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Abstract— In the estimation problems, rather than the
white observation noise, there are cases where the
observation noise is modeled by the colored noise
process. In the observation equation, the observed value
y(k) is given as a sum of the signal z(k) = Hx(k) and the

colored observation noise vy (k) . In this paper, the

observation equation is converted to the new
observation equation for the white observation noise. In
accordance with the observation equation for the white
observation noise, this paper proposes new RLS Wiener
estimation algorithms for the fixed-point smoothing and
filtering estimates in linear discrete-time wide-sense
stationary stochastic systems. The RLS Wiener
estimators require the following information: (a) the
system matrix for the state vector x(k) ; (b) the

observation matrix H ; (c) the variance of the state
vector x(k) ; (d) the system matrix for the colored

observation noise v_(k); (€) the variance of the colored
observation noise.

Index Terms— Discrete-Time Stochastic Systems; RLS
Wiener Fixed-Point Smoother; Colored Observation
Noise; Covariance Information; Filter

I. Introduction

In comparison with the Kalman estimators, the
recursive least-squares (RLS) Wiener estimators have
advantages on the point that the RLS Wiener estimators
do not require the information of the input noise
variance and the input matrix in the state equation. The
less information used in the estimators might lead to
avoid the degradation of the estimation accuracy instead
of using the inaccurate information in the state-space
model. In [1], the RLS Wiener filter and fixed-point
smoother are developed in linear discrete-time
stochastic systems. The estimators require the
information of the system matrix, the observation vector,
the variance of the state vector in the state equation for
the signal and the variance of white observation noise.
Also, the Chandrasekhar-type RLS Wiener fixed-point
smoother, filter and predictor [2], the square-root RLS
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Wiener fixed-point smoother and filter [3] and the RLS
Wiener FIR filter [4], etc. are devised in linear discrete-
time stochastic systems.

Although almost estimators are designed for the
white observation noise, there might be actual cases
where the observation noise is colored. The estimation
problem for the colored observation noise has been
treated in the detection and estimation problems for
communication systems [5]-[11]. In [9], an alternative
method is proposed with regards to the traditional
handling of the autoregressive colored observation
noise in Kalman filter based speech enhancement
algorithm. In [11], based on the autoregressive moving
average (ARMA) innovation model, the reduced-order
Wiener state estimators are proposed for descriptor
system with MA colored observation noise and multi-
observation lags.

In [12], the estimation problem of the signal for the
white observation noise is considered in linear
continuous-time stochastic systems. The spectral
factorization method, for the system matrix, the input
matrix and the observation matrix, is discussed. Then
the innovations state-space model for the colored
observation model is developed.

In [13], based on the improved least-squares (ILS)
method, the parameter estimation technique is proposed
for the signal observed with additional colored noise. In
[14], in order to diagnose faults, the optimal state filter
is designed for stochastic systems subject to both
colored observation noise and unknown inputs.

In [15], starting with the Wiener-Hopf equation, the
RLS Wiener fixed-point smoother and filter are
presented for the colored observation noise. In [16],
with the relation of estimation technique to the
innovation theory [17], [18], assuming that the
smoothing estimate is given as a linear transformation
of the innovation process, the RLS Wiener fixed-
interval smoothing algorithm for the colored
observation noise, is proposed.

This paper considers on the RLS Wiener estimation
problems for the colored observation noise. In the
observation equation, the observed value y(k) is given

as a sum of the signal z(k)=Hx(k) and the colored

1.J. Information Technology and Computer Science, 2014, 01, 13-24



14 New RLS Wiener Smoother for Colored Observation Noise in Linear Discrete-time Stochastic Systems

observation noise v_(k) . In this paper, according to the

method in [7], [8], the observation equation is converted
to the new observation equation for the white
observation noise. In accordance with the observation
equation for the white observation noise, this paper
proposes new RLS Wiener estimation algorithms for the
fixed-point smoothing and filtering estimates in linear
discrete-time wide-sense stationary stochastic systems.
The RLS Wiener estimators require the following
information: (a) the system matrix for the state
vector X(K) ; (b) the observation matrix H ; (c) the
variance of the state vector X(K) ; (d) the system matrix
for the colored observation noise v_(k); (€) the variance
of the colored observation noise.

The remainder of this paper is organized as follows.
In section 2, the least-squares fixed-point smoothing
problem is introduced for the colored observation noise.
In section 3, the RLS Wiener fixed-point smoothing and
filtering algorithms are presented. Also, the variance of
the innovation process is formulated with regard to the
current RLS Wiener filter. In a numerical simulation
example of section 4, the estimation characteristics of
the proposed RLS Wiener fixed-point smoother and
filter are compared with those of [15].

