)
=J,(L-1,L-1)p(L-1)HB(L-1)

+§(J1(i, L-1)-J,(3i,L—2))p(i)HB(i)
=J,(L-1,L-1)p(L-1)HB(L-1) + (A-28)
-J,(L-1, L—1)ﬁ(L—1)f(H&>(H>J1(i, L-2)

+ D5, (1, L-2)+ D8I, L-2)) p(i) HB (i)
=J,(L-1,L-1)p(L-D)(HB(L-1)

—(HO"“r,(L-2)

+®r, (L-2)+ 08 Pr, (L-2)).

If we subtract r,(L-2) from r(L-1) and use (A-8),
(A-15), (A-20) and (A-25), we obtain

rlZ(L_l)_rlz(L_Z)
=J,(L-L,L-)p(L-Dd,B,(L-1)

+L_Zf(31(i, L-1)-J.3,L-2))p(i)D,B, (i)
=J(L-LL-)p(L-D)d,B, (L-1) (A-29)

-J,(L-1, L—l)ﬁ(L—l)Li(H_CT)(L’”Jl(i, L-2)

+ @3, (i, L =2)+ O 3,(i, L - 2)) p(i) @, B, (i)
=J,(L-LL-)p(L-1)(D,B,(L-1)
~(HO" P, (L-2)+DJr,,(L-2)
+0§r, (L-2)).

If we subtract r,(L—2) from r(L-1) and use (A-8),
(A-16), (A-21) and (A-26), we obtain

fa(L=1)-1,(L-2)
=J,(L-LL-)p(L-D)By (L-1)

3 (0,6.L-D=2,,L=2)PMBy ()
= 3,(L-1,L-Dp(L-D)B,, (L-1) (A-30)

—Jd(L-1, L—l)ﬁ(L—l)f(H&)‘L’l)Jl(i, L-2)

+ 053, (i, L-2) + 03, (i, L-2)) (i) By, (i)
= J,(L-1 L-DP(L-1)(B,, (L-1)
—(AD“Dr,(L-2)+®tr,(L-2)
+0Dr (L-2))).

If we subtract r, (L—2) from r,,(L-1) and use (A-
10), (A-14), (A-19) and (A-24), we obtain
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Hu(L=1)-ry(L-2)
=J,(L-LL-1)p(L-1)HB(L-1)

+§(‘]2(i'L—l)—Jz(ilL—Z))ﬁ(i)l-Tg(i)
=3,(L-1L-)p(L-DHB(L-D (A-31)

-J,(L-1, L—1)ﬁ(L—1)§(H‘&>‘H>Jl(i, L-2)

+®5J,(i,L—-2)

+ @07, (i, L-2)) p(i)HB (i)
=J,(L-LL-1)p(L-1)(HB(L-1)

~(HO“ P, (L-2)+ D1, (L-2)

+ @0 (L-2))).

If we subtract r,,(L—2) from r,,(L-1) and use (A-
10), (A-15), (A-20) and (A-25), we obtain

rZZ(L_l) - rZZ(L_Z)
=J,(L-1,L-)p(L-1)D,B, (L-2)

+Z(Jz(i, L-1)-J,(,L-2))p()®,B, (i)
=J,(L-LL-)p(L-1),B, (L-1) (A-32)

-J,(L-1, L—1)E(L—l)§(ﬁ§>(L’1’J1(i, L-2)

+®J,(31,L-2)

+ O, (i, L-2)p(i)d, B, (i)
=J,(L-1L-1)p(L-1)(®,B,(L-1)

- ("_'(T)(Lil)rlz(l-_2)+‘I)\I;rzz(|-_2)

+ CI)\(/Irl) I’32(L - 2)))

If we subtract r,,(L—2) from r,(L-1) and use (A-
10), (A-16), (A-21) and (A-26), we obtain

rZB(L_l)_rZB(L_Z)
=J,(L-LL-1)p(L-1)B,, (L-1)

3 3,6,L-D - 3,6,L-2)()By, ()
=J,(L-L,L-)p(L-DBy, (L= (A-33)

-J,(L-1, L—1)E(L—l)§(l-_|<f)(L’“J1(i, L-2)

+®yJ,(i,L-2)

+ O3, (i, L-2))p(i)By, (1)
=J,(L-LL-1p(L-1)(By, (L-1)

~(H®"r,(L=2) + Dyry,(L-2)

