
I.J. Information Technology and Computer Science, 2013, 09, 101-107

Published Online August 2013 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2013.09.11

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 09, 101-107

Performance Analysis of Software Effort

Estimation Models Using Neural Networks

E.Praynlin

Research scholar, Government college of Engineering, Tirunelveli, India

E-mail: praynlin25@gmail.com

Dr. P.Latha

Associate professor, Government college of Engineering, Tirunelveli, India

E-mail: latha.muthuraj@yahoo.com

Abstract— Software Effort estimat ion involves the

estimation of effort required to develop software. Cost

overrun, schedule overrun occur in the software

development due to the wrong estimate made during the

initial stage of software development. Proper estimation

is very essential for successful completion of software

development. Lot of estimation techniques available to

estimate the effort in which neural network based

estimation technique play a prominent role. Back

propagation Network is the most widely used

architecture. ELMAN neural network a recurrent type

network can be used on par with Back propagation

Network. For a good predictor system the difference

between estimated effo rt and actual effort should be as

low as possible. Data from historic pro ject of NASA is

used for training and testing. The experimental Results

confirm that Back propagation algorithm is efficient

than Elman neural network.

Index Terms— Back Propagation Network (BPN),

ELMAN Network, Mean Magnitude of Relative Error

(MMRE)

I. Introduction

Estimating software development effort remains a

complex problem, and the one which continues to

drawsignificant research attention. Software pro ject

managers usually estimate the software development

effort, cost and duration in the early stages of a software

life cycle in order to appropriately plan, monitor and

control the allocated resources. Correctness in

estimating the required software development effort

plays a critical factor in the success of software project

management Right amount of resource should be

allocated to a project. If too much of resource is

allocated to the project to is called as overestimation. If

insufficient resource is allocated to the project is called

underestimat ion. Software development activity

involves lot of uncertainties the requirement will change,

the developing platform will change, the developers

capability to vary from one person to another lot of

uncertainties are involved in the contributing factors

which decides the effort required to develop the

software. Hence soft computing frame work can be used

that are good in handling the uncertainty. For good

software estimation tool the estimated effort should be

equal to the actual effort. Accurate estimation allows

manager to allocate the resource to plan and coordinate

all activities.

The large expenditures made by many companies for

the development of software, even small increases in

prediction accuracy are likely to be worthwhile.

Underestimat ing costs can lead to accepting projects

that do not provide enough returns or that overrun

schedules, possibly with terrible consequences.

Overestimating costs can lead to sound projects being

rejected and can lead to gaps between one project

ending and another starting This idle time can be

expensive in competitive time-to-market industries.

Either way, it is clear that more accurate estimates have

considerable value to a corporation involved in software

development. Once an estimation model has been

derived it is vital that the limitations of the techniques

used to develop and implement the model are

understood in order to make sure that it is only used

within its limitations.

Accurate Software cost estimation is always a

difficult task. Estimat ion by experts, analogy-based

estimation and soft computing methods are some of the

effort estimation methods. In estimation by experts, the

entire project is subdivided into small activ ities and

with previous experience in effort estimation the

developer of software estimate the effo rt depending on

the type of task under consideration [1]. In analogy

based estimation is a form of CBR. Cases are defined as

abstractions of events that are limited in time and space

[2].In soft computing based approach several technique

like neural network fuzzy logic, genetic engineering are

used either individually or combined as hybrid

approaches to predict the effort [3].Complexity and

uncertain behaviour of software projects are the main

reasons for going toward the soft computing techniques

102 Performance Analysis of Software Effort Estimation Models Using Neural Networks

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 09, 101-107

[4]. Soft computing based approach play a prominent

role because the ability of the soft computing frame

work to learn from previous projects especially neural

network is good in learning. Now a day’s estimation

method using neural network is the interesting area for

research compared to Theoretical estimation methods

[5]. While considering the neural network lot of neural

network arch itecture are available. Among which the

most widely used method was Back propagation

network. Elman network is a type of recurrent network

that is equally as important as Back propagation

algorithm. In our experiment both methods are used for

estimating software development effort and their

performance characteristics are analyzed.

The paper is organized as fo llows. Section 2 g ives the

detail about the related works and section 3 talks about

the research methodology and the brief description

about the Back propagation algorithm and ELMAN

neural network. Section 4 gives detail about the dataset

used. Section 5 gives detail about the experimentation,

section 6 about evaluation criteria. Results and

conclusion are given in section 7 and section 8

respectively.