Il.  RLS Wiener Smoothing Problem

Let an m-dimensional observation equation be
specified by

y(K) = z(k) +v, (k). z(k) = Hx(k) ®

in linear discrete-time stochastic systems. Here, H is
an mxn observation matrix, z(k) is the zero-mean

signal vector. The process {v_(k),k >0} represents the

zero-mean colored observation noise sequence. It is
assumed that the signal is uncorrelated with the colored
observation noise as

E[z(k)V! (s)]=0, 0<k,s <. )

LetK, (k,s) = K (k—s) represent the auto-covariance
function of the state vector x(k) in wide-sense
stationary stochastic systems [1], and let K (k,s) be
expressed in the form of

Kx(k,s):{A(k)BT (s), 0<s<Kk, -

B(s)AT(k), 0<k<s,

AK) = ®*, BT (s) =D °K,(s,s).

Here, @ is the transition matrix of x(k).

Copyright © 2014 MECS

Let the state-space model for x(k) be described as
x(K +1) = dx(K) + Gw(k) ,
E[w(k)w’ (s)] = R, () (k —s), @)

where G is an nx| input matrix and w(k) is the

white input noise with the auto-covariance function of
(4). It is assumed that the stochastic processes of w()

and u(-) are mutually uncorrelated.

Let K_(-) denote the auto-covariance function of
v, (k) - The auto-covariance function K_(k,s) is given
by

K (ks)=1 A(OB (), 0=s<k,
T BU9A M), 0<k<s,

®)
A (k) = ®F, B! (s) =®;°K(s.5).
Let the state equation for v_(k) be given by
V. (k+1) =D v (k) +u(k), ©
6

E[u(k)u’ (s)]=R, (k)5 (k —s),

in terms of the white input noise vector y(k) with the
variance R, . It is found that, for the expressions
K, (k+Lk+2) = E[v,(k +1)v," (k +1)],

K. (k.k) = E[v,(k)v,"(k)], In the wide-sense stationary
stochastic systems, the following relationships hold.

R, (k) = K (k +1k +1) - @ K, (k, K)D, o
K. (k+1k+1) = K_(k,k) = K_(0)

In the estimation problem for the colored observation
noise, the method of transforming the observation
equation into the form of the white observation noise is
used [7], [8]. Namely, by introducing

y(k) =y(k+1) - y(k),

from (1), the following relationship is obtained.

Y(K) = Hx(k +1) +V, (k +1) — D, (Hx(K) + Vv, (K))
= (Hd — ®_H)x(K) + (HGW(K) + u(K))

= Ax(k) +V(K),

H=Hb-d H, v(k)=HGWK)+u(K).

(®)

Since w(k) and u(k) are the white noise processes,
which are mutually independent, v (k) is regarded as the
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New RLS Wiener Smoother for Colored Observation Noise in Linear Discrete-time Stochastic Systems 15

white observation noise in the transformed observation
equation (8).

Based on the transformed observation equation (8)
from the observed values y(k+1) and y(k), let the

fixed-point smoothing estimate g(k,L) of x(k) be
given by

i(k, L) = Y (i, DY) ®

in terms of the linear transformation of the data
{y(i), 1<i<L}. Here, h(k,i,L) is called the impulse
response function.

Let us consider the least-squares estimation problem,
which minimizes the mean-square value (MSV)

J = E[ll x(k) - &(k, L) |I°] (10)

of the fixed-point smoothing error. From an orthogonal
projection lemma [19],

x(k)—ZL:h(k,i,L)y(i)Ly(s), 1<s<L, (1)

i=1

the impulse response function satisfies the Wiener-Hopf
equation

Elx(K)Y" ()= ih(k, LLEYE)Y ()] (12)

Here 1’ denotes the notation of the orthogonality.
The left hand side of (12) is developed as

K,y (k,8) = E[x(k)y" (5)]

= E[x(k)(HX(s) +V(s))']

=K, (k,s) HT + E[x(k)(HGW(s) +u(s))"] (13)
=K, (k,s)H" +E[x(K)w' (s)]GTHT

=K, (k,s)H" +K_ (k,s)G'HT.