+ 0y (L~ 2)))-

If we subtract r, (L-2) from r,,(L-1) and use (A-
12), (A-14), (A-19) and (A-24), we obtain
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I’31(L—1) - r31(|-_2)
=J,(L-L,L-)p(L-D)HB(L-1)

+§(J3(i, L-1)-J,(i,L—2))p(i)HB(i)
=J,(L-LL-1)p(L-)HB(L-1) (A-34)
-J,(L-1, L—1)5(L—1)§(I-_|<T)(L’”J1(i, L-2)

+ @Y, (1, L-2)
+®0J,(i,L-2))p(i)HB(i)
=J,(L-L,L-1)p(L-(HB(L-D)
~(H®“ P (L-2)+DJr, (L-2)
+®r, (L-2))).

If we subtract r,,(L-2) from r(L-1) and use (A-
12), (A-15), (A-20) and (A-25), we obtain
I‘32(L—1)—F3Z(L—2)
=J,(L-1L-1)p(L-1)®, B, (L-1)

+§(‘]3(i: L-1)-J,(,L-2)p(i)®, B, (i)
=J,(L-1,L-1)p(L-1)d, B, (L-1) (A-35)

-J,(L-1, L—1)ﬁ(|_—1)§(ﬁcf><“>31(i, L-2)

+®LJ,(1,L-2)
+®F 341, L-2))p(i)d, B, (i)
=J,(L-LL-)p(L-1)(D,B, (L-1)
—(HO™ P, (L-2)+ Dir,,(L-2)
+0( I, (L-2))).

If we subtract r,,(L-2) from r(L-1) and use (A-
12), (A-16), (A-21) and (A-26), we obtain

|’33(L—1)— r33(|-_2)
=J3(L-LL-1)p(L-DBy, (L-1)

+ 500, L-1)— 3, L—2)) pGi)Byy ()

(A-36)
=J,(L-LL-1)p(L-1)B,, (L-1)

~J,(L-1, |_—1)ﬁ(|_—1)§(ﬁ&><“>31(i, L-2)

+ @5, (i, L-2)
+ @3, (i, L-2))p(i)By, (i)
=J,(L-LL-1)p(L-1)(By, (L-1)
—(HDVr, (L—-2) + DY, (L-2)
+ 0 (L-2))).

Here, the initial values of r (k), r,(k), r,(K), r,,(K),
r,(K), hs(k), 1K), r,(k) and rg(k), at k=0 are
r,(0)=0, r,(0)=0, r,(0)=0, r,(0)=0, r,(0)=0,
I’23(0) =0, r31(0) =0, I’32(0) =0 and r33(0) =0 from (A-
14)-(A-16), (A-19)-(A-21), (A-24)-(A-26).
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Let us introduce the functions

S, (L) =", (L)(@T)",
S1, (L) = @ r, (L)(@))",
SlS(L) = (T)Lrls(L)(cD\T/ )L,
S, (L) = Dyry (L)(@T)",
S52(L) = Dy, (L)(@))", (A-37)
st(l—) = (Db r23(L)(CD\T/ )L,
S (L) =0y, (L)(@T)",
S (L) = Dyr, (L)(@))",
S5 (L) = Oy (L)(®)).
Substituting  (A-28)-(A-36) into (A-37) and

introducing G (L)=®"J,(L,L), G,(L)=d5J,(L,L)
and G,(L) = @y J,(L, L), from (12) and (15), we obtain

S, (L)=®"r, (L-1)(®")"
+@"J, (L, L) p(L)(HB(L)(®")"
—(H®" r (L-1)(®")"

+ DL (L-1)(@7)"
+ @y, (L=1)(@")"))
=®S,, (L-1)®'
+G, (L) P(L)(HK, (L, L)
~(H®S, (L-1)@"
+ @S, (L-D)®"
+®, Sy, (L-1)@")),

(A-38)

Sp(L)= &)Lrlz(l— _1)((D\T/)L
+@"J, (L, L) p(L)(®y B, (L)
—(HO' 1, (L-1)(®y)"

+ O, (L-1)(D))"
+ Dy, (L-1)(Dy)"))
=®S,(L-1)®]
+G, (L) p(L) (D, K, (L, L)
~(HDS,(L-1)®]
+DZS,, (L-1)d]
+®, S, (L-1)dy)),

(A-39)
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S(L) = cT)LrIS(l_ _1)((1)\T/)L
+®"3,(L, L)P(L)(R, (L)
—(H® 1, (L-1)(@))"
+ O, (L-1)(@])"