II. Related Works

The use of Artificial Neural Networks to predict

software development effort has focused mostly on the

accuracy comparison of algorithmic models rather than

on the suitability of the approach for bu ild ing software

effort predict ion systems.Abbas Heiat [6] compares the

prediction performance of mult ilayer perception and

radial basis function neural networks to that of

regression analysis. The results of the study indicate

that when a combined third generation and fourth

generation languages data set were used, the neural

network produced improved performance over

conventional regression analysis in terms of mean

absolute percentage error Neural networks are often

selected as tool for software effort predict ion because of

their capability to approximate any continuous function

with arbit rary accuracy[7].Use of back propagation

learning algorithms on a mult ilayer perceptron in order

to predict development effort was described by Witting

and Finnie[8,9]. The study of Karunanithi [10] reports

the use of neural networks for predict ing software

reliability; including experiments with both feed

forward and Jordon networks. The A lbus multiplier

perceptron in order to predict software effort was

proposed by Samson [11]. They use Boehm’s

COCOMO dataset. Srinivazan and Fisher [12] also

exhibit the use of a neural network with a back

propagation learning algorithm. But how the dataset

was divided for t rain ing and validation purposes is not

clearly mentioned. Iris febine et al[13] compares

regression technique with artificial neural networks and

found artificial neural network to be better than

regression. Shift-invariant morphological system to

solve the problem of software development cost

estimation [14]. It consists of a hybrid morphological

model, which is a linear combination between a

morphological-rank operator and a Finite Impulse

Response operator, referred to as morphological-rank-

linear filter. Yan fu et al[15] adaptive ridge regression

system can significantly improve the performance of

regressions on multi-collinear datasets and produce

more exp lainable results than machine learning

methods.Finally in the last years; a abundant interest on

the use of ANNs has grown. ANNs have been fru itfully

applied to several problem domains. They can be used

as predictive models because they are modeling

techniques having the capability of modeling complex

functions

III. Research Methodology:

Problem Statement: Understanding and calculation

of models based on historical data are d ifficu lt due to

inborn complex relationships between the related

attributes, are unable to handle categorical data as well

as lack o f reasoning abilit ies. Besides, attributes and

relationships used to estimate software development

effort could change over time and differ for software

development environments. In order to overcome to

these problems, a neural network based model with

accurate estimation can be used.

The COCOMO II model: The COCOMO model is

a software cost estimation model based on regression. It

was developed by Barry Bohem the father of software

cost estimation in 1981. Among of all tradit ional cost

prediction models. COCOMO model can be used to

calculate the amount of effort and the time schedule for

software projects. COCOMO 81 was a stable model on

that time. One of the problems with using COCOMO 81

today is that it does not match the development

environment of the late 1990’s. Therefore, in 1997

COCOMO II was published and was supposed to solve

most of those problems. COCOMO II has three models

also, but they are d ifferent from those of COCOMO 81.

They are

 Application composition model-mostly suitable for

projects built with modern GUI-builder tools. Based

on new Object Points

 Early Design Model-To get rough estimates of a

project's cost and duration before have determined its

entire architecture. It uses a small set of new Cost

Drivers and new estimating equations. Based on

Unadjusted function Points or KSLOC

 Post-Architecture Model-The most detailed on the

three, used after the overall architecture for the

project has been designed. One could use function

points or LOC as size estimates with this model. It

involves the actual development and maintenance of

a software product

 Performance Analysis of Software Effort Estimation Models Using Neural Networks 103

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 09, 101-107

COCOMO II describes 17 cost drivers that are used

in the Post-Architecture model [16]. The cost drivers for

COCOMO II is rated on a scale from Very Low to

Extra High in the same way as in COCOMO 81.

COCOMO II post architecture model is given as:

 [] ∏

where

 ∑

A = Multiplicative constant

Size = Size o f the software project measured in terms

of KSLOC (thousands of source lines of code, function

points or object points)

The selection of Scale Factors (SF) is based on the

rationale that they are a significant source of

exponential variation on a project’s effort or

productivity variation. The standard numeric values of

the cost drivers are g iven in Table 1.The cost drives and

scale factors are given as input to the neural network

with effort as the networks output. Two type of network

used for analysis are discussed below.