Here, K (k,s)=E[x(k)w' (s)] represents the cross-
covariance function of x(k) with w(s). Also, the auto-
covariance function K (i,s) = E[y(i)y" (s)] is written as

K, (i,s) = E[(Hx(i) +V(i))(Hx(s) +V(s))"]

= E[(Hx(i) + HGw(i)

+U(i)(Hx(s) + HGW(s) +(s)))'] (14)
= HK,(i,)H" + HK , (i,5)G"H'

+HGK,, (i,s)H"

+(R, +HGR, (i))G"H")5, (i—3),

Copyright © 2014 MECS

where the cross-covariance function

K, (i,s) = E[w(i)x" (s)] is introduced.

Substitution of (13) and (14) into (12) yields the
equation

h(k,s,L)R(s) =K, (k,s)H"
+K ,(k,s)GTHT

—ZL:h(k,i, L)[HK, (i,s)HT

+HK ,(i,s)G"H™ + HGK,, (i,s)H ],

(15)

R(s)=R,(s)+HGR,(s)G"HT,
which the optimal impulse response function satisfies.

In section 3, by starting with (15), the RLS Wiener
estimation equations for the fixed-point smoothing and
filtering estimates are derived via the invariant
imbedding method.

I1l. RLS Wiener Estimation Algorithms

Under the preliminary assumptions on the linear
least-squares estimation problem of the signal z(k) in

section 2, Theorem 1 presents the RLS Wiener fixed-
point smoothing and filtering equations, which use the
covariance information of the signal and the colored
observation noise.

Theorem 1

Let the auto-covariance function K (k,s) of the state
vector x(k) be given by (3), let the variance of the
colored observation noise v (k) be K_(k,k), let the
variance of the white input noise w(k) be R, (k) and let
the variance of u(k) in the state equation (6) for the
colored observation noise v_(k +1) be R, (k). Then, the

RLS Wiener algorithms for the fixed-point smoothing
and filtering estimates of the signal z(k) consist of

(16)-(30) in linear discrete-time stochastic systems with
the wide-sense stationarities.

Fixed-point smoothing estimate of the signal z(k):
2(k,L)

2(k, L) = HR(K, L) (16)
Fixed-point smoothing estimate of x(k): &(k, L)
X(k,L) = X(k,L-1)

+h(k,L,L)(Y(L) - HD &, (L-1,L-1) 7
~H®a,(L-1,L-1)
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16 New RLS Wiener Smoother for Colored Observation Noise in Linear Discrete-time Stochastic Systems

Smoother gain: h(k, L, L) G,(L,L)=(K (L, L)AT

h(k,L, L):(Kx(k,k)(d)T)L‘k HT —<I)Sll(L—1)chT HT
—qy(k, L-)® AT —q,(kL-DAT) B B —®S,(L-1)H")
[R(L)+H (K, (L, L)—®S, (L-1)®" x[R(L)+H(K,(L,L)
~ @S, (L-1)D")H’ (18) ~®S, (L-1)D’ ) (24)
+HGR] (L)G' (@")'HT —<I>SZl(L—1)c_I)T)HT
~H®S,(L-1)A" +HGR, (L)G™ (@) H'
~H®S,,(L-)ATT* - TCDSQ(L—l)IjT
~H®S,,(L-)H'T*
Fixed-point smoothing estimate of x(k): (k, L)
G,(L,L)=(®'GR,G'HT

R(k, L) = (k, L-1) 05 (LD T
21

+h(k, L, L)(Y(L)

- —®S,,(L-DHT
CHoa(L-1L-1) (19) ) DS, (L-DH)
o «[R(L) +H (K, (L, L)
~H®a,(L-1,L-1)) )
— @S, (L-1)D (25)

q,(k, L) =g, (k, L—1)d" ~®S,,(L-D)@")H'

+h(k, L, L)(FK, (L, L) +HGR, (L)G™ (®")*HT

~H®S, (L-1)®' (20) ~H®S,(L-)HT

~H®S, (L-)o"), ~H®S,(L-DH']"

ql(kl k) = Sll(k) + SZl(k)
Su(L) =S, (L _1)(DT

0y (k, L) =g, (k, L -1’ +G, (L, L)(HK, (L, L)
+h(k,L,L)(HGR] (L)G" ~H®S, (L-)" (26)
—H®S,(L-1)®' (1) ~H®S,,(L-1)®"),
~H®S,,(L-1)®"), S,(0)=0

k,K) =S, (K) +S,, (K
780750 S, (L) = @5, (L-1)"

Filtering estimate of the signal z(L): 2(L,L) +G1(L' L)(HGRVTV (L)GT
I T
2(L, L) = HR(L, L) 22) —H®OS,(L-1)@ (27)
~H®S,,(L-1)d"),
Filtering estimate of x(L): R(L,L) S (O) ~0
12 =
R(L,L) = ®dR(L-1,L-1)
+G,(L, L) +G,(L, L))(Y(L)
—H®R(L-1,L-1)),