+ O, (L-1)(@])")
=®S,(L-1)D]

+G (L) p(L)(R, (L)

—(H®S,(L-)d,

+@2S,,(L-D)d;

+®, Sy (L-D) D)),

(A-40)

Sy (L) =Dyn, (L-D)(®)"
+ @y J,(L, L) p(L)(HB(L)(®@")"
—(H®'r (L-1)(D")"
+ @y, (L-1)(®7)"
+ @y, (L=1)(®7)"))
=0,S, (L-)o'
+G, (L) P(L)(HK, (L, L)
~(HDS,, (L-1)®"
+ @S, (L-1)D"
+®, Sy, (L-1)D")),

(A-41)

Sy (L) = Dyr, (L-2)(Dy)"
+®,J,(L, L)p(L)(®, B, (L)
—(HO'r, (L-1)(®y)"

+ @y, (L=1)(Dy)"
+ @y, (L=1)(Dy)"))
=®,S,,(L-1)d,
+G, (L) p(L)(D, K, (L, L)
—(H®S, (L-1)®]
+®S,, (L-1)d,
+®, S, (L-1)D,)),

(A-42)
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st(L) = q)brm(l— _1)(q)\T/ )L
+®yJ, (L, L) P(L)(Ry (L)
~(HO (L -1)(®))"

+ Oy g (L=1)(@;)"
+ @y 1 (L=1)(@)"))
=, st(L_l)q)\T/
+G, (L) p(L)(R, (L)
—(H®S,(L-1)d;
+@2S,,(L-D)d;
+@,S,,(L-1)D))

(A-43)

S (L) =0yr, (L-1)(@")"
+ @y 3, (L, L) p(L)(HB(L)(®T)"
~(H®"r, (L-1)(@")"
+ 0, (L-1)(@")"
+ @y 1 (L=1)(D7)"))
=®,S, (L-1)®’
+G, (L) P(L)(HK (L, L)
—(H®S,(L-1)®"
+@2S, (L-1)®T
+ (Dv Ssl(l— _1)(5T ))

(A-44)

S5, (L) = Dy ry, (L=1)(dy)"
+®y J5(L, L) p(L)(®y B, (L)
—(H® r, (L-1)(®))"

+ @y, (L-1)(@y)"
+ @y, (L-1)(D])"))
=®,S,,(L-1)D;
+G,; (L) p(L)(D, K, (L, L)
—(HDS,(L-1)D;
+®S,, (L-1) Dy
+®, S, (L-D)Dy)),

(A-45)

Sss(l—) = CD\& r33(L_1)(q)\T/)L
+ @y J,(L, L) P(L)(R, (L)
~(HO ry(L-1)(®))"

+ By g (L=1)(@))"
+ @y 1 (L=1)(D))"))
=D, S,4(L _1)CD\T/
+G,(L)p(L)(R, (L)
—(H®S,,(L-1)d]
+@2S,,(L-D)d;
+®,S,,(L-1)D)))

(A-46)

From (12), (15), (A-17), (A-22) and (A-27), G,(L),

G,(L) and G,(L) are formulated as

G,(L) =[K,(L,LHTP" (L)
—(Su(LHT +S,(L)dy
+S5,(L)P" (LR (L)

G, (L) =[K, (L, L)@, p' (L)
—(Su(DH" +S, (L),
+S,(L)P" (VIRT(L)

G,(L)=[R,(L)P" (L)
—(S,,(LHT +S,,(L)D]

+S5(L)P (LIR™(L)

(A-47)

(A-48)

(A-49)

Substituting (A-38) -(A-40) into (A-47), after some
manipulation, we obtain (51). Substituting (A-41) -(A-
43) into (A-48), after some manipulation, we obtain
(52). Substituting (A-44) -(A-46) into (A-49), after

some manipulation, we obtain (53).

Putting

Rk,L) = ih(k, L, LPOHK, (@),

Pk, L) = ih(k, L L) PP, K,y (1Li)(@)) ",

i=1

Py(k,L) = Zh(k, i, L)PMR, (@)™

From (12), (15) and (30), h(k,L,L) satisfies

(A-50)

(A-51)

(A-52)
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h(k,L,L)R(L)

= K, (k,K)(@")“H"p" (L)
—(P(k,L)(@")-HT (A-53)
+P,(k, L)(d)-
+Py(k, L)(@])") P (L),

Subtracting P,(k,L-1) from P,(k,L) and using (A-6),

(A-14), (A-19) and (A-24), we obtain
Pk, L)-Rk L-1)
= h(k, L, L) p(L)(HK, (L, L)(@") "
~(H®'r (L-1) +®S™r, (L-1)
+@jr, (L-1)).