What are neural network? Neural networks are a

computational representation inspired by studies of the

brain and nervous system in bio logical creatures. They

are highly idealized mathematical models of how we

understand the principle of these simple nervous

systems. The basic characteristics of a neural network

are (i)It consists of many simple processing units, called

neurons, that perform a local computation on their input

to produce an output. (ii). Many weighted neuron

interconnections encode the knowledge of the network.

Weight value is set according to the input output pair.

(iii)The network has a leaning algorithm that lets it

automatically develop internal representations. One of

such algorithm is called levenberg-marquardt algorithm.

(iv) Activation functions like sigmoid, linear activation

function can be used. Two well-known classes suitable

for prediction applications are feed forward networks

and recurrent networks. In the main text of the article,

we are concerned with feed-forward networks and a

variant class of recurrent networks, called ELMAN

networks. We selected these two model classes because

we found them to be more accurate in reliab ility

predictions than other network models

3.1 Back Propagation Network:

The back propagation learning algorithm is one of the

most widely used method in neural network. The

network associated with back-propagation learning

algorithm is called as back propagation network. While

training a network a set of input-output pair is provided

the algorithm provides a procedure for changing the

weight in BPN that helps to classify the input output

pair correctly. Gradient descent method of weight

updating is used [17].

Fig. 1: Back propagation Network

The aim of the neural network is to train the network

to achieve a balance between the net’s ability to respond

and its ability to give reasonable responses to the input

that is similar but not identical to the one that is used in

training. Back propagation algorithm d iffers from the

other algorithm by the method of weight calcu lation

during learn ing. The drawback of Back propagation

algorithm is that if the hidden layer increases the

network become too complex

Procedure for Back propagation algorithm:

Let the input training vector x = (x1,……., xi ,…….,xn)

and target output vector t = (t1,…..,tk,……tm) the effort

multip lier and scale factor can be given as the input x

and the target effort is presented as t. α represents the

learning rate parameter, voj = b ias on j
th

hidden layer,

wok = bias on k
th

hidden layer, zj hidden unit j, the net

input to zj is

Zinj=voj + ∑

and the output is

zj=f(Zinj)

yk = output unit k. the net input to yk is

yink=wok + ∑

and the output is

Yk=f(yink)

3.2 Elman Network

Elman Network was first proposed by Jeffrey L.

Elman in 1990.Elman neural network is feed forward

network with an input layer, a hidden layer, an output

layer and a special layer called context layer. The

output of each hidden neuron is copied into a specific

neuron in the context layer. The value of the context

neuron is used as an extra input signal fo r all the

neurons in the hidden layer one time step later. In an

Elman network, the weights from the hidden layer to

104 Performance Analysis of Software Effort Estimation Models Using Neural Networks

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 09, 101-107

the context layer are set to one and are fixed because the

values of the context neurons have to be copied exactly.

Furthermore, the init ial output weights of the context

neurons are equal to half the output range of the other

neurons in the network. The Elman network can be

trained with gradient descent back propagation and

optimization methods. A recurrent network is one in

which there is a feedback from neuron’s output to its

input. The input to the network is x1,x2,x3 ----xn and the

output of the network is taken as y1,y2,y3---yn. The

output of the hidden layer (h1, h2, h3--- hn) are fed back

again to hidden layer neuron using context node

(c1,c2,c3----cn). Unlike feed fo rward neural networks,

Recurrent Neural Networks can use their internal

memory to process arbitrary sequences of inputs. The

output of each hidden neuron is copied into a specific

neuron in the context layer.

Fig. 2: ELMAN Network

The value of the context neuron is used as an extra

input signal for all the neurons in the hidden layer one

time step later. In an Elman network, the weights from

the hidden layer to the context layer are set to one and

are fixed because the values of the context neurons have

to be copied exactly.

IV. Dataset Description

Dataset used for analysis and validation of the model

can be got from historic pro jects of NASA. One set of

dataset consists of 63 p rojects and other consists of 93

datasets. The datasets is of COCOMO II format. In our

experiment 93 datasets are used for training and 63 data

is used for testing.