S,,(L)=®S,,(L-)®"
(23) +G, (L, L)(HK (L, L)
~H®S, (L-)" (28)
—H®S,, (L-1)®"),
S,,(0)=0

£(0,0) =0
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Sy (L) =DS, (L _1)‘DT

+G, (L, L)(HGR! (L)G'
~H®S,(L-1)®' (29)
~H®S,,(L-D)®"),

S,,(0)=0

R(L)=R,(L)+HGR, (L)G'HT,

R,(L) =K (L+LL+1)—d K (L, L)dL

=K. (0)-@ K, (0)d,, (30)
GR,(L)G" =K, (L+LL+1)—dK (L, L)®'

=K (0)- DK, (0)DT,

H=Hd-d H

Proof of Theorem 1 is deferred to the appendix.

From (22) and (23), the variance of the innovation
process p(L) = y(L)— HDR(L-1,L-1) is given by
(L) = R(L) + H (K,(L,L)
~ @S, (L-1)@'
—®S,, (L-1)®")HT
+HGR! (L)G" (@")'HT
—H®S,(L-)HT
~H®S,,(L-)H".

(31

IV. A Numerical Simulation Example

In this section, to show the efficiency of the
estimation characteristics of the proposed RLS Wiener
fixed-interval smoother and filter, a numerical example
is demonstrated.

Let a scalar observation equation be specified by
y(k) = z(k) + Vv (k), z(k) = Hx(K). (32)

Here, v, (k) is the zero-mean colored observation
noise. Let the signal z(k) be generated by the second-
order AR model.

z(k +1) = —a,2(k) — a,z(k —1) + w(k),

E[w(k)w(s)]=o5 (k —s), (33)

a,=-01 a,=-08 o=05.

The corresponding state-space model for z(k) can be
written as

Copyright © 2014 MECS

2(k) = Hx(K)=x (k), H=[1 0],

| x(k)
X(k)‘[xz(k)}’
{xl(kﬂq{o 1}{&(@} -~
Xz(k+l) -a, —a Xz(k)
+{ﬂw(k),

E[w(k)w(s)] = R.5, (K —s).

The auto-covariance function of the signal z(k) is
given by [15]

K(0)=o?
oy o(d-Dal
= o, — ) e, + 1]
) (f Doy
(@ -a)aa 0 &
m >0,

a,,a, = (-8, £./a’ —4a,) /2.

From (34) and (35), it is found that

K (kK) = K@) K(@)

UK K©O)]

@:{0 1] )
_az _al

K(0)=0.25, K()=0.125.
Let the state equation for v_(k) be given by

v, (k+1) =@V, (k) +u(k),
E[u(k)u’ (s)]=R,6 (k —s), 37)
®, =091, R, =001

where u(k) is the white input noise in the state

equation (37) for the colored observation noise process.
The auto-variance function of the colored observation

noise v, (-) satisfies the relationships
K. (k+1k+1) =K, (k,k) =K_(0) and hence

K.(0)= Ruz in wide-sense stationary stochastic
¢ 1-a
systems.
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18 New RLS Wiener Smoother for Colored Observation Noise in Linear Discrete-time Stochastic Systems

Substituting H, ®, K (L,L)=K,(0), ®_,

K.(L,L) =K_(0) and R, into the RLS Wiener
estimation algorithms of Theorem 1, the fixed-point
smoothing and filtering estimates are calculated
recursively.

Fig. 1 illustrates the signal z(k) and the fixed-point
smoothing stimate 7(k,k +5) vs. k, 1<k <250, for the
input noise variance R, =0.01 in (37). Fig. 2 illustrates
the MSVs of the filtering errors z(k)—2(k,k) and the
fixed-point  smoothing errors  z(k)—2(k,k + Lag),
1<lag<10, for R =0.0225 001 00225 The

MSVs of the estimation errors by the filtering and
fixed-point smoothing algorithms in Theorem 1 are
compared with those in the previous estimators [15].
For Lag=0 , the MSV of the filtering errors

z(k) — 2(k,k), 1<k <2000, is plotted. From Fig. 2, it

is indicated that the estimation accuracy of the proposed
filter and the fixed-point smoother is superior to that of
the estimators in [15]. For R =0.01, 0.0225, in

comparison with the MSVs of the filtering errors, the
MSVs of the fixed-point smoothing errors are improved
slightly. As the variances R, of the input noise, in the

state equation for the colored observation noise,
becomes small, the MSVs of the filtering errors and the
fixed-point smoothing errors decrease and the
estimation accuracy is improved. Here, the MSVs of the

fixed-point smoothing and filtering errors are evaluated
2000

by 3" (2(k) - 2(k, k + Lag)? /2000, 1<Lag<10, and
k=1

2000

3" (2(k) - 2(K, k))? /2000.-

— Signal

Fixed—point smoothing estimate

Signal and fixed—point smoothing estimate

_3 | |
0 90 100

150 200 250

time k

Fig. 1: Signal z(k) and fixed-point smoothing stimate Z(k,k +5) vs. k, 1<k <250, for the input noise variance R, =0.01 in (37).