(A-54)

Subtracting P,(k,L-1) from P,(k, L) and using (A-
6), (A-15), (A-20) and (A-25), we obtain

P,(k,L)-P,(k,L-1)
=h(k, L, L) p(L)(®, K, (L, L)(®@;) "
~(HOr,(L-1)+ DS, (L-1)
+®Yr, (L-1))).

(A-55)

Subtracting P, (k,L-1) from P,(k,L) and using (A-6),

(A-16), (A-21) and (A-26), we obtain
P,(k, L)~ Py(k,L-1)
=h(k, L, L) P(L)(R, (L)(®J) ™"

—(H® (L 1)+ S r,y (L 1) (A5
+OLr, (L-1)).
Putting
0y (k, L) = P, (k, L)(@")", (A-57)
And using (A-37), we obtain (35). Putting
q,(k, L) = P, (k, L)(@))", (A-58)
And using (A-37), we obtain (36). Putting
G (k, L) = Py(k, L)(Dy)", (A-59)

And using (A-37), we obtain (37). From (30) and (A-
3), we obtain

hk,s, k) = @*J, (s, k). (A-60)

From (A-14), (A-37), (A-50) and (A-57), q,(k,k) is
derived as
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6, (k,k) = R (k,k)(@")"
= Sll(k)'
From (A-15), (A-37), (A-51) and (A-58), qg,(k,k) is

derived as q,(k,k) = S,,(k). From (A-16), (A-37), (A-
52) and (A-64), a;(k, k) is derived as a5 (k, k) = S,5(K).

(A-61)

From (A-53), (A-57), (A-58) and (A-59), we obtain
h(k,L,L)R(L)
= K, (K, K)(@") ™ HTp" (L)
—(ay(k, H" +0,(k, L)y
+0,(k, L))" (L).

Substituting (35), (36) and (37) into (A-62), we
obtain (34) for the smoother gain h(k, L, L).

(A-62)

From (18) and (A-60), the filtering estimate of x(L)
becomes

X(L.L) = Y (L Ly()

) (A-63)
=2 @ 3,30, L)y()
i=1
Introducing
L
O,(L) =23, (i, L)y(), (A-64)
i=1
We have
X(L,L)=®"0O,(L). (A-65)

Subtracting O,(L-1) from O, (L) and using (A-8),
we have

O,(L)-O,(L-1)
=J,(L, L)(y(L)
—p(L)(H®X(L-1,L-1) (A-66)

+(@,)V,(L-1)
+ @,V (L-1).
Here,
V,(L,L) = DLO,(L),
V,(L, L) = dL0,(L).

(A-67)

>

Here, O,(L) and O,(L) are given by
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0,(1) = 3G, L)().

(A-68)

0,(1)= 33,6, L)yG)

From (A-65) and (A-66) with G (L)=®"J,(L,L),
we obtain (39) for the filtering estimate x(L,L). The
initial condition of (39) for g(L,L) at L=0 is
x(0,0) = 0 from (A-64) and (A-65).

Subtracting 0,(L-1) from 0,(L) and using (A-10),
(A-64), (A-65), (A-67) and (A-68), we have
O,(L)-0,(L-1)
=J,(L, L)(y(L)
—p(L)(H®X(L-1,L-1) (A-69)

(@), (L -1 L-1)
+ OV, (L-1 L-1))).

Subtracting O,(L -1) from O,(L) and using (A-12),
(A-64), (A-65), (A-67) and (A-68), we have
03(L)—03(L—1)
=J5(L, L)(y(L)
—p(L)(HDX(L-1,L-1) (A-70)

(@), (L-1,L-1)
+ OV, (L-1, L-1))).

From (A-67) and (A-69) with G,(L)=®}J,(L,L),
we obtain (40) for \fZ(L, L). From (A-67) and (A-70)
with G, (L) = ®5J,(L, L), We obtain (41) for V/, (L, L).

From (18), (A-6), (A-64), (A-65), (A-67) and (A-68),
the fixed -point smoothing estimate x(k, L) is updated as

(33). (QED)
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