The Dataset need for training as well as testing is

available in www.promisedata.org/?p=6 and in

www.promisedata.org/?p=35 . The dataset available is

of COCOMO 81 format which is to be converted to

COCOMO II by following the COCOMO II Model

definit ion manual [18] and Rosetta stone [19]

COCOMO 81 is converted to COCOMO II. COCOMO

81 is the earlier version developed by Barry Boehm in

1981 and COCOMO II is the next model developed by

Barry Boehm in year 2000. Some of the attributes like

TURN are used only in COCOMO 81 and some new

attributes like RUSE, DOCU, PCON, SITE are

introduced in COCOMO II.

Table 1: Effort Multipliers and their Range

Effort Multipliers Range

Required software Reliability RELY 0.82-1.26

Data base size DATA 0.90-1.28

Product Complexity CPLX 0.73-1.74

Developed for Reusability RUSE 0.95-1.24

Documentation Match to Life- Cycle needs DOCU 0.81-1.23

Execution Time Constraints TIME 1.00-1.63

Main storage Constraint STOR 1.00-1.46

Platform Volatility PVOL 0.87-1.30

Analyst capability ACAP 1.42-0.71

Programmer capability PCAP 1.34-0.76

Personal continuity PCON 1.29-0.81

Applications Experience APEX 1.22-0.81

Platform Experience PLEX 1.19-0.85

Language and Tool Experience LTEX 1.20-0.84

Use of software tool TOOL 1.17-0.78

Multisite Development SITE 1.22-0.80

Required Development Schedule SCED 1.43-1.00

Every input as Effort multiplier has been tuned by

following the COCOMO II model defin ition manual

[18]. The scale factor and Effort mult iplier and their

range is given in Table I and II. One of such inputs

RELY can be discussed below in Table III:

Table 2: Scale factors and their range

Scale Factor Range

Precedentedness PREC 0.00-6.20

Development Flexibility FLEX 0.00-5.07

Architecture/Risk Resolution RESL 0.00-7.07

Team Cohesion TEAM 0.00-5.48

Process Maturity PMAT 0.00-7.80

The Rating levels are fixed by the developer. If the

failure o f the software causes slight inconvenience and

the corresponding rating level is very low, then the

effort mult iplier is fixed to be 0.82. In case of some

software failure can easily be recoverable then the

corresponding rating level is Nominal and rating level is

fixed to be 1. If the failure of the software causes risk to

human life the rating level given by the developer is

very high then the effort multiplier is fixed to be 1.26

 Performance Analysis of Software Effort Estimation Models Using Neural Networks 105

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 09, 101-107

Table 3: Fixing Input attributes

RELY Descriptor Rating Levels Effort Multipliers

Slight Inconvenience Very Low 0.82

Low, easily recoverable loss Low 0.92

Moderate, easily, recoverable loss Nominal 1

High financial, loss High 1.1

Risk to Human life Very High 1.26

V. Experimentation

Neural Network Uses two set of datasets One set of

dataset consists of 63 p rojects and other consists of 93

datasets both are from the historic p rojects of NASA.

Here we use 93 pro jects for train ing the network and 63

projects for testing. The simulat ion is done in

MATLAB 10b environment. In back propagation and

Elman network the weight and bias are randomly fixed

so each time there is a possibility of getting different

result to avoid this problem the whole network is made

to run for 50 iteration and their errors are summed up.

The network designed uses only one hidden layer and

that hidden layer has eight neurons and output layer has

one neuron. The hidden layer uses sigmoid transfer

function. And output layer uses linear transfer function.

The above consideration is used for both Back

propagation as well as ELMAN network for uniformity.

Input fed to the neural network is normalized using

Premnmx and the output is DE normalized using

postmnmx. Premnmx normalizes the value between (-1

to 1)

VI. Evaluation Criteria

For evaluating the different software effort estimat ion

models, the most widely accepted evaluation criteria are

the mean magnitude of relat ive error (MMRE),

Probability of a p roject having relative error less than

0.25, Root mean square of erro r, Mean and standard

deviation of error.

The magnitude of relative error (MRE) is defined as

follows

| |

 (1)

The MRE value is calculated for each observation I

whose effort is predicted. The aggregation of MRE over

multip le observations (N) can be achieved through the

mean MMRE as follows

∑

 (2)

 ()

 (3)

Consider Y is the neural network output and T is the

desired target. Then Root mean square error (RMSE)

can be given by

 √() (4)

Error can be calculated by the difference between Y

and T then mean and standard deviation is calculated by

calculating the mean and standard deviation of the error

ERROR=(Y-T) (5)

VII. Results

Comparison results of BPN and ELMAN for train ing

is given below in Table. IV. And the comparison results

of BPN and ELMAN for testing is given in Table. V. A

model which gives lower MMRE is better than the

model which g ives higher MMRE. A model which

gives high PRED (25) is better than the model which

gives lower PRED (25). Similarly the model which

gives lower RMSE is better than the model which g ives

higher RMSE. The model which mean and standard

deviation is closer to zero is better than the models

which g ives mean and standard deviation far away from

zero.