Copyright © 2014 MECS
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0.25

0
i
0
Bl
0

o2r o o

—— Ru=0.0025 (Previous estimators)
| —— Ru=0.0025 (Proposed estimators)
015 ~ | =% Ru=0.01 (Previous estimators)
‘ —O— Ru=0.01 (Proposed estimators)
—HB— Ru=0.0225 (Previous estimators)
—©— Ru=0.0225 (Proposed estimators)

MSVs of filtering and smoothing errors

005 R o

Lag

Fig. 2: MSVs of the filtering errors z(k) — Z(k, k) and the fixed-point smoothing errors z(k) —2(k,k + Lag), 1< Lag <10, for
R, =0.0225, 0.01, 0.0225..

V. Conclusions

In this paper, the RLS Wiener filter and the fixed-
point smoother have been designed for the colored
observation noise. In particular, the observation
equation (1) is converted to the new observation
equation (8) by the transformation
¥(k) = y(k +) —®_y(k). By this transformation, the

observation equation (1) for y(k) with the additive
colored observation noise v_ (k) is converted to (8) for
y(k) with the additive white observation noise v (k).

A numerical simulation example has shown that the
proposed RLS Wiener algorithms for the fixed-point

smoothing and filtering estimates are feasible. From Fig.

2, it is indicated that the estimation accuracy of the
proposed filter and the fixed-point smoother is superior
to that of the estimators in [15]. For R, =0.01, 0.0225,

in comparison with the MSVs of the filtering errors, the
MSVs of the fixed-point smoothing errors are improved
slightly.

Copyright © 2014 MECS

As in [15], [16], the RLS Wiener estimators do not
require the information of the input noise variance Q(k)

and the input matrix G in the state equation (4), in
comparison with the Kalman estimation technique [19].
In the RLS Wiener estimators, we are not anxious about
the degradation in the estimation accuracy caused by
the modeling errors for Q(k) and G .
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Appendix Proof of Theorem 1

Let us subtract the equation obtained by putting
L —L-1 in (15) from (15) as follows.

(h(k,s, L) —h(k,s, L —1))R(s) = -h(k, L, L)
x (K, (L,s)AT +K,,(L,s)GTHT)

) (A-1)
—Z(h(k,i, L) —h(k,i,L—=D[HK (i,s)H '

i=1
+HK_,(i,8)G"H" + HGK,,, (i,s)H "].
By introducing the following equations,
J (s, L=DR(s) = d K, (s,s)H"

L1 _ _ ) (A-2)
- 3,(i, L-D[HK, (i,s)H" +HK,, (i,s)G"H'

i=1
+HGK,, (i,s)H "],
J,(s,L-DR(s) =@ *"'GR,(s)G'HT

(A-3)

L-1 . .
- 3,(, L-D[HK, (i,s)H"

i=1
+HK,,(i,s)G'H" + HGK, (i,s)H "],
we notice that the impulse response function satisfies

h(k,s,L)—h(k,s,L-1)
=-h(k,L,L)(H®"J,(s,L-1)
+H®"J,(s,L-1)).

(A-4)

Subtraction of J, (s,L-1) from J,(s,L) yields

(3u(s,L) = I, (s, L-1)R(s) =
-J,(L, L)Y(HK, (L, s)HT (A-5)
+HK,,(L,s)G"H" + HGK,, (L,s)H")

—i(.]l(i, L)-J,3i, L=1))[HK (i,s)H"

+HK,,(i,s)G"HT + HGK,, (i,s)H"].
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Here, the cross-covariance function of w(L) with
x(s) is given by K, (L,s)=E[w(L)X" (s)]=0.From (A-
2), (A-3) and (A-5), the equation for J,(s,L) is reduced
to

Ji(s,L)=J,(s,L-D) =

~3,(L L)(AG,(s, L-1) (A6)
+H® I, (s, L-1)).