Table 4: Results of Training for BPN

Performance BPN

Measures MIN MAX MEAN

MMRE 0.0371 0.2105 0.0928

PRED(25) 67.7419 98.9247 91.8065

RMSE 0.3422 1.383 0.6774

MEAN -0.3975 0.3167 7.75E-04

Std.Dev 0.3418 1.3535 6.72E-01

Table 5: Results of Training for ELMAN

Performance ELMAN

Measures MIN MAX MEAN

MMRE 0.0357 0.208 0.0936

PRED(25) 69.8925 98.9247 92.3656

RMSE 0.366 1.2544 0.6748

MEAN -0.3207 0.3422 0.0083

Std.Dev 0.3678 1.241 0.666

106 Performance Analysis of Software Effort Estimation Models Using Neural Networks

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 09, 101-107

Table 6: Results of Testing BPN

Performance BPN

Measures MIN MAX MEAN

MMRE 0.1712 3.7931 0.3846

PRED(25) 30.1587 82.5397 63.5873

RMSE 0.8285 2.2076 1.3142

MEAN -1.6898 0.8806 -0.1141

Std.Dev 0.7306 1.8707 1.2233

Table 7: Results of Testing ELMAN

Performance ELMAN

Measures MIN MAX MEAN

MMRE 0.1678 3.4354 0.4467

PRED(25) 42.8571 79.3651 60.4444

RMSE 0.8566 3.5265 1.4

MEAN -1.4708 0.8159 -0.2003

Std.Dev 0.8312 3.2309 1.314

The results of BPN and ELMAN for testing are given

in table VI and VII. From above result it is confirmed

that BPN has lower MMRE, RMSE higher PRED (25)

and mean and standard deviation closer to zero. Fig 3

represents the Comparison of MMRE for BPN and

ELMAN Fig 4 represents the Comparison of RMSE for

BPN and ELMAN

Fig. 3: Comparison of MMRE for BPN and ELMAN

Fig. 4: Comparison of RMSE for BPN and ELMAN

Fig. 5: Comparison of time taken for BPN and ELMAN network

BPN completes 50 iteration in 57.2 sec compared to

62.2 sec of ELMAN network. Thus BPN has lower

computation time than ELMAN network

VIII. Conclusion

Most important thing in software effort p rediction is

its closeness to actual effort. we have analyzed the

performance of both using historic dataset of NASA

From the above results it is confirmed that BPN is best

suited for software cost estimation compared to

ELMAN network. BPN produces accurate estimate with

less time compared to ELMAN network. The work can

be extended to hybrid computing techniques like Fuzzy

based BPN and Fuzzy based ELMAN. Further it can be

extended to new and advanced learning algorithm like

ELM, MRAN, Meta cognitive neural network etc.

Results can be further validated using different type of

dataset or simulated dataset. In simulated dataset the

relation between the input and output is known.

References

[1] M. Jorgenson, ―Forecasting of software

development work effort: Evidence on expert

judgment and formal models,‖ International

Journal of forecasting 23pp.449–462, 2007.

[2] Martin Shepperd and Chris Schofield, ―Estimating

Software Project Effort Using Analogies,‖ IEEE

Transactions On Software Engineering, Vol. 23,

No. 12, PP.736-743 November 1997

[3] ImanAttarzadeh, Siew Hock Ow, ―A Novel

Algorithmic Cost Estimation Model Based on Soft

Computing Technique,‖ Journal of computer

science,pp. 117-125, 2010.

[4] VahidKhatib i B., Dayang N.A. Jawawi,

Sit iZaitonMohdHashim and ElhamKhatibi, ―A

New Fuzzy Clustering Based Method to Increase

the Accuracy of Software Development Effort

Estimation‖ World Applied Sciences Journal, 2011,

1265-1275.

0.3846

0.4467

BPN ELMAN

MMRE

1.3142

1.4

BPN ELMAN

RMSE

57.2212

62.2912

BPN ELMAN

 Total Time

 Performance Analysis of Software Effort Estimation Models Using Neural Networks 107

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 09, 101-107

[5] Magne Jorgenson and Martin Shepperd, ―A

Systematic Review of Software Development Cost

Estimation Studies‖, IEEE Transactions on

software engineering, Vol.33, No.1,pp.33-53,

January 2007.

[6] Abbas Heiat, ―Comparison of artificial neural

network and regression models for estimating

software development effort‖ Informat ion and

Software Technology, 2002, 911–922

[7] Rudy Setiono, KarelDejaeger, WouterVerbeke,

David Martens, and Bart Baesens ―Software Effort

prediction using Regression Rule Extraction from

Neural Networks‖22nd International Conference

on Tools with Artificial Intelligence,2010,pp.45-52

[8] G.Witting, and G. Finnie, ―Using Artificial Neural

Networks and Function Points to Estimate 4GL

Software Development Effort‖, Journal of

Information Systems,1994, vol.1, no.2, pp.87-94.

[9] G.Witting, and G.Finnie, ―Estimat ing software

development effort with connectionist models,‖ Inf.

Software Technology, 1997,vol.39, pp.369-476.

[10] N. Karunanitthi, D.Whitely, and Y.K.Malaiya,

―Using Neural Networks in Reliability Prediction,‖

IEEE Software, 1992.vol.9, no.4, pp.53-59.

[11] B. Samson, D. Ellison, and P. Dugard, ―Software

Cost Estimat ion Using A lbus Perceptron

(CMAC),‖Informat ion and Software Technology,

1997, vol.39, pp.55-60.

[12] K. Srinivazan, and D. Fisher, ―Machine Learning

Approaches to Estimating Software Development

Effort‖ IEEE Transactions on Software

Engineering, February1995, vol.21,no.2, pp. 126-

137.

[13] Iris Fabiana de BarcelosTronto, Jose ́

Demı́ sioSimo˜ es da Silva, NilsonSant’Anna,‖An

investigation of artificial neural networks based

prediction systems in software project

management‖. The journal of system and software,

June 2007, pp.356-367

[14] Ricardo de A. Araújo, Adriano L.I. Oliveira ,

Sergio Soares, ―A shift-invariant morphological

system for software development cost estimation

―Expert Systems with Applicat ions,2011,4162-

4168.

[15] Yan-Fu Li, Min Xie, Thong-NgeeGoh, ―Adaptive

ridge regression system for software cost

estimating on multi-collinear datasets‖ The Journal

of Systems and Software, 2010, 2332–2343

[16] Boehm B. W. ―Software Engineering Economics‖,

Englewood Cliffs, NJ, Prentice-Hall, 1981

[17] Dr.S.N.Sivanandam, Dr.S.N.Deepa,‖Princip les of

soft computing‖ 2
nd

 edit ion, Wiley-India, ISBN:

978-81-265-2741-0.

[18] Barry Boehm, COCOMO II: Model Definition

Manuel. Version 2.1, Center for Software

Engineering, USC, 2000.

[19] Donald J. Reifer, Barry W. Boehm and

Sunithachulani, ―The Rosetta stone: Making

COCOMO 81 Estimates work with COCOMO II‖,

CROSSTALK The Journal of Defense Software

Engineering, pp 11 – 15, Feb.1999.

Authors’ Profiles

E.Praynlin: Research scholar in Department of

Computer science and Engineering, Government

college of Engineering, Tirunelveli. He has received his

master’s degree in Applied Electronics from Noorul

Islam University. He graduated from Anna university in

Electronics and communication Engineering. His area

of interest are software cost estimat ion and neural

networks.

Dr.P.Latha: Associate Professor in Government

college of Engineering, Tirunelveli. She has received

her master’s degree in computer science and

Engineering from Bharathiar University. She graduated

from Madurai Kamaraj University in Electrical and

Electronics Engineering. She has published her research

work in 4 International Journals, 6 Nat ional level

conferences and more than 40 national level

conferences. Her field o f specialization is image

processing.

How to cite this paper: E.Praynlin, P.Latha,"Performance

Analysis of Software Effort Estimation Models Using Neural

Networks", International Journal of Information Technology

and Computer Science(IJITCS), vol.5, no.9, pp.101-107, 2013.

DOI: 10.5815/ijitcs.2013.09.11