Subtraction of J,(s,L-1) from J,(s,L) yields

(J2(5,L) =3, (s, L-D)R(s) = -J, (L, L)

x (HK, (L,s)HT + HK ,(L,s)GTHT) (A7)

3 (3,1~ 3, (. L-D)[FK, G, )"

+HK,,(i,s)G'H™ + HGK, (i,s)H"].

From (A-2), (A-3) and (A-7), the equation for
J, (s, L) holds as follows.

J,(s,L)—=J,(s,L-1) =

-J,(L,L)(H®"J,(s,L-1) (A-8)
+H®"J,(s,L-1)
From (A-2), J,(L,L) satisfies
J(LDR(L) =™K, (L,LHT
(A-9)

L

- 3,(i, D[HK, (,L)H" + HK (i, L)G"H'
i=1

+HGK,, (i, L)H™].

In terms of the expression of K (i,L) in (3),

K,,(i,L)=0 and K., (i,L) =R} ()G" (@")'(@")"*. (A-
9) is written as

J(LLR(L)=d K (L, L)AT
—ZL:Jl(i,L)[HB(i)AT(L)H‘T
+HGR! ()G (@) (@")"*A].

Introducing the functions

(L) = _ZL:Jl(i, L)HB(i), (A-10)
rlZ(L)zi\Jl(i,L)HGRI’(i)GT ((I)T)’i, (A-11)
we obtain
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J(LLDR(L) =@ K, (L, L)HT (A-12)
—1, (AT (LHT =1, (L)(@") 7 H T,

From (A-3), J,(L,L) satisfies
J,(L,L)R(s) = "'GR,(L)G"H
—ZL:JZ(i, L)[HK, (i, L)H" (A-13)

+HK,, (i, L)G"H'
+HGK,, (i, L)H].

In terms of the expression of K (i,L) in (3),
Ko (i,L)=0 and K, (i, L) =R, ()G (@") ()", (A-
13) is written as

J,(L,L)R(L) =®'GR,(L)G'H"
—ZL: J,(, L)[HB@)AT (L)H"
+HGR] ()G (®") "(@")-*H"].

Introducing the functions

r,,(L) = ZL:JZ(i, L)HB(i), (A-14)
r,,(L) =ZL:JZ(i, L)HGR! ()G" (@), (A-15)
we obtain

J,(L,L)R(L)=® “'GR,(L)G'H" (A-16)

- 21(L)AT(L)HT - 22(L)(CDT)L_1HT-
Subtraction of r,, (L—-1) from r, (L) yields

r11(|-) - ru(l- _1) = Jl(l-: L)ﬁB(L)

L1 (A-17)
+ Z(Jl(i, L) —J,(3i,L —1)HB(i).

Substituting (A-6) into (A-17), from (A-10) and (A-
14), we obtain

r11(|—)_ r11(L_1) =
3,(L, L)(FB(L) - A, (L-1)
~H®"r, (L-1).

(A-18)

Subtraction of r,,(L-1) from r(L) yields

rlZ(L) - rlZ(L _1) = Jl("’ L)HGRVTV (L)GT ((DT )_L

L (A-19)
+> (3,31, L) = 3, (i, L-1))HGR] ()G" (@) .

1.J. Information Technology and Computer Science, 2014, 01, 13-24



22 New RLS Wiener Smoother for Colored Observation Noise in Linear Discrete-time Stochastic Systems

Substituting (A-6) into (A-19), from (A-11) and (A-
15), we obtain

(L) —r,(L-1)=J,(L, L)(HGRJ/ (L)GT (CDT)iL (A-20)
—H®"r,(L-1)— HD"'r,, (L -1)).

Subtraction of r,,(L-1) from r, (L) yields

r21(|—) - r21(L _1) = ‘]2 (L: L)ﬁB(L)

= (A-21)
#2.(3,(0,L) = 3, (i, L ~1)HB().

Substituting (A-8) into (A-21), from (A-10) and (A-
14), we obtain

r21(L) - r21(|-_1) =

3,(L, L)(FB(L) - Ao, (L-1) (A-22)
—H®'r, (L-1)).

Subtraction of r,,(L-1) from r, (L) yields

(L) = (L =1)=J,(L,L)HGR, (L)G " (@) (A-23)

+E(J2(i, L)-J,(i,L—1))HGR] ()G™ (®7) .

i=1

Substituting (A-8) into (A-23), from (A-11) and (A-
15), we obtain

N (L) =1 (L-1) = J, (L, L)(HGRVTV (L)GT (‘DT )7L (A-24)
—H®"r,(L-1) - Hd"r,, (L -1)).

Let us introducing the functions
Sll(L) = cDLrll(L)(CDT )Lv SlZ(L) = (DLrlz(L)((DT)Ly

SZI(L) = CDerl(L)((DT)Lv Szz(l—) = (Derz(L)((DT)L-

Substituting (A-18) into S (L) =®"r (L)(@")", we
have
Sy (L) = @', (L=1)(®7)" + "I, (L, L)(HB(L)
—H®" 1, (L-1) - HD"r,, (L-1))(@")".
Introducing the function G (L,L)=®"J,(L,L), we
obtain (26).
Substituting (A-20) into S, (L) =®"r,,(L)(@")", we
have
Slz(L):q)Lrlz(L_l)(q)T)L
+®J,(L, L)(HGR! (L)G" (@)™
—H®"r,(L-1)-H®"r,,(L-1))(®")".

Hence, (27) is obtained.
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Substituting (A-22) into S, (L) = ®"r,, (L)(®")", we
have

S,u(L) =@, (L-1)(d")" +®"J, (L, L)(HB(L)
—H®"'r, (L-1) - H®"r,,(L-1))(P")".

Introducing the function G,(L,L)=®"J,(L,L), We
obtain (28).

Substituting (A-24) into S,,(L) = ®"r,,(L)(®")", we
have

Szz(L):q)erz(L_l)(cDT)L
+®"J, (L, L)(HGR! (LG (®@") " — HD"r,,(L-1)
—H®" r,(L-1))(@")".

Hence, (29) is obtained.

Substituting (A-12) into G,(L,L)=®"J,(L,L), we
have

G,(L,L)=(K (L, L)HT

—0'r, (L)(@7) HT

— @, (L)@T)TAT)R (L) (A-25)
= (K, (L, L)HT

-S, (LHT

=S, (L@ HNHR™(L).

Substituting (26) and (27) into (A-25), we obtain (24).

Substituting (A-16) into G,(L,L)=®"J,(L,L), we
have

G,(L,L)=(®'GR,(L)G'H"

— @'y, (L)AT(L)HT

— D', (L)(@") T HT)R™(L)
=(®'GR,(L)G'H'
=S, (L)HT =S, (L)(@")*HT)R*(L).

(A-26)

Substituting (28) and (29) into (A-26), we obtain (25).
From (15), h(k,L,L) satisfies

h(k,L,L)R(L) =K, (k,L)H"
+K,,(k,L)G'H"

L (A-27)

—Zh(k,i,L)[I—TKX(i,L)H_T
+HK,,(i,L)G"H'
+HGK,, (i, L)HT].

Noting that
Kk, L)=0,0<k<L,

K, (kL) = B(K)A (L),
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K,.(i,L)=R! ()G" (@") " (®@")"*, (A-27) is
transformed into
h(k,L,L)R(L) = B(k)AT (L)HT
- ih(k, i, L)[HB@{)AT(L)HT
» (A-28)

+HGR; ()G (@") ™ (@")" " HT]
= K, (k,K) (@) HT
—P(k,L)Y@T) HT —P,(k, LY(@")-HT.

Here, the functions P,(k,L) and P,(k,L) are given by

P(k,L) =ZL:h(k,i, L)HB(i), (A-29)
R (k,L) =_§Ljh(k,i, L)HGR] ()G (@")™". (A-30)

Subtraction of Pp,(k,L-1) from P (k,L) yields, and
using (A-4), (A-10) and (A-14), we obtain

P(k,L)-P,(k,L-1) =h(k, L, L)HB(L)
+ZL:(h(k, i,L)—h(k,i, L—1))HB(i)
=h(k, L, L)HB(L) L (A31)
—h(k, L, L)Z(I—TCDLJI(i, L-1)

+H®"J, (i, L-1))HB(i)
=h(k, L, L)(HB(L)
~H®'r, (L-1)-H®d" ', (L-1)).

Subtraction of p,(k,L-1) from P,(k,L) yields, and
using (A-4), (A-11) and (A-15), we obtain

P,(k,L)—P,(k,L-1) =
h(k, L, L)HGR! (L)G" (@)™

+ZL:(h(k,i, L)

~h(k,i, L—1))HGR! ()G (®")" (A-32)
=h(k, L, L)HGR! (L)G" (®") ™"

—h(k, L, L)ZL:(I—T(DLJl(i, L-1)

+H®"J, (i, L-1))HGR] ()G" (®")"

=h(k,L,L)(HGR] (L)G" (®")™
~Ho'r,(L-1)
~H®"r,,(L-1)).

By introducing the functions g, (k,L) and g, (k,L) as
gy (k, L) =R (k, L)(@")" (A-33)
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d,(k, L) =P, (k,L)(®")". (A-34)
From (A-31), (A-33), together with the expressions
of Sll(l—) =(DLr11(L)((DT)L and SZl(L) =CDLr21(L)((DT)L:

(20) is obtained. Similarly, from (A-32), (A-34),
together with the expressions of S, (L) = ®"r,,(L)(®")"

and S,,(L) =®@"r,,(L)(@")", (21) is obtained.
It is also noticed that h(k,L,L) in (A-28) satisfies
h(k, L, L)R(L) = K, (k,k)(@")-*HT

—q,(k, L)HT
~0,(k, L)(@")'H.

(A-35)

Substitution of (20) and (21) into (A-35), we obtain
(18) for the smoother gain h(k,L,L).

From (A-29), the initial value of the difference
equation (20) for q, (k,L) at L=k is written as follows.

ay (k. k) = P (k, k)(@)"

: (A-36)
= 2 h(k,i, k) HB(i)(@")".

From (15), h(k,s,k) satisfies

h(k,s,k)R(K) = K (k,s)A" + K, (k,5)G"HT

—Zk: h(k,i,k)[FK,(i,s)H"

+|I-illKXW(i,s)GTHT +HGK,, (i,s)A™].

From (A-2) and (A-3), h(k,s,k) is given by

h(k,s, k) = ®*J,(s,k) + D" J, (s, k). (A-37)

Substituting (A-37) into (A-36) and using (A-10) and
(A-14), we obtain

0 (k. k) = S,,(K) + S, (K). (A-38)
Also, substituting (A-37) into
0, (k. k) = P, (k, k)(@T)"
= 2h(k, i, K)HGR! (i)G™ (@7) " (@7)¥,
from (A-11) and (A-15), we obtain
0, (K, K) = S, (K) + S, (K). (A-39)

The filtering estimate R(L,L) of x(L) is expressed by
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R(L,L) = ZL:h(L,i, L)y(i). (A-40)

Substituting (A-37) into (A-40) and introducing the
functions

0.0 =Y 2,6,V (A-41)
0,(1)= X3, LyG), (A-42)
we have

R(L,L) = @O, (L) + DO, (L). (A-43)

Subtracting O,(L-1) from O (L) and using (A-6),
we have

O, (L) -0, (L-1) =J, (L, L)¥(L)

+§(Jl(i, L)-J,(,L-1)¥() (A-44)
=J,(LL)y(L) - I, (L, L)(HP O, (L -1)
+H®"0,(L-1)).

From (A-43), (A-44) is written as

O,(L)-O(L-D= (A-45)
Jy(L, L)(Y(L) - HOK(L -1, L -1)).

Subtracting O,(L-1) from O,(L) and using (A-8)
and (A-43), we have

0,(L)~0,(L-1) = 3,(L, L)y(L)
+§(J2(i,L)—Jz(i,L—l))vm

=J,(L,L)¥(L) - J,(L, L)(H®"O, (L -1)
+H®"0,(L-1)
=J,(L,L)(Y(L) - H®R(L -1, L -1)).

(A-46)

Substitution of (A-45) and (A-46) into (A-43) yields

(L, L) =®" (O (L —1) + I, (L, L)(¥(L)

~ HOR(L -1, L - 1))

+®" (0, (L -1) + 3, (L, L)(Y(L)

~ HOR(L -1, L -1))

=®R(L -1 L-1)+ (G, (L, L) + G, (L, LY)(V(L)
~ HoR(L-1.L-1)).

(A-47)

Subtracting  g(k,L—1) from the fixed-point
smoothing estimate x(k,L) in (9) and using (A-4), (A-
41)-(A-43), we obtain
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%(k, L) - %(k, L—1) = h(k, L, L) ¥(L)
+§(h(k,i, L) —h(k,i,L-2)¥(i)

ik LY

—h(k, L, L)Li(ﬁ @I, (s,L-1) (A-48)

+I-_ICDLJ2(S,_L—1))7(i)

=h(k, L, L)(Y(L)
~H®'O,(L-)-H®"'0,(L-1))

=h(k, L, L)(Y(L) - HOR(L, L -1)).

The initial value of (23) for the filtering estimate
R(L,L) at L=0 is g(L,L)=0 from (A-41)-(A-43).
Also, the initial values of (26)-(29) for s (L), S, (L),
Su(L) and s, (L), at L=0 are s,,(L)=0, S,(L)=0,
S,,(L)y=0and s, (L) =0 from (A-10), (A-11), (A-14)
and (A-15).

(Q.E.D.)
